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NEAR CRITICAL FREE SURFACE FLOW

PAST AN OBSTACLE*

By

SUSAN L. COLE

Pomona College

Abstract. This paper describes the nonlinear effects produced by arbitrarily small

bumps in two-dimensional free surface flows with Fraude numbers close to 1+ . These

effects are determined by asymptotically matching (approximate) solutions to the ideal

flow equations.

1. Introduction. The problem of steady free surface flow is examined in the coordinate

frame depicted in Fig. 1. Uniform flow with velocity U and undisturbed height h

approaches a small bump from upstream infinity. The shape of the bottom is described by

the functiony — ef(x).

free surface

y>,

5(x)

ef(x)

| T-

Fig. 1. Coordinate frame of free surface problem.

The motion of an irrotational fluid can be characterized by a velocity potential $(x, y)

where the velocity of the fluid at any point is given by V$. For a flow which is also

incompressible, continuity requires that $ satisfies Laplace's equation

+ %y = 0. (1)

The inviscid boundary conditions are that the flow is tangent to the bottom,

% = on y = ef(x), (2)
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tangent to the free surface,

% = on y = h + £(x), (3)

and also satisfies Bernoulli's equation there,

P/p + ^(<l>2 + $2) + gz = const. onj> = h + |(x). (4)

The pressure P is constant along the free surface and the density p is constant everywhere.

Equations (l)-(4) along with the boundary conditions that

$ -» Ux and | -> 0
X~* — 00 X~* — oo

are the basic differential equation and boundary conditions which describe the fluid

motion. The relevent nondimensional parameters are the Froude number F = U/ Jgh

and the bump height e. Flows with F > 1 are referred to as supercritical, flows with F < 1

as subcritical flows with F — 1 as critical. The physical significance of the term critical lies

in fact that infinitesimal waves travel at a maximum speed ]fgh which corresponds to

F= 1.

Equations (1)—(4) are quite difficult to solve for an arbitrary bump due to the

nonlinearity of the boundary conditions and the interaction between the free surface

location and the fluid velocity. In order to help understand the general solution, it is

useful to consider the case of infinitesimally small bumps corresponding to e -> 0 with all

other quantities fixed.

2. The linear solution. The linear approximation is based on the assumption that the

velocity potential and free surface satisfy asymptotic expansions of the form

${x, y; e) = U{x + e<p(x, y) + e2<p2(x, + • • ■ },

£(x; e) = er](x) + e2t]2(x) + ■ ■ ■

where the functions cp, tj, cp2,172 etc- are order 1 and the terms of order e2 or higher are

negligible in comparison to the order e terms. Substituting these expansions into equations

(1)—(4), expanding $ in the boundary equations about the fixed location y = 0 or y — h,

and retaining terms of order e gives the usual linear relations

<Pxx + <Pyy = 0. (5)

<Py=fx onj> = 0, (6)

<py = vx on y = h, (7)

and

F2h<px + ij = 0 on y — h. (8)

The free surface boundary Eqs. (7) and (8) can be combined to form a single equation

which is independent of tj,

f2h<Pxx + <Pv = 0 ony = h.
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The complicated interaction between the velocity potential and the free surface in the

nonlinear problem is absent in the linear problem. Kelvin [1] solved the linearized

problem exactly.

For f(x) equal to the delta function1 S(x), the linear solution for the velocity potential is

— i ryi+ oo ..

*=2»/ e
_ F2kh sh kh - ch kh

Oil A.Z. I _ I Cll iVZ

F kh ch kh — sh kh
dk

"yi — oo

The qualitative nature of the free surface as a function of the parameter F can be

deduced from the properties of the denominator of the integrand D(k) = F2kh ch kh —

sh kh.

• For F < 1, the equation D(k) = 0 has real roots at k = 0 and ±k* only. The roots

k = ±k* correspond to the wave number of the free wave solutions and give rise to the

wave train that is present in the linear downstream solution for F < 1. The point k = 0 is

a removable singularity of the integrand for F < 1.

• For F > 1, the equation D(k) = 0 has no nonzero real roots. This corresponds to the

fact that there are no free wave solutions for F> 1 and no wave train in the linear

downstream solution. The point k = 0 is a removable singularity of the integrand for

F > 1 also.

• The integral expression for tj is infinite for F = 1 since

D(k) ~ 0(k3).
k — 0

There is no steady linear solution for F — 1.

• The equation D(k) = 0 has an infinite number of purely imaginary roots which are

all bounded away from zero for F bounded away from 1+ . As F tends to 1+ , the smallest

imaginary root tends to zero and gives rise to a free surface solution which tends to

infinity as F -» 1+ .

The integral expression for rj can be evaluated by contour integration over the complex

variable k giving

OO „ e-"nM

-F2 2 7—; " 4 , 71  for F > 1,
„=0 [F2 - 1 - F4v2h2]cosvnh

■q(x) = — F2 2
„ e-'nM

where

[F2- 1 ~ FAv2h2]cosvnh

-#(*)• 2F2k*smk*x  forF<1

[F2 - 1 + F4k*2h2]chk*h

H(x) — f 1 for*>0>
1 ' \0 for x < 0

' The delta function bump solution exhibits the same qualitative features as more physical bumps and can

easily be used to build up general solutions by superposition.
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and ivn, n = 0,1,2,, are the imaginary roots of D(k) = 0 with lie in the upper half

plane.

The shape of the linear free surface solution is distinctly different for F > 1 as opposed

to F < 1. For F> 1, -q(x) rises over the bump and is symmetric with respect to it. For

F< 1, t](x) dips over the bump and is not symmetric with respect to it; waves are

produced downstream. The free surface shapes are shown schematically in Figs. 2 and 3.

rfW |

Fig. 2. Schematic representation of linear free surface for F < 1.

Fig. 3. Schematic representation of linear free surfaces for F > 1.

Although the linear approximation is valid for any fixed F not equal to 1 as long as e is

taken small enough, it is not valid if F is allowed to approach 1. As F tends to 1 + , 17

becomes unbounded near the bump,

-j p-"o\M , ,,
, ~ j- 0(F2-ir'/j.

1+ 2 Vnh2 F~* 1
(F1- 1)'/2|jc| «1

Thus, the assumption that t)(x) is order 1, which is inherent in the linear approximation, is

not valid for | x | near the bump as F tends to 1+ . As F tends to 1~, tj(jc) remains

bounded upstream and near the bump but not far downstream

!,(*) ~
1 h1

X~* 00

(F2- 1)'/2a:«1

A more exact description of the range of validity of the linear solution is given next

through the second order theory.

3. The second order solution. The second order solution can be used to indicate the

range of validity of the linear (first order) solution. The linear approximation assumes that

the potential and free surface satisfy asymptotic expansions of the form
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4>(x; e) = U{x + e(p(x, y) + e2(p2(x, >') + •■•}

and

£(.x; e) = eri(x) + ezr]2(x) + • • •

where the functions cp, rj, <p2, rj2, etc. are order 1. This idea can be generalized to include

expansions of the same form where (p, rj, cp2, r)2, etc. are no longer order 1 but the terms

e<p, E2<jp2, ■ ■ ■ and erj, £2tj2, ... still appear in asymptotic order. In this sense, the linear

approximation is still valid as e tends to zero as long as

*-["(*-T>] _ 0 and Llsl _ 0.
£(p c —»0 £TJ e —* 0

By solving for the second order terms, it is possible to determine when the second order

terms and the first order terms are the same size and thus indicate when the linear theory

is not valid.

Substituting the asymptotic expansions for <E> and £ into equations (l)-(4), expanding <E>

in the boundary equations about y = 0 or y = h, and retaining terms which are of order e

gives the linear equations. The order e2 terms define the second order problem

<P2XX + <P2yy = 0, (9)

<P2y=(<Pxf)x on^ = 0 (10)

<P2y = + (<P* + tf)x) ony = h, (11)

2 r

+ 2<P2X) + F2hy<Pxy +v2 = 0 °ny-h. (12)

The second order equations are somewhat more complicated than the linear equations.

However, they are linear in the unknown functions <p2 and r\2 (cp and rj are known) and

can be solved exactly. The asymptotic results are merely quoted below.

For a delta function bump, t)2 (like rj) becomes large near the bump as F tends to 1+ ,

5 1
v2

(F2-l)l/2|x|«l
/•-i+ 4/i3 (p2 _

and as F tends to 1 , remains bounded upstream and near the bump but not far

downstream

9 4
7)2 ~ -X.

F~\- 4h1
*->00

(F2-1)i/2x«I

The linear approximation is not valid when the terms e2rj2 and erj are the same order.

This never occurs for flows with | F2 — 1 |> 0(e2/3). For flows with

F2 - 1 ~ 0(e2/3),
e-»0

the terms e2tj2 and erj become the same order for supercritical flows when

x ~ 0(e-'/3)
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upstream and for subcritical flows when

x ~ o(e-'/3)
c-»0

downstream. Thus, the subcritical linear solution appears valid for all F (including

F — 1~) from upstream infinity to a distance 0(e~l/3) downstream (see Fig. 4) while the

supercritical flow for

(F2 - 1) ~ 0(e2/3)
e-0

becomes nonlinear upstream.

Fig. 4. Schematic representation of linear free surface for F = 1

In order for this problem to have a continuous solution when considered as a function

of the parameter F, a nonlinear supercritical solution is required to match together the

flow solutions near the bump as F passes through 1. This nonlinear solution must tend

continuously to the linear solution for F = 1" as F tends to 1+ . The following nonlinear

theory provides such a solution.

4. The nonlinear solution for F > 1. The linear theory is based on the assumption that

the basic incoming flow is uniform everywhere and that the bump produces only an order

e perturbation to that flow. The following nonlinear theory is based on the assumption

that the incoming flow is a (nonlinear) solitary wave.

The solitary wave potential and free surface are assumed to satisfy Cole's [2] asymptotic

expansions of the form

$s = {* + e'/3[/i(*) + e2/3(/2(*) -y2/2f{'(x))

+ e4/3(/3(x) -y2/2f{'{x) + y*/A\f"\'(xj) + •••]}

and

£ = h + e2/3T)(x) + e4/3ri2(x) + ■ ■ ■

where x = el/3x, F2 — 1 + e2/3K for K > 0 with x, K and the functions rj, /,, tj2, f2, etc.

and their x derivatives order I.2 These expansions reflect the fact that flow quantities in a

2The given solitary wave scaling is uniquely determined by the requirement that (F2 — 1) ~ 0(e2/3).
t * o
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solitary wave vary more slowly in the horizontal direction than the vertical direction.

Cole's solitary wave expansion for and £ satisfy Laplace's equation and the kinematic

boundary condition for flat a bottom for any tj,/,, tj2,/2, etc. The relations defining rj, /,,

tj2, /2, etc. are found by substituting the expansions for and £ into the free surface

conditions and matching terms of equal order in e. These relations uniquely define the

incoming solitary wave in terms of the parameter K.

The resulting differential equation3 for tj is

yrj'2 - hKv2 + tj3 = 0. (13)

The function /, is defined in terms of tj as

/;= -v/h.

Equation (13) defines a solitary wave centered about the bump with maximum height

hK. The solitary wave solution is valid far upstream where the bottom is flat. Near the

bump, it must be asymptotically matched onto a "local" solution which incorporates the

boundary condition on the bump. Fortunately, the fact that flow characteristics in a

solitary wave vary slowly in the horizontal direction in comparison to the vertical direction

makes the desired matching easy.

As x tends to zero from below, the solitary wave potential can be expanded in a Taylor

series ib x,

y-^l /,"(»)+A(°)+ o(e)= t/jx + e1/3/|(0) + e2/3x/,'( 0) + e

which is equivalent to

O, = U( 1 — e2/3K)[x + e1/3a + o(e)}

where a = /,(())(1 + e2/3K) + £2/3/2(0) is a constant. The term involving /,"(()) vanishes4

since /,"(0) = — rj(0)//i = 0. Near the bump, the fluid height is approximately

h(l + e2/3K ) and the Froude number squared is

F,2 ~ 1 - 2e2/3
e-»0

(based on the local flow characteristics). This suggests that the upstream solitary wave

solution can be asymptotically matched onto a "local" subcritical expansion for the linear

problem with

d>,= U{\ -e2^K){x + e1/3a + E(p(x, y) + • ■ ■ }

and a local height ht = h{ 1 + e2/3K). The solution for <jp(x, y) is given in Sec. 1; the

presence of the constant term e1/3a does not affect the flow characteristics since only

derivatives of the potential enter into the problem.

3 An arbitrary constant of integration in the differential equation for 17 has been eliminated by also

substituting the asymptotic expansions for O, and | into the mass flow equation Uh = fo+'2/1,l+ O, dy and

matching terms of equal order in t.

4 In order for the solitary wave to match with the "local" solution, the solitary wave must be centered about

the bump.
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Formally, matching is accomplished in the intermediate region by the variable x = eax

where 0 < a < 1 /9. Fixing x and letting e tend to zero gives

x
x = — - oo

e £-»o
x fixed

and

e1/3x = e1/3 ax -» 0.
£-0

x fixed

Rewriting both potentials in terms of the variable x and letting e tend to zero gives

0, and 4>, ~q^(1 - e1^K)^ + el/3a + o(c)

These solutions indeed match asymptotically.

This composite solution predicts that the nonlinear supercritical flow with Froude

number F2 = 1 + e2/3 K at upstream infinity rises along a solitary wave and passes over

the bump with a local subcritical Froude number F2 = 1 — 2e2/3K. As F tends to 1+ , K

tends to zero and the maximum height of the solitary wave tends to zero. In this way, the

local Froude number tends to 1~ and the nonlinear solution tends continuously to the

linear solution for F = 1 ~ .

While Moiseev [3] and Fillipov [4] have postulated the possible nonuniqueness of

supercritical solutions, these results do not support their hypothesis. The second order

solution indicates that the linear theory is valid only for F2 — 1 larger than 0(e2/3) while

the above matching procedure requires F2 — 1 to be 0(e2/3). Thus, the linear supercriti-

cal solution is valid only when the nonlinear solution is not and vice versa.

5. Concluding remarks. Even though the difficulties with the upstream supercritical flow

appear to be resolved, all flows with

F2 — 1 ~ 0(e2/3)
E-0

Fig. 5. Schematic representation of free surface for F2 = I — e2/3K with K > (%l/4h)
1/3
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become nonlinear for

x ~ 0(e-'/3)
e-»0

downstream.

Cole [2] has partially resolved this difficulty by matching the linear subcritical solutions

for flows with F2 = 1 — e2/3K and K > (81 /4/z4),/3 to cnoidal waves far downstream.

The composite solution for one of these flows is given schematically in Fig. 5. This

matching is not possible for smaller K.
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