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Abstract. The method of diakoptics or tearing was introduced by G. Kron in order to

reduce computations in the solution of certain problems arising from large inter-connected

power distribution networks. Here the method is given a purely mathematical form which

can be used to solve large systems of linear equations by first solving some smaller

sub-problems and then combining these solutions into a complete solution. The sub-prob-

lems are formed from sets of equations and variables which are strongly connected, within

the sub-problem, but only weakly connected to those of another sub-problem.

1. Introduction. The late Gabriel Kron [7, 8] introduced the method of diakoptics in the

1950s, and since then it seems to have remained closely associated with electrical power

system problems (Happ [4, 5]), and other specialised applications such as substructuring

problems in civil engineering (Przemieniecki [9]). A number of authors have given

alternative viewpoints, such as Brameller [2], Branin [3], Kesavan [6], A rather complicated

mathematical generalisation was given by Roth [11], while computer algorithms and

mathematical analysis was given by Steward [12].

On the whole, with the exception of Steward's paper, diakoptics has remained as a

complicated mixture of electrical and mathematical concepts which are difficult to follow

and to use for both the engineer and mathematician. The present paper gives a purely

mathematical analysis of the solution of a sparse system of a linear equation, which

parallels the diakoptics approach of Kron. The mathematical method has the advantages

of being a numerical technique applicable to any linear system, and does not rely on a

knowledge of electrical networks. It is quite different from the approach given in the

appendix to Steward's paper [12], but it results in the same formulae as those given by

Brameller [2],

Section 2 of this paper gives the basic algorithms and formulae, while Sec. 3 gives a

numerical illustration and Sec. 4 contains the background theory for the method.

2. Mathematical formulae and algorithms. Suppose Az = c is a matrix form of a system

of linear equations, where A is the order m X m coefficient matrix, z is the order m X 1

column vector of variables, and c is the order m X 1 column vector of constants. The
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solution procedure is given in parts labelled (a) to (e).

(a) If A is sparse, then it is possible to rearrange the equations and variables so that the

new coefficient matrix, M, has most non-zero entries in square diagonal blocks, as in:

A =

X

X

(1)

The algorithms for accomplishing this are not included here, but are discussed by Steward

[12]. In the usual network-based diakoptics approach this diagonal block form is derived

implicitly during the analysis of the network and the resulting formulation of the problem.

From now on it will be assumed that A has the form (1) and that the matrix is very sparse

outside of the diagonal blocks. In electrical power distribution network each diagonal

block can correspond to the equations derived from an almost self-contained distribution

network, while the few other non-zero entries correspond to the interconnections between

those networks. Steward [12] gives a more general version of this involving a block-trian-

gular form.

(b) Convert the system of equations into a new larger system with coefficient matrix, B,

which is solely of square diagonal block form. This can be done arbitrarily, as long as the

following rules are observed.

Each non-zero entry in A is also an entry in B, or is a sum of entries in , .

B, and all entries in B are of this type.

If two entries in A are in different rows (columns), then the correspond-

ing entries, or parts of entries, in B must be in different rows (columns). , .

[So each row (column) of B contains entries, or parts of entries, from

just one row (column) of A.]

The best way of satisfying these rules is usually to leave the original diagonal blocks

unchanged, and to move all of the other non-zero entries into one or more new square

diagonal blocks (this is illustrated in Sec. 3). Hence if there are r rows and r columns of A

which have non-zero entries not in the diagonal blocks, then the new diagonal blocks must

contain a total of r rows and r columns. If there are r rows and s columns with, for

example, r > s, then in order to make the new diagonal blocks square, r — s of these

entries can be split as a sum of two parts, both in the same row, with the extra parts filling

the empty columns of the block in B. A similar stratagem can be used if r < s, and is

illustrated in Sec. 3.

The matrices A and B, with orders m X m and n X n, are related by an equation

A = P'BQ', (4)

where P' and Q' have orders m X n and n X m, and are constructed as follows. The fth
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row of P' contains a 1 in column j if row j in B contains an entry or parts of entries, from

row i in A. All other entries are zero. Notice that each column of P' contains a single

non-zero entry, 1, and so it is of full row rank. Similarly they'th column of Q' contains a 1

in row i if column i in B contains entries, or parts of entries, from column j in A. All other

entries are zero. Notice that each row of Q' contains a single non-zero entry, 1, and so it is

of full column rank.

(c) From the order m X n matrix P' construct the order n X m matrix P as the matrix

of zeros except for a single entry, 1, in each column. Specifically, 1 occurs in column j, row

i, where in P' the first 1 in row j occurs in column In other words P is the transpose of

the matrix P' with only the first non-zero entry retained in each row of P'. Readers

familiar with generalized inverse matrices (see Ben-Israel [1]) will recognise P' and P as

generalized inverses of each other, satisfying

P'P = I. (5)

Similarly, define the m X n matrix Q as the transpose of the matrix formed from Q' by

retaining only the first non-zero entry in each column of Q'. Q' and Q satisfy

QQ' = I. (6)

(d) From P, P', Q, and Q' define the order n X (n — m) and (« — m) X n matrices K

and L by,

K — I — PP', L = (I — Q'Q) , (7)

where / — PP' denotes the matrix of the n — m non-zero columns in / — PP', and

/ — Q'Q\ht matrix of n — m non-zero rows of I — Q'Q. The matrices K and L both have

rank n — m. They may be constructed directly by the following algorithm.

Eliminate the first 1 in each row of P', and change all of the remaining non-zero entries

from 1 to — 1. Insert n — m extra rows so that if column j has one of the remaining

non-zero entries from P\ then row j is a new row containing the single non-zero entry, 1,

in column j. Eliminating the m zero columns, leaves the matrix K.

Eliminate the first 1 in each column of Q' and change all the remaining non-zero entries

from 1 to — 1. Insert n — m extra columns so that if row i has one of the remaining

non-zero entries from Q', then column i is a new column containing the single non-zero

entry, 1, in row i. Eliminating the non-zero rows leaves the matrix L.

(e) The solution for the system Az = c can now be formed as follows (the proof that

(LB~]K)~l exists and that z is a solution is given in Sec. 4),

z = Q(l ~ B-]K{LB'lK)~]L)B-]Pc. (8)

The advantages of this formula over the direct solution of Az — c, arise from the block

diagonal structure of B. The matrices B 'A' and B '/' can be calculated using algorithms

which utilize the individual diagonal blocks of B, thus reducing the complexity of the

system which must be solved. The portion (LB~xK)~xLB~xPc may be calculated by any

of the usual algorithms as the solution, y, of the matrix system

(LB lK)y = LB~lPc,

where the coefficient matrix, LB~lK, has order (n — m) X (n — m). Hence the size of this
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coefficient matrix is governed by the increase in size of B over A, which in turn is

governed by the number of columns, or rows, of A, with non-zero entries outside of the

diagonal blocks (see Eq. (1)).

The complexity of calculations in solving a sparse m variable system with the best direct

algorithms has upper bound mt, where t is the number of non-zeros (Reid [10]) though this

upper bound is rarely attained in practice. Applying this result to the modified problem

analysed above gives an approximate upper bound to the complexity of

k

2 s,t, + rt',
i= 1

where k, s, and t: are, respectively, the number of blocks in B, the size of the / th block and

the number of non-zero elements in it, while r and t' are the size and number of non-zero

entries in LB~ XK. If the size of the largest block in B is N, then this upper bound satisfies

k

« JV 2 tj + rt' = Nt + rt'.
i=i

The first term, Nt, will usually be much smaller than the upper bound, mt, for the original

problem, Az = c, provided the block size, N, is considerably less than the size, m, of the

original matrix A. The second term, rt', depends very much on the original problem—the

number r will be small compared with m since it measures the largest number of rows or

columns containing nonzero entries not in the diagonal blocks, while t' is the number of

non-zero entries in LB~XK. B~l itself may have considerable fill-in among the diagonal

blocks when compared with B, and the product LB~XK combines only certain rows and

columns of B~\ normally resulting in a decrease in the non-zero entries.

It should also be noted that the solution z, as given in equation (8), is closely related to

the solution of the system, By = I — K(LB~]K)LB~]Pc, which involves the enlarged

matrix, B. In fact the solutions y and z are related by z — Qy. The solution y gives the

solution of the torn system, from which the solution z is reconstituted.

A simple numerical example. Suppose the system Az — c is the 12 variable system shown

below with A already in the form of Eq. (1). The numerical solution is given in a

convenient fashion without necessarily following the most efficient solution algorithm

which would be used in a computer solution of a large system. Note that a blank indicates

a zero entry.

A

Z1

Z2

z3

ZA

Z5

z6
z7

Z8

Z9

Z10

Z11

Z12

1
3
0

-1

2

0
0

1

2
0
1

-3
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B is chosen, using the rules (2) and (3) in part (b), as

P
-1 4

1 2
1  1

B =

12 1
-1 -1

4 2
1 1

1 3
1 -1
1 -2

2
-1

2
2 4

1

Hence P' and Q' are developed, as described in part (b), as

p'

l
l

l
l

l
l

l
l

l 11
l

l
l l

. Q ' =

1
1

i
1

1
1

1
1

1
1

1
l

1

1
1

Consequently P, Q, K and L, as described in parts (c) and (d), are

l
l

l
l

l
i

, p = i
l

-i -I l
l

l

i
i

i
i



270 P. W. AITCHISON

-1
-1

-1

. Q =
1

1
1

1
1

1
1

l

1
1

1
i

Only at this point are calculations carried out for the solution z as given in equation (8)

of part (e).

B"1

.5
-2 -1 4
-.5 1
-.25 .5

1 .5

.5 .5
-2 -.5

1.5 -.5
-.5 .5

1 .5
.5 -J .25

.5

B 1K =

.5

[T5
L

-5

2
.5

.25

.5 .5
-.5 -.5

-.5
-.25
-.5

-1

.5
.5 -2

1

LB_iK =

Hence,

-1 .5

.5
.5 -2

.25 1
(LB iK)"i = ^

-2 2 4

6
2 4 8

.5 -.5 2

Pc =

1
3
0

-1

2
0
0
1
2
0
1
3
0
0
0
0

B_iPc =

.5
-9

1.5
.25

0
1
0

.5

.5
1.5
.25
1.5

0
0
0
0

LB iPc

-.51

0
0

-.25

(LB iK)"iLB~iPc=

B XK(LB "He) 1LB =

0"
0

-1

. 2 5_

.5
-2

-.5
-.25

0
0

0
-.125

.125
0
0
0
0
0
0

-.25
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Hence

z = Q(B Pc-B_iK(LB 1K)~1LB~1Pc) = Q

0-1 " 0 '
-7 = -7
-1 -1

0 0
0 0
1 1

0 0
.625 .625
.375 .375

1.5 1.5
.25 .25
1.5 L 1.5

0
0
0

• 25.

4. Proofs. The following facts need to be proved in order to justify the algorithm given

in Sec. 2:

(I) The inverse of LB" ]K exists;

(II) z — Q(I — B~xK(LB~]K)~xL)B~]Pc, as given in Eq. (8), is a solution of Az = c.

These results are established in the following two lemmas.

Lemma 1. The matrix LB~ ]K is non-singular if and only if the matrix A is non-singular.

Proof. First it is shown that the columns of Q' are a basis for the null space of L (the set

of x with Lx — 0). L — I — Q'Q, by equation (7), where I — Q'Q, consists of the non-zero

rows of I — Q'Q. Also, (I — Q'Q)Q' = 0, by Eq. (6), L has rank n — m, and Q' has rank

m, and so the columns of Q' are a basis of the null space of L. Similarly the columns of K

span the null space of P', and so P'K — 0.

Suppose there is a vector w with LB~lKw — 0, then B~xKw is in the null space of L. If

w 7^0, then B~lKw =£ 0, since K has full column rank and B is non-singular. It follows

that for some order m X 1 vector q

B~*Kw = Q'q,

and if w ¥= 0, then q ¥= 0. By equation (4),

Aq = P'BQ'q = P'BB~xKw = P'Kw = 0.

Hence, if LB xKw — 0 for some w =t= 0, then Aq = 0 for some q =£ 0, and so if A is

non-singular, then so is LB~lK.

Conversely, suppose q is such that Aq — 0, then by Eq. (4),

Aq = P'BQ'q = 0,

and if q =/= 0, then BQ'q ^ 0 since Q' has full column rank and B is non-singular. Since

the null space of P' is spanned by the columns of K,

BQ'q = Kw

for some w, and if q ¥= 0, then w ¥= 0. Therefore

LB^Kw = LB~xBQ'q = LQ'q = 0,

since the columns of Q' are in the null space of L.

Hence, if A is singular, then so is LB~lK, and the result follows.
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Lemma 2. If A and B are non-singular, then the matrix system, Az = c, has solution given

by

z = Q(l - B~]K(LB^,KyiL)B lPc.

Proof. Let /) = (/— B lK(LB~ lK)~xL)B~ xPc, for convenience.

/4z = P'BQ'z, by Eq. (4)

= P'BQ'QD = P'BD - P'B(I - Q'Q)D

= P'BB]Pc - P'BB ]K(LB lK) * LB~]Pc - /"£(/ - £?'£?)£>

= c- P'B(I- Q'Q)D,

since = /, P? = I, by Eq. (5), and P'K = P'(I — P'P) = P' — P'PP = 0, by Eqs.

(5) and (7) (where / — P'P represents the non-zero columns of I — P'P). It remains to

show that P'B(I — Q'Q)D = 0. However,

LD = LB~^Pc - (LB )(LBXK )~^ LB~ xPc

= LB {Pc - LB~ ]Pc = 0.

Since, by definition, I — Q'Q differs from L only by having some extra zero rows, it

follows that if

LD = 0, then P'B(I - Q'Q)D = 0.

Hence, the results, Az = c, follows.

References

[1] Adi Ben-Israel and T. N. E. Greville, Generalized inverses: Theory and applications. Wiley, New York, 1974,

reprinted by Krieger, Huntington, New York, 1980

[2] A. Brameller, M. N. John and M. R. Scott, Practical diakoptics for electrical networks, Chapman and Hall,

London, 1969

[3] F. H. Branin Jr., The relations between Kron's method and the classical methods of network analysis, IRE

Wescon Convention Record, 8, 3-28 (1959)

[4] H. H. Happ, The applications of diakoptics to the solutions of power system problems. Electric Power

Problems: The Mathematical Challenge, SIAM, Philadelphia, pp. 69-103, 1980

[5] H. H. Happ, Piecewise methods and applications to power systems, John Wiley, New York, 1980

[6] H. K. Kesavan and J. Dueckman, Multi-terminal representations and diakoptics. University of Waterloo,

Waterloo. Canada, 1981 (a report)

[7] G. Kron, Diakoptics—piecewise solutions of large scale systems, Elect. J. (London) Vol. 158-Vol. 162 (JUne

1957-Feb. 1959)

[8] G. Kron, Diakoptics, Macdonald, London 1963

[9] J. S. Przemieniecki, Matrix structural analysis of substructures, AIAA Journal, 1, 138-147 (1963)

[10] J. K. Reid, A survey of sparse matrix computation, Electric Power Problems: The Mathematical Challenge,

SIAM, pp. 47-68, 1980

[11] J. P. Roth, An application of algebraic topology. Kron' s method of tearing. Quarterly of Appl. Math., 17, 1-24

(1959)
[12] D. V. Steward, Partitioning and tearing systems of equations, SIAM J. Numer. Anal., Ser. B, 2, 345-365

(1965)


