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A NONSTANDARD NONLINEAR BOUNDARY-VALUE PROBLEM

FOR HARMONIC FUNCTIONS*

By

NIMA GEFFEN

Tel-Aviv University, Tel-Aviv

Abstract. Existence and uniqueness are proved for a nonstandard, nonlinear boundary-

value problem for 2-dimensional harmonic functions. The problem models an ideal

flow-field, and a few cases of applied interest are considered. Slight generalizations are

derived in the appendix.

1. Introduction. Incompressible, inviscid fluid flow about given boundaries is potential,

and satisfies standard Neumann or mixed linear boundary conditions. The pressure is a

single valued function of the square of the velocity, which, in turn, is a gradient of the

potential (p:

q2 , x

P=Po~ Poy q = v<p. (*)

The continuity equation: V • q = 0, implies V2<p = 0.

If, instead of no-flow, we wish to prescribe the pressure about a given boundary, we

have (by (*)) the nonlinear boundary condition: q — \ v<p | = /. The pressure distribution

determines the forces and moments acting on the surface, and the question under what

conditions it can be prescribed comes up in design problems. The motivation for the

present work came from yet another direction. As an alternative to known aerodynamic

design procedures involving quasi-linear equations of mixed type with mixed linear

boundary conditions of the Dirichlet-Neumann variety (e.g. [1]), we proposed a method

involving nonstandard boundary conditions (e.g. [3]). The mathematical model treated

here can be viewed as a limiting case of the transonic nonlinear equation, and the

conjecture (supported by numerical evidence) is that the difficulties (and ways out)

associated with the nonlinear boundary condition are essentially the same in both cases

[3]-
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2. First nonstandard boundary-value problem. Consider Laplace's equation:

V2<P = <PXX + %y = 0 (1)

in a domain D with the magnitude of v<p prescribed on the boundary dD (Fig. 1):

I V<p|= )]<p2x + = f on dD, f> 0. (2)

Fig. 1.

Theorem 1. The gradient field q = (w, u) = (<px, <pF) = V<p satisfying (1) and (2) is

determined up to a rotation. In other words:

(i) q = V<p, such that (1), (2) hold, exists.

(ii) If (w, v) is a solution to (1), (2), so is

cos a sin a

-sin a cos a

for 0 < a < 2tt.

Proof. Consider the complex potential, assumed analytic:

z = x + iy,

F(z) = <p(x, y) + i\p(x, y)

where

u = <px = \py, v = <py = -\px.

Let the complex velocity be

w(z) = F'(z) = <px + i+x — u — iv

and set

w(z) = qe,e, (3)

| w(z) | = | F'(z) |=^=| V<p | = | V*p |

assuming

F'(z) = tv^0.



NONSTANDARD NONLINEAR BOUNDARY-VALUE PROBLEM 291

The function:'

is also analytic, i.e.

and

In w(z) = In q + id (4)

V2(ln q) = 0 in D (5)

In | w(z) | = In q = In /, (6)

is given on 3D by (2).

Equations (5) and (6) specify a Dirichlet problem for a — In q — In | v<p | which is well

posed. It has a unique solution, which can be written down at least for 'reasonable'

problems, e.g., via conformal mapping or Green's function (e.g. [4]).

The angle 8 is the harmonic conjugate of a = In q (Eq. (4)), hence, using Cauchy-Rie-

mann conditions:

= (In q )„ = 0y, ay = (\nq)v = -6X

it can be determined from a = In q up to a constant 0o, and:

w(z) = q'(e+e °> = u — iv.

The vector field (», v)(x, y) forms a one-parameter family with the same speed (i.e.

magnitude of q = yw2 + u2). The velocity vector q can be rotated by the same angle 60 at

all points of the field.

Example. Let

V2<p = 0 on D,

| V<p | = C on dD.

The solution is

<p = Ux + Vy

where U and V are constants, such that

U2 + V2 = c2,

i.e. a uniform vector field of magnitude C and an arbitrary ('free') direction.

The same result holds for the 3-dimensional case:

<p = Ux + Vy + Wz, U2 + V2 + W2 = C2.

3. Second nonlinear boundary-value problem. In this case we look for a harmonic

function satisfying the equation:

V2<P = <PXX + %y = 0 in D (1)

and the mixed boundary conditions

V<p|= )J<p2x + $=/ on 3D,, (2a)

1 The following representation is due to S. Osher of UCLA.
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where 3Z) = 3D, + 3D2 (Fig. 2).

3cp
= 0 on 9D2 (2b)

l v l =f

Fig. 2.

Theorem 2. The gradient field q = v<p = (<px, %) satisfying (1), (2a), (2b) exists and is

unique up to a sign, i.e.: if q, is a solution, so is -qv

Proof. Recapitulating the definitions and reasoning above we have

F(z) ~ <p + ixp,

w(z) = F'(z) = u — iv,

(u,v) =

w(z) =

lnw(z) = ln( <y) + id = a + i6,

q2 = u2 + u2; tan# =

Assuming again that F(z) is analytic and F'(z) ¥= 0, w(z) is analytic, and on the boundary

3 D2:

d<P - n - a 9<P - - n
3/7 q" 3« 3/

Thus, along the boundary 3Z)2:

which simply expresses the fact that 3D2 is a streamline (i.e., no-through-flow surface).

On such a surface we have

yp = C: d\p = *pxdx + iip dy = 0

dx
=

^=c %
= — = tan(-0) G 3D2

,-r Ui'-C
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let 3D2 be given as

i.e.,

Using the relation:

we get

where

and the problem to solve is:

y=Y(x)

tan(-9) \y=Y = Y'(x).

3(ln<?) _ 3o _ 30

dn 3 n 3/

Tn=SEdD>

g = ^[-tan"1r(jc)]

V2(ln q) = 0 G D,

In q = In / £ 3D,,

^(lnq) = g£ 3Z)2

which is a standard linear mixed boundary-value problem for the harmonic function

a = In q in D (Fig. 3).
a - f

Fig. 3.

The problem is well posed, and has a unique solution in D, which can be written

explicitly in various forms and has been investigated extensively (e.g. [4]).

To determine 9 we can either use the Cauchy Riemann equations, or solve for 9 directly.

The angle function 9 is harmonic (i.e. V= 0) and satisfies the conjugate boundary

conditions:

3 9 _ 3(ln g) _ 3 „ ,x_, an
3« 3/ g/ (ln /) f\ on 3D,
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and:

6 = tan_1(-y(x)) = g, on9D2.

The problem is again a standard linear mixed boundary-value problem, which has a

unique solution. Thus q and 6 are uniquely defined for this problem, and since:

w(z) = qe'e — u — iv, the vector q = (u, v) is defined up to a sign, i.e., if q, = («,, «,) is

a solution, so is q2 = -q] — -t),) and these are the only two solutions.

Corollary. The 'external' problem (Fig. 4):

V 2<p = 0 outside S,

V<p=f£Sl, {> 0,

(^,9,) = t/(l,0),

Ix I ̂ \y I00

has a unique solution.

VO--U (1,0)

I x I + ly I -> oo

IV<t>l=f

Fig. 4.

The proof follows the lines above; the external problem for a = In q is well posed and

has a unique solution. The conjugate harmonic function can be determined directly or via

the Cauchy-Riemann equations, as before. Here it is uniquely determined, with the

direction fixed by the given uniform far-field.

Singular points. The assumption

F'(z) = w ¥= (0, oo)
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excluding 'stagnation' and singular points, can be relaxed if we know the location and a

type of singularities, which is often the case.

We then remove them by considering the function:

p = n Az)(z - zjYj
j= 1

where z) are the 'special' points and fit are chosen to remove the singularities or

troublesome zeros at z = Zj.

The analysis above can be repeated for the corresponding noon-standard boundary-value

problems for P(z) and the same conclusions drawn.

Remarks on non-homogeneous Neumann conditions. For the homogeneous Neumann

Condition d<p/dn = 0 the nonlinear boundary-value problem for <p or q = v<p becomes

linear for the auxiliary function:

a = In q = In | V<p | .

In addition, the boundary-value problems for a and 6 decouple and result in standard

linear mixed boundary-value problems for a and 6 separately, of the types frequently

encountered in potential theory and its physical applications (i.e., elasticity, hydrody-

namics [4]).

This decoupling fails for a nonhomogeneous condition on 3Z)2, where

q„ = dtp/dn = Q ¥=0.

For this case let 3 D2 bej> = Y(x) and tan a — Y'(x). We again have (Fig. 5):

n V
tan 0 = - —,

u

qn = gsin(-0 — a) = -j3 sin(0 + 6).2

lv<t>l = f

Fig. 5.

1 For the no-flow condition: qn = 0, i.e., -9 = a.
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The boundary condition on 3D2 is

Q= -Q = q sin( 6 + a)

and

Q = In Q = In q + In sin(0 + a)

Q = a + In sin(0 + a)

on dD2: y — Y( X) and tan a = Y'(x).

The conjecture here is that this problem also has a unique solution (up to a sign) at least

for the case where:

$12=/ \n dl=0

i.e., where there is no net flux through the boundary.

4. An alternative 'real' analysis. Circumventing the complex representation, with a view

towards possible generalizations (see Appendix) the following holds:

Theorem 3. Consider the function

q = q q

where q is a vector field. There exist functions / twice differentiable and monotone (i.e.,

/' ¥= 0) such that /(q) is harmonic, i.e.,

V2(/(q))=0 (7)

if and only if:

V'q =-/=•( q) (8)Vq•Vq w

and in this case:

/(q) = J erF(q") dq" da. (9)

Proof. The proof is trivially straightforward, via a direct calculation:

v • v(/(q)) =/"Vq • vq +/'V2q = 0

/»//'= v2q/(vq)2.

Since

/"//' = (In/')' = +F(q) (10)

we must have

v2q/(vq)2 =-/"(q) (8)

and integrating (10) twice gives Eq. (6). Since Eq. (10) is a second-order differential

equation for /, it has a two-parameter family of solutions.
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For 2-dimensional 'harmonic' potential fields:

q = («Px.<Py). V2<p = 0

direct calculation gives:

V2q = (<Px + <P,2L + if* + fy)yy = 4(< ~ <PxJPy,)>

(Vq)2 = 4[(<jdx<pxjc + <py<pyx)2 + (<px<pxy + <py<pyyf]

= 4(<Px + <Py){<Ply ~ VxxVyy ) •

Hence:

F(q) = -l/q and /(q) = lncqa

choosing c = 1, 6 = \ we recover (5) and the rest of the proof follows.

Appendix: A note on a wrong question with some simple answers.

1. The question. Consider a potential vector field

u = v«p (1)

where <p satisfies a second-order differential equation:

32qp 9<p , x
(f>~ a'J 3x,3Xj + 3jc~ ^

and summation is implied for indices appearing twice in the same term.

Can one find a function/ satisfying:

Lf(q) = 0 (3)

where q is the square of the magnitude of the vector field u, i.e.,

q = u u = (V<p)2?

This may provide information on relevant properties of the field directly (e.g. the kinetic

energy if u of the velocity vector), and enable one to treat non-standard boundary values,

where q is given on the boundary (e.g. a prescribed pressure in fluid dynamics).

The question is "wrong" because, in general, one cannot expect such a simple

relationship between cp and q, except, possibly, in fortuitous cases. The condition for such

luck, however, can be easily obtained, and readily checked. The check is constructive,

explicitly yielding the function / if it exists; hence the following discussion.

2. The answer. Consider a twice, continuously differentiable function <p(jc,,... ,x„)

satisfying the linear equation

^ = 2^ + 2^ = 0. (2)
i,j ' J i i

u = V<P, (1)

<7 = u-u= (v<p)2. (3)
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Theorem. There exists a twice differential function f(q) such that

Lf(q) = 0 (4)

if and only if

,J 3x,3Xj ' 3x, j ' ,J 3x, 3Xj
32<7 , l 3? \ / 3<? 9<7 w \

+ b— /a—._ = /•(,?) (5)

and then

f(q) = c,jfexp|-jfV(0") + c2. (6)

In terms of q> the condition is

aU 32<jp 11 32(jp \ 3qp 32<p
3x,3x I ^ 3x,3x,) 3x, 3x,3x(3x

2a I -§51 92()P 11 d<f> d2(p

r. d<P \ I 3<P
3x,) \ <px,

<px, 3x,3x,) | 3x, 3x,3x,

If instead of (3) we set:

q = aijUiUj (3')

condition (5) becomes:

lm

I ^ 31^ . 3«m 3«/ . a2"m | 32M7 \ , / 3um 3m,

J'j I 3x, 3x, 3x, 3x, M/3x,3x, "m3x,3x, '\W/3x, Wm 3x,

V I f^£L , 3m,
2 I«/ 8 + «m 8

l,m

(5')

with a corresponding change (and complication) of (7). Equation (3') reduces to (3) when

a,y = <S,7 and other choices may be useful (e.g., <*,-•( q _?) in an example below).

Proof. Substituting f(q) in Lf{q) = 0, we get

32<? 3? 3<? . fl, dg
f 'J 3x,3x, f 'J 3x, 3x; f • 3x, '

hence:

f _ 32q ,1 L 3g | 3? 3<? \
/" a'J 3x,3xy ( ' 3x, a'>3x, 3xJ'

Since / is a function of q only, so is the LHS of (9) and condition (5) follows. The

explicit solution for/, equation (7), is obtained by integrating twice the equation:

/'//" = -F(q). (10)

3. Examples, (a) Laplace's equation. Let

L<p = v2(f> = 0 q=(v<p)2. (11)
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There exists a harmonic function and only if

(12)
(V?)

In two dimensions:

4 = <Px + <P2y>

V • vq = 4(tply - <pxx<pyy),

(V?)2 = 4(<p2xy - <pxx<pyy)(<px + <py).

Hence

and

r< 11- I
<Px + <Pv /' ?

/= cln <jra.

(b) Wave equation. Let

= <Pxx - <Pyy = 0' 9 = & + <Py-

For this case

Lf(q)= 0

implies

/"  Qyy 

il - q2y
F{q)

but here

Ixx ~ lyy = (<Pxx~ <Pyy)(<PXX + <Pyy) + <PX(<PXX - <Pyy)x + %(<PXX - <Pyy)y = 0

and q itself satisfies the wave equation!

(c) A different choice of air Choosing:

i.e.,

one gets

and

«,=c.?)
q = <px - <Pv

<P "i" (P — 0 => Q ~1~ Q — 0txx yy "xx *yy

<Pxx -<Pyy = 0=* (ln <i)xx - (In q)yy = 0

(which can be obtained via the change y -» iy in (a) and (b) above).
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Additional relations can be derived by further changes in aij and reiterating the same

procedure on the equations for q. This results in higher order equations for <p, which may

contain useful information, e.g., via using the maximum principle for Laplace's equation,

and conservation laws for the wave equation.

4. A final apology. Although a wrong question is asked, the answer is so simple and

elementary that it may be worth a try on special occasions. When it works, it " linearizes"

a nonlinear problem for q and <p from which complete information can be drawn. Other

interesting equations amenable and examples in higher dimensions are yet to be shown, as

well as possible connections among them.
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