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Abstract. A weakly nonlinear theory of the breakup of a jet held together with the

capillary forces in the presence of an applied electric field is presented. It is shown that the

jet breaks into the main drops and their satellites whose sizes are sensitive to the

wavenumbers and the electric field. The satellites always exist when the electric field is

applied to the jet which, however, is not the case when the electric field is absent.

1. Introduction. The stability of the capillary jet is one of the classical problems in fluid

mechanics. The linear theory governing this phenomenon was given by Rayleigh [1] who

also developed a mathematical model for the breakup of liquid jets into drops. Such a

uniform model based on linear theory does not explain the experimental observations of

Donnelly and Glaberson [2], and Rutland and Jameson [3]. These experiments indicate

that the jet breaks up into a body of main drops interspersed with satellite drops whose

size is a function of the wavenumber of the disturbance. These observations motivated

Yuen [4] to formulate a nonlinear theory for the breakup of liquid jets which exhibits the

existence of the satellites. This problem is of fundamental importance in a growing

number of applications such as the production of lead shots, spray drying, electronic ink

jet printing, fluid jet amplification and others in the synthetic and fertilizer industries.

The purpose of this paper is to investigate the nonlinear breakup of a laminar

conducting liquid jet in the presence of an electric field. The theoretical as well as the

experimental studies concerning the influence of electric fields on the surface waves at the

capillary jets were investigated by Melcher [5]. This investigation is somewhat similar in

physical characteristics to the nonlinear breakup of a self-gravitating column, considered

earlier by Malik et al. [6], The analysis of this study was confined within the framework of

the linear theory. Recently, the satellite-drop formation has been recognized as a highly

nonlinear behaviour. We present here a third order nonlinear theory pertaining to this

problem by using the method of straining of the coordinates (see Nayfeh [7]).

The basic equations and the mathematical scheme for solving this nonlinear initial

boundary value problem are given in Sec. 2. In Sec. 3 we recapitulate the linear theory.

Sec. 4 and 5 are then devoted to obtaining the second and third order solutions of the

nonlinear problem, respectively. It is shown that the perturbed surface of the jet assumes a

nonsinusoidal shape resulting in secondary waves which is a direct consequence of the
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energy transfer between the harmonics of the various orders. In Sec. 6, we have calculated

numercially the nonlinear breakup time by increasing the time variable in the perturbed

surface equation until the amplitude of the surface wave attains the value of the radius of

the undisturbed jet. This criteria of jet breakup successfully explains the experimental

observations of Rutland and Jameson [3] as reported by Lafrance [8] who used Yuen's [4]

theoretical solution to calculate the relative size of satellites and main drops as a function

of the wavenumber. The fluid enclosed by the primary wave and the secondary wave is

assumed to form the main and the satellite drop, respectively. The resultant bodies after

the breakup are taken to be spherical in shape whose volumes we have derived by closed

form integration. These volumes are then employed to obtain the radii of the main drops

and their satellites.

2. Formulation of the problem. We consider an incompressible, inviscid fluid jet of

radius R0 held together by the capillary forces. The effects of the surrounding fluid are

taken to be negligible. The jet is projected with a uniform speed U0 along the axis of the

cylinder. The cylinder is at a fixed potential V0 relative to that of the jet, and its walls are

far away from the surface of the jet. A radial electric field thus stresses the jet. The fluid is

assumed to be highly conducted so as to exclude the contribution of the electric field from

the fluid in the jet. Now, a periodic initial disturbance is given at the surface of the jet.

The radius b of the outer conducting cylinder is much larger than the perturbations

wavelength of the jet. To describe the fluid motion, we use the moving frame of reference

with the jet at rest. If (r, x, t0) is the coordinate system for the travelling jet and (r, Z, t)

for the jet at rest, the transformation connecting the two systems is given by

Z = x — U0t0, t = x/U0.

If V (= Vfi) and E (= -V*&) denote velocity field and the electric field, respectively,

at any time t, then the equations governing the velocity potential S2 and the electric

potential $ are

V2fi(/\0, Z) = 0, (1)

V2<P(r,0,Z) = 0, (2)

for r R0 + t)(Z, /), where rj(Z, t) denotes the elevation of the free surface measured

from the unperturbed level. All the quantities are normalised with respect to the character-

istic length R0, the radius of the undisturbed jet, the characteristic speed [7yp/?0]l/2, and

the characteristic electric field parameter R0Eq/T. Here, the density of the fluid is

denoted by p, the surface tension by T, and the field strength at the surface of the

undeformed jet by E0. We shall employ C.G.S. units. For convenience, we introduce the

following dimensionless variables, denoted by primes:

Z = RqZ', r=R0r', t = (pR0/T)V2 R0t',

11 = Ron', b = R0b', a = (T/pR0)V2R0W,

<j> =
ln(b/R0)
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In the subsequent analysis, the primes on the dimensionless variables shall be dropped for

brevity. The equations (1) and (2) are to be solved subject to the following boundary

conditions:

(i) The kinematic condition that the fluid moves the interface is given by

-^(r-V(Z, t) - 1) = 0 or

3ij 3Q 3S2 3ij , . . .
~~dt 1^~3Z3Z atr- 1 + T}(Z,/). (3)

(ii) Since the fluid is conducting

$ = 0 at r = 1 + i?(Z, t),

$ = 1 at Z = b. (4)

(iii) At the free surface, the normal stress is continuous (see Appendix A)

• _ 0fi _ J_
dt 2

3fi \2 / 3£2 \2

3 r I + \ 3 Z I

(1 + i})"

+ l!l
3Z2

dy )2

3 Z

1 +
3ij

3Z

-3/2

",/2 , aF( 34>

+ f 1^1 =»• <5>
where

RoEo _ K2
4ttT 4mTR0'

and where n denotes the unit normal drawn to the surface r — 1 + ij(Z, t). For a water jet

of 0.1 cm radius, aE is approximately 1 when the electric field strength is taken near the

breakdown strength of a gas. For a water jet of radius 0.5 cm, the corresponding value of

aE is 5. Melcher [5] used the values of aE ranging from 0 to 2 in his experimental study of

the water jet. At the time t = 0, an axisymmetric disturbance of amplitude ij0 and

wavenumber k is imposed on the surface r = 1 of the jet. The deformed surface now is

given by

r = R0 + i?0cos( kZ), (6)

where the axis of the symmetry has been chosen as the Z-axis. By virtue of the

conservation of mass,

*o = 0 ~ Wo)V2- (7)

We assume the initial conditions to be

i,(Z, 0) = i,0 cos (kZ) + (1 - Wo)i/2 ~ 1, (8)

3ij(Z,0)/3/ = 0. (9)

We wish to examine the weakly nonlinear stability problem posed by the equations

(l)-(9). The method employed is that of the strained coordinates [7], In order to describe

the nonlinear interactions of small but finite amplitude waves, we write

OO

0(r, Z, 0 = 2 iJoQjr, Z, 0, (10)
m= 1
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CO

9(r,Z,t)= 2 rft*n(r,Z,t), (11)
m = 0

and

00

v(z,t)= 2 ijyuz,/). (12)
m= 1

The above expansions are assumed to be uniformly valid for -oo < Z < oo, 0 < t < 7\

where T is related to the breakup time for the growing perturbations, and is infinite for

the stable oscillations of the surface.

We now introduce the strained coordinates:

tv = t 1 Vo
m= 1

t = kcz = z 2
m= 1

(13)

(14)

where and are chosen so as to obtain the uniform valid solutions.

The boundary conditions (3), (4) and (5) are given at r — 1 + r](Z, t). Since we do not

have a priori information about the elevation ?j(Z, t) of the free surface, we use Taylor's

expansions of the various quantities appearing in the equations (3) to (5) about r = 1 in

powers of 17, leading to the linear and the successive nonlinear partial differential

equations of the various orders. The problem for any order can then be solved with the

knowledge of the solutions of all the previous orders (see Nayfeh [9], Malik et al. [6]).

3. Linear theory. We substitute the expressions (10), (11) and (12) for fl, 3>, and rj,

respectively into the field equations (1) and (2), the boundary conditions (3), (4) and (5)

after having been reduced at r = 1, and the intial conditions (8) and (9). We retain terms

up to the first order in the small parameter tj0. Then, the first order problem O(t]0) is

characterized by

i|a', = (^ + 7i + t'|r)a' = 0' <15>

L[$,]=0. (16)

The various boundary conditions at r = 1 being

drj. 3S2, . ,-".T7 + -57 = 0' (">

+ (18)

»2da, a

dr

9$, d% a$0 a2$0
+ v r 0, (19)

where

ar ar " dr

% = -1 Mr). (20)
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The initial conditions are

T/l(|,0) = cos(^). 0ij,(*,O)/9t = O. (21)

Here, the wave number K in the strained coordinate system has the representation

* = 7 ~2 7-

For p, = 1, the solutions of equations (15)—(21) can be obtained as

t) = cosh(w!T)cos(^), (22)

«' = Y sinh(w,r)cos(/l£), (23)

K0(Kr)

K0(K)
$i = cosh((o,T)cos(^), (24)

where

2_ K
w, - 7"(1 - K2) + aE(Ky(K)- 1), (25)

■ /,(*)' y( ) K„(K)' (26)

These solutions are stable for the deformations whose wavenumber is greater than Ke,

where Ke is given by the relation

\-K2 + aE(Ky(K)~ 1) = 0. (27)

The value K = Ke is the linear cutoff wavenumber which separates the stable from the

unstable disturbances. The equation (25) reduces to Rayleigh's result for the long

wavelength approximation. For aE = 0, we recover the results of Lord Rayleigh [1] for the

hydrodynamic jet whose maximum growth of instability is at K = 0.678.

4. Second order solutions. The second order problem O(r\20) is governed by

L[B2] = -2klk2(d2^i/d^2), (28)

L[4>2] =-2A:,£2(32<V3£2), (29)

with the boundary conditions at r = 1 as

dy2 , 9Q2 _ 9t7i 92fi, 9^ dr^

9t 9r "2 9t 1,1 dr2 9£ ' ^ ^

* I „ 0$O - ,1 0<1>l V> 0
(31)
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9fi2

^+\l+Jf^V2 + aE dr / \ dr I l2\ dr j\ Qr

9^1 , /92Q.\ , 1
3t '"M 9t9 r 2

3Q,\2 I 9S2,

3 r I +l^i"

, + v2 _i(hi'2
"2 0|2 +T)i 2\ da

™i\\ ,
9/- ) 7,1 9/- 9r2

2j| 92M\/^oU93$oU _(d$0\2(dr,l
+ T?1j\ 9r2 / + \ dr I \ 9r3 / I \ dr J \ d£

(32)

<D2(t) = d>22(r) cos(2K£), (36)

and the initial data

T,2(|,0) = -i, 9tj2(£,0)/9t = 0. (33)

To obtain the solution from equations (28)—(33), we assume

t,2(|, t) = B22(t)cos(2AT£) + D2( t). (34)

Substitution from equations (34), (22)-(26) into equations (28)—(33) yields the following

uniformly valid second order solutions:

B22(t) = a22cosh(w2T) 4- 622cosh(2^|x) + c22, (35)

K0(2Kr)

K0(2K)

( 9 \ I0(2Kr) P22(t) I0(2Kr)
I a^(T)) + -2]r T^ysinh(2W|T)

+ F(t), (37)

where

fl22 = (^22 ^*22 )> (38)

^ = „W 21 . 2J2"1/*(1 - 2KIa) + *("'(3 - 11) + 2 + K2) - aEk\],
h\^2 4(0 j )

(39)

1

A2(t) cos(2AT£)

22 ~ ^
4Ihu2

[K2 + 2 + u](\+I2a)-aEK\], (40)

$22 = a22cosh(u2r) + (^22 + 522)cosh(2to,T) + (b22 + s22), (41)

A = 2Ky(2K){2Ky(K) - 1) + Ky(K)(Ky(K) - 4) + 3 - 3K2, (42)

S22 = U2Ky(K) " 1). (43)
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^22(0 = ^(1-2*0, D2(t) = -±(1 + cosh(2WlT)), (44)

F(r) = -f MO - la) +(3 - K2) - «£{A + (1 - 2Ky{2K))}\

1 sinh(2w,T )[m2(3 + I2) +(3 — K2) — a£(A + 1)], (45)
16w,

and

with

7 K
= --{\-AK2) + aE{2Ky{2K)-\), (46)

-* A

U2K) . x *,(2/0
Ih = ~7 f, y(2AT) = —7 f. (47)* I\(2K) n k0(2K) v ;

Equation (34) reveals that the surface deformation of the capillary jet is not sinusoidal due

to the presence of the axial dependent and the second harmonic terms whose growth rates

are different from the fundamental mode. The nonlinearity also affects the cutoff

wavenumber which separates the stable from the unstable disturbances. The application of

the method of straining the coordinates sometimes may give erroneous results near the

cutoff wavenumber Ke [9], In order to overcome this difficulty, we have used the method

of multiple scales [7]. The dimensionless cutoff wavenumber turns out to be amplitude

dependent and is given by (see Kent and Malik [10]):

kc = Kg + r,lk3, (48)

where kc = Kg is the cutoff wave number predicted by the linear theory and

1
k3 —

AK2[2 + aE{\ - y2(Ke))\

X

+ a^{2Kgy(Ke)y(2Ke) — 2 K] — 4Key(Ke)}S3

-(S2-l)(K2 + 2Kay(Ke) + \)

I 3K2
+ 3 Kgy(Ke)(-Kg/2 + y(Kg) + 3) + (49)

with

S3 = S2+(Kgy(Kg)-±).

It may be noted that the results obtained by Nayfeh [9] for the same problem when the

electricfield is absent can be deduced from equation (48) when = 0 and K0 = 1.
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5. Third order problem. The first and second order solutions of Sees. 3 and 4 can now be

used to derive the solution to the third problem formulated below.

I ( Kk )
L(B3) - 2klkiK-y-—~Y sinh(W]T)cos(K$), (51)

'ovA )

K (Kr)
L(<D3) = 2kxk,K-^j-{ cosh(W|T)cos(K£), (52)

AoVA )

with the boundary conditions at r — 1 as

-ihjj + _ p + P (t)cos(3KZ), (53)
OT or

$3 + ~^V3 = R3i(t)cos(K£) + R33(t)cos(3K$), (54)

912, . „ .
+ I 1 + —7 I V3 + «£ bib

9r )( dr J M dr ) dr2

- £?3,(t)cos(A:|) + £>33(t)cos(3A:£), (55)

and the initial conditions

tj3(€,0) = 0, 9t]3(£,0)/9t = 0, (56)

where the expressions for P, Q and R are given in the Appendix B. Following an approach

similar to that of Sec. 4, we assume

T|3(€, t) = B3i(t)cos(*0 + S33(t)cos(3*0- (57)

The third order electric and velocity potentials now take the form

$3 = <*,<o + 1 +

Xcos(«) + [S„(t) + «„(,)] <x,s(3K(). (58)

S23 = d^3'^ + P31(t) - k,k^^KIa sinh(<o,T) | Io^r\
9t 31V ' ' J KI\(K)

+ klkiuir —y- sinh(w|T) cos( AT|)

f 3-B3,(t) j ;„(3A>)
+ + (59>

On substituting from equations (58) and (59) into equation (55), and equating the

coefficients of cos(A'l), we get the following differential equation for 53,(t):
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d2B,
-f (t)-«?*3i(t)

Ml/7311 ~ aEKy(K)R3u)
* n

1^2 P?>\2 T~(<7312 ~~ a£^T(-^)^312)
//

3W|/?3i3 + ~j~ ( ^313 — a£^Y(^)-^313)

<° 1^314 (<7314 — a£^"K ^0^314 ) — ^ 1 ̂3 j w? | I a ~~ ~~j~

COSh(jU,T)

COSh(jU2T)

cosh(3co,T)

«£^2

7— (1 -yW) COSh(w,T )• (60)

The constant r3 appearing in <jr3|4 in equation (60) is evaluated by requiring rj3 to be

bounded for K > Kg. Towards that purpose, we set to zero the coefficient of the term

involving cosh(w,r) in equation (60):

^3 = {y(1 +*/a)-f (f+ 2) -f (l ~2KIh + j

+~h
Ka,

8 - 5 KIa + y- + 1^3 /.-7

+ -£L[{Ax-A2)(bM + 2cM) + (Ky(K) - 1 )(bM + 2cM) + 6Ky(2K)bM],
a

(61)

where

^ = 77-i[24(1 -2 KIa) +K(3-IZ)], (62)

CM "i7b[<1 + '")1' (63)

Similarly, we can obtain the differential equation for B33(t) by equating the coefficients of

cos(3A"£) in equation (56). These differential equations furnish the following situations for

fi31(t) and 533(t):

B3,(t) = a31 cosh(co,t) + b3] cosh(ju,r) + c31 cosh(/x2t) + d3] cosh(3co,T), (64)

533(t) = a33cosh(aj3r) + b33 cosher) + c33 cosh(/i2T)

+ d23 cosh(3co,r) + e33cosh(co,r ). (65)
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where

a31 (^31 C31 ^31)' (^)

^31

^31

/Xi/?3I1 + ~j~ (*?331 + a£(^331 ~~ *V( * )^311 ))
1 a

J£
^2 Pz\2 ~7~ ( ^312 + a£(^312 ~~ *Y(* )-^3l2))

1 a

3cO,/?3i3 + — ( <7313 + " £ ( ^313 ~~ *Y( * )-^313 ))

2 2
/4 - wt

j_
!,.2 '

B22(t) cos(2K£) — ̂ -(cosh(2co,r) + 1)

(67)

(68)

(69)

a33 (^33 C33 ^33 ^33)» 0®)

633 = -[mi/,33i + 3KIe(qm + a£(5331 — 3/Ty(K )/?331))] — 7, (71)
Mi ~ W3

C33 [fi2 /7332 + + a£(S332 3* y( A" )i?332)) ] 2 (72)
jl-, —

J33 = -[3w, />333 + 3A7C(<7333 + «£(S333 - 3Ky(K)Rm))] / (73)
7CO j CO3

^33 = -[«./>334 + 3*7,(9334 + «£(^334 " 3ATy(AT)7?334 ))] —-, (74)
CO, — CO3

w3 = 3*7C[(1 — 9K2) + aE(3Ky(3K) — 1)], Y(3*) = |^fy, (75)

_ I0(3K)
c 7,(3*)'

6. Numerical results and discussion. The distortion of the free surface is given by

rj = tj0 cos( Kt;) cosh( w | t )

+vl

+ t,30[jS31(t)cos(A|) + B33(t)cos(3A|)], (76)

where

k 9
K = —, £ = kcZ, t — vt with kc — kt + i]0k3.

kc

In addition to the fundamental mode, the presence of various harmonics in equation (76)

is the result of the energy transfer from the fundamental mode to the modes of higher

orders. To obtain the time of breakup of the jet, the time t appearing in the equation (76)

is allowed to increase such that the deepest trough of the wave coincides with the axis of

the capillary jet. Physically, this criterion makes sense. It also explains experimental

observations for the hydrodynamic jet. With this criterion for the breakup, a numerical
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search for the breakup points and the breakup times was carried out simultaneously by

increasing r and assigning values to £ in the equation (76) until we get r = 0 i.e.,

7)(£, r) = -1. Once critical t has been determined, we can then use equation (76) to

furnish a profile of ij versus £ for different values of aE. We observe that the jet breakup

time first decreases and then increases with the increase of the electric field parameter aE.

The volumes of the liquid contained by the primary wave (main drop) and the

secondary wave (satellite) are calculated analytically. Assuming that the resultant drops as

well as satellites would be spherical in shape, their volumes are converted into equivalent

radii RM and Rs, respectively. These radii have been normalized with respect to the radius

of the jet and profiled in Fig. IV. It is found that the initial amplitude of r)0 (ranging from

10-1 to 10"4) does not affect qualitatively the results summarized in Fig. IV. It should be

remarked here that Rutland and Jameson [3] and Lafrance [8] show the agreement

between experiment and theory for the unelectrified jet to be reasonably good when the

wavenumber K lies between 0.3 and 0.5. In this range, the main and satellite drops are of

the same size, and there is no satellite production beyond the point of maximum

instability. We recover these results by setting aE = 0 as indicated in Figure IV. However,

it is interesting to note that the satellite are always present for all values of wavenumbers

when an external electric field is applied to the jet. This, however, has not yet been

confirmed or denied so far by experiments.

Fig. I. Wave profiles at the breakup for the dimensionless wavenumber

k = 0.3 and aE = 0, 1.5, 3.0,4.5 (i)„ = 0.01).

The behaviour of the nonlinear surface profiles of the jet are sketched in Fig. I to III.

The Fig. I and II show that the introduction of the electric field induces the surface profile

to change drastically in that the surface elevation tj starts from negative values and then
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keeps on oscillating. This trend continues until K reaches the value 0.678. For K — 0.9,

Fig. Ill illustrates that the trend is reversed. The variation of the radii of the main drops

and satellites as a function of the wavenumber and the applied electric field is demon-

strated in Fig. IV. For aE = 0, there are no satellites beyond the point of maximum

instability. However, as the values of aE increase, the satellite radii go on decreasing up to

the point of maximum instability and then start increasing till the wavenumber K reaches

the value 0.8. For K larger than 0.8, the satellite radii decrease again but very slowly.

Fig. II. Wave profiles at the breakup for the dimensionless wavenumber

k = 0.6 and aE = 0, 1.5, 3.0, 4.5 (rj0 = 0.01).

Fig. Ill. Wave profiles at the breakup for the dimensionless wavenumber

k = 0.9 and aF = 0, 1.5, 3.0, 4.5 (i]0 = 0.01).
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Fig. IV. Comparison of the predicted main drops and satellite sizes from the breakup of electrohydrodynamicjet.

Appendix A. The equation of motion of the conducting electrohydrodynamics fluid is

3K 3 9p 9 / v , .
'ir+v'W,v''- 4 + s;<£")- (A1)

where Eij denotes the Maxwell stress given by

Eu = ^(E.EJ-^E^su)- (A2)

In order to obtain the condition that the normal stress be continuous at the deformed

boundary, we integrate (Al) across the boundary which yields

",[p] ~ = °' (A3)

where the square bold bracket indicates the difference in the values of the variable

evaluated in two regions across the surface. For a capillary jet subjected to an external

electric field, equation (A3) takes the form

-'+r(ir+^)~]s(^)i=0' (A4)

where Ri and R2 are the principal radii of curvature. The dynamic pressure p in (A4) can
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be evaluated with the use of the Bernoulli's equation. We obtain

P=f(t) ~ \P (f)2 ' 9fi \2

3 Zl

9fi \ (dQ\ 9S2

9t (A5)

where /(f) stands for the constant of integration with respect to the space variables.

The expression for the second term in (A4) can be derived from solid geometry. If

vx, v2, v3 are the direction cosines of the normals at (r, 6, Z) to the surface of the family

f(r,0, Z) — r — r\(Z, t) -1=0,

then

( \ = (K IV K
("" "2' 3) \ ar' r 361' 9z

and following Lamb [11, p. 475],

9/)2 + -LfV)2 + /9/)
9r) r2 \ d6 I I dz I

-1/2

11 19 1 9 9^
^ + ^ = + Zm("2) + T7

<^)-i-(nrr-£h(wr <«>
From the results (A4)-(A6), we get

1 / 9<I> \2 / 912 \ p / 9S2 \2

8

1/9$ \2 / 9S2 \ p / 9S2 \ / 9S2 \"

ir\ 9/5 ) P\ 9 J 2 [1 9r / \ 9z /

+r(>+(nrr{0('+(ff)T'+°+,r'}+r=°- <a7)
at r = 1 + ij(Z, /)■

For an unelectrified jet, the above equation (A7) reduces to that obtained by Yuen [4],

Appendix B. The coefficients P and Q are given in Yuen's paper [4] while R and S are

*311 = *3.2 = (a22/4)[A-y(A-) + 2Ky(K) - l],

*3,3 = \[b22{Ky{K) - 1) + 2Ky(2K)(b22 + S22) - 0.15(Ky(K) - 1)

— 0.25{1.5A"(A" + y(A-)) - 1}],

*3.4 = \[{b22 + 2c22)(Ky(K) - l) +(b22 + S22)6Ky(2K)

-0.25(Ky(K) - 1) - 0.75{1.5(A"(A" + y{K)) + 1)}],

*33. = *31 1 ~ *332 '

*333 = \[b22{Ky{K) - 1) + 2Ky(2K)(b22 + S22)

-0.25{0.5A-(A:+ y(K)) ~ i}],

*334 = i[(^22 + 2c22)(Ky(K) - 1) + 6Ky(2K)(b22 + S22)

-l{0.5K(K+y(K)) -}}],
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■$311 = *5*312 = ~ (a22/^)[^l ~ A2 + 2AT2] ,

S3,3 = - ^2)^22 + AS22 + \{K2 + 2Ky(K) + l) + Us

+ 2K2(b22 + S22) -}K3y(K)\,

*-*314 4 [(^1 ~ ^l)(t>22 ^ ^•c2l) + 3/4,522 3^3

+ (b22 + 2c22 + S22)2K2 - %K3y(K) + \(K2 + 2Ky(K) + l)],

S33) = 5332 = - («22/4)[^i — A2 — 2AT2],

S333 (A, - A2)b22 + A,S22 + ^ + 3^2(^2 + ^22) + (K3/4)y(K)

^334 = "i[M, - ^2)^22 + S22At + A3/4 + IK3y(K) - 2K2(b22 + S22)],

where

A, = 2K2y(K)y(2K) - AK2(\ + y(K)/2K) - 2Ky(2K),

A2 = K2 + 2Ky{K) + 1,

Ay = Ky(K){-K(K/2 + y(K) + 3)} + fK2 - 2.
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