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ON THE EXISTENCE OF THE RATES OF STRESS AND
DISPLACEMENT FOR PRANDTL-REUSS PLASTICITY*

By
GABRIELE ANZELLOTTI

Libera Universita degli Studi di Trento, Povo, Italy

Introduction. In this paper we shall consider an isotropic and homogeneous elasto-per-
fectly plastic body, subject to the Prandtl-Reuss constitutive law with the von Mises yield
condition. We shall be concerned with the existence of the rate of stress and of the rate of
displacement corresponding to a given state of stress, to a given rate of the force density,
and to given boundary conditions.

We use the following notation. The body, in its nondeformed state, occupies a bounded
connected open set & C R? T, and T, are subsets of 9Q such that T, U I, = 0%,
I'p, N Ty = B; n(x) is the outward unit normal vector to 9Q2 at x. We are given a state of
stress 0 = {0,;};, ;—,,3: @ = R’ with g;; = 0, and such that | 6” |< V2 K on Q, where 0” is
the deviator of o and K is a positive constant called the yield constant. The functions
f(x): Q> R3 F(x): Ty - R3, g(x): T » R are given.

We shall consider the following problem (see [7]):

PrOBLEM (P.1). Find under what conditions for the data there exists, in some space of
functions or distributions, a triple {#, ¢, A}, where

u: Q- R3,
6:Q - R, 6= {dij}i,j=],2,3
A Q- R,
such that
6;; = 0,
6,,+f=0 inQ, (0.1)
6,n,=F, onTy, (0.2)
L
e(u) = 9K, trace 61 + 250 + Ao?, (0.3)
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=0 where|o?|< 2K, or

A where |62 |= {2 K and 0® - £2(11) <0, (0.4)
>0 where|o?|=2Kando? (i) =0,

6(x) 6P(x) <0 if|o2(x)|= 2K, (0.5)
where ¢, (4) = 3(du,/0x; + du,/9x,).
We have used the summation convention over repeated indices. We denote by g, ; the

derivative (3/9dx,)d;;, K, and p are positive numbers, and / is the identity matrix.

Notice that all the functions in problem (P.1) depend on the space variable x only, and
not on time. The dot on #, ¢ does not mean differentiation with respect to time, and is
there only to remind us that we are dealing with functions that satisfy the equation for the
rates of the stresses and of the displacements.

In what follows, we shall consider problem (P.1) only in the case of Dirichlet boundary
conditions (i.e. I’y = @) and in the case of Neumann boundary conditions (i.e. I'; = &).
The case of mixed boundary conditions offers a few technical difficulties and we leave it
to a subsequent paper.

The solution of problem (P.1) can be interesting from the point of view of a proof of the
mathematical consistency of the theory of plasticity (Koiter [7, introduction]) and as a
possible first step towards a solution of the evolution problem, particularly in the
quasi-static case. A proof of the existence of weak solutions to these last problems is given
in Duvaut and Lions [4, Chapter V] and in Suquet [10], but the point of view from which
we are looking at the problem is different; it is close to that adopted in Temam [11] and
Anzellotti and Giaquinta [1, 2] for the existence of the stresses and displacements in the
case of Hencky’s total deformation theory. In fact, as in [2], we use the direct method of
the calculus of variations to minimize a suitable energy functional in order to get the rate
of displacement #. Then we define 6 and A starting from #, and the constitutive law is
satisfied automatically by ¢, A by the choice of the space P,({2) of the admissible
displacement rates.

The basic notation and the definition of P,({2) are given in Sec. 1. We define the space
P () so that the deformation energy of a vector field u € P,(Q) is finite; hence we say
that u € P(Q) if:

(i) u € BD(Q), where BD({) is the space of functions of bounded deformation
introduced and studied in [8, 9, 5],
(i) div & € L¥(Q),

(iii) in the elastic zone 4 = {x € Q| |0”(x)|< V2 K}, we have that (1) is square
summable,

(iv) in the elasto-plastic zone C = {x € €| |0”(x)|= V2 K}, we have that (1) is
decomposed as the sum of an elastic part e?(11) € L2(2), such that e®(i1)- 62 <0, and a
plastic part (1/2K?)[a?”-eP(1#)]* ”, which is in the direction of 0?, where [0? - ?(u)]"
is a positive measure.
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In Sec. 2 we study the possible kind of discontinuity of a function u € P,(Q) along a
surface I' C Q, and we prove that the difference (4" —u ™) between the traces of % on the
two sides of I' must be zero, not only at those points x € I' where | 6 °(x) |< V2 K, but at
JC2-almost all points x where | L,(x)|< K, where L, is the tangent part of the traction
L, = o;;v; (v is the normal to I'). Moreover, we prove that if the difference (ut —u" )x)is
nonzero then it must be in the same direction as L,(x).

In Sec. 3 we give a meaning to the integrals [, 0,,u;n; and [ 0; ¢, (u), for all ¢ such
that trace o € L3(Q), |o?|< + oo, 0, € L*(Q), and for all u € BD(Q) such that
divu € L¥(Q). These results follow mainly from an approximation theorem given in [2]
and are needed for use in Sec. 4. For these results compare [6].

In Sec. 4, we consider the functional
N Ko so\2 D( 1\ |2
E\(u) = 5 /Q(d“'“) dx+u‘/s;|e (u)]

representing the energy of the elastic part of the deformation rate e(u). This energy does
not take into account the plastic component of the deformation rate which is in the
direction of ¢”; hence E () cannot bound the integral [ |e(u)|>. However, it can be
proved that, under essentially the safe load condition (H4.1) for the stress state o, one has

E(i)>cf |e2(a)| —M
Q
for all 4 € P,(R). This fact gives the coerciveness of E,(i) on the space of all u € P(Q)
that take, in a suitable sense, a given boundary value g (see Theorem 4.1). It is then proved
(theorem 4.2) that the bounded sequences in P,(2) are compact with respect to a suitable
P (£2)-weak convergence (see Definition 4.2) and that the functional E (#) is lower-semi-
continuous with respect to this convergence. An existence theorem is finally given for the
minimum problem:
E,(4) = min,
B(g—u)=0, (P.2)

where B(g — 4) = 0 is a set of boundary conditions that mean

(g — 4)(x) = 0 at points x € 02 where the norm
of the tangent part L, of the traction force
{0,n;},_, ,, does not attain the yield (06)
value K;
(¢ —ua)(x) = (1/K)|g —a|L, if (g~ u)(x) 0.
In Sec. 5, we show how one can obtain a solution (#, 6, A) to problem (P.1), in the case
of Dirichlet boundary conditions, from every solution # to the minimum problem (P.2). As
we have already said, we define ¢ and A starting from u (see (5.1)), and the constitutive
laws are automatically satisfied, while the equilibrium conditions are checked using the
Euler equation of the functional E,.
The boundary condition # = g is satisfied only in the weaker sense (0.6).
In Sec. 6 we study the problem of Neumann boundary condition. We introduce another



184 GABRIELE ANZELLOTTI

functional E,(#) and we study a new minimum problem (P.3). We consider a space = ()
of stress rates and we say that a stress rate &« € 2 _(Q) is ( f, F)-admissible if

&;,+/=0 inQ,
a;n;=F only

hold (in a suitable weak sense). Clearly, in order to have a solution to our problem, we
must impose conditions on f, F. We can prove that if f, F are such that there exists a
(f, F)-admissible stress rate d, then the functional E,(#) is coercive; moreover, if & can be
found such that

al-6?=0 in {xEQ||oD(x)|=\/’2—K} (0.7)
also holds, the functional E,(#) is lower-semicontinuous. Under these conditions we prove
the existence of a solution to (P.3) and, as for the Dirichlet problem in Sec. 5, we find a
solution {u, 6, A} to problem (P.1) (now in the case of T, = &).

It must be noticed that the existence of a ( f, F)-admissible stress rate is a necessary
condition in order to have a solution to the minimum problem (P.3); and condition (0.7),
too, must be satisfied by a(x, t) = (3/0¢)o(x, t) if o is a solution to the quasi-static
problem and is differentiable with respect to the time z. On the other hand, condition (0.7)
seems unnecessary for the existence of %, ¢ in our case, and it would be desirable to have a
proof of the semicontinuity of E,(#) that does not rely on (0.7).

Finally, at the end of Sec. 6, it is proved (see Theorem 6.4) that the stress rate 4, in the
case of Neumann boundary conditions, minimizes a complementary energy functional
among the (f, F)-admissible stress rates. Since this complementary energy is a strictly
convex functional, we obtain that the stress rate ¢ is unique.

I would like to thank Mariano Giaquinta for many stimulating conversations, and G.
Strang, R. Temam, and P. Villaggio for some useful comments.

1. In this section we set notation and define a space P, () of vector fields in Q. This is
the space in which we shall later look for 4.

We shall assume that € is a bounded connected open set in R® with a Lipschitz
boundary. Recall that a vector field u: 2 — R? is said to be of bounded deformation
(u € BD(Q)) if u € L'(2) and the distributions

1 0u;  du
€; J u) - 5’ EX—I + a—x‘
are measures of bounded variation in €. The space BD() is given the norm

nuu,,m)=f9|u|dx+fﬂ|e(u)|

where, for all Borel sets B C £, [;|&(u)| denotes the value on B of the measure total
variation associated to the vector measure e(u) = {e, (4)}; ;=1 ,3-

For the properties of the space BD(2) we refer to [9, 5] and also to [1, 2]. For the
convenience of the reader, we collect here a few results that will be needed for what
follows.
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THEOREM 1.1 (a Sobolev-Poincaré inequality). Let § = {(a A x + b|a, b € R?} be the
space of infinitesimal rigid motions in R>. For any continuous linear functional T : BD(£)
- § such that T(n) = 7 for all n € 9, there exists a constant ¢(£2, T) such that

lu = T(u)ll 2@y < (@, T) [ |e(u) |
Q
for all u € BD(Q).

THEOREM 1.2 (a Poincaré inequality with compact support). There exists a constant c(£2)
such that

Null gy < C(Q){/ﬂ|e(u)| +/m|u| d‘JCZ}

for all u € BD(Q).

THEOREM 3.1 (compactness). For any sequence of functions u, € BD() such that
“uh“BD(Q) SM<+ow foralh

there exists a subsequence that converges in L'(Q) to some u € BD(Q).
THEOREM 1.4 (trace theorem). There exists a linear operator y : BD(2) - L'(0Q) such that
Y(u) = u |y for all u € BD(2) N C°(R) and such that

jm |7(4) | dIC? < c(R)lle(u)llgpeq, for allu € BD(Q).

Moreover, the following Green’s formula holds for all ¢ € C'( S_Z):

9
f(pe,j u)+2/[ (P+ fax dx—2/q3[n'y(u),+ny(u)]d3€2
For the sake of brevity, we shall usually write u instead of y(u).
We shall make the following assumptions on the stress state o:

the deviator o ? of o is continuous in £,
|oP2(x)|< 2K forallx € Q, (H.1.1)

traceo € L*(Q).
For all # € BD() we consider the real-valued measure o ” - ¢2(1), defined in 2 by
(0P -eP(u), )= <s,‘; i), (poi’j’> for all o € CQ(Q).
The elastic and plastic zones are
a={xe€Q||oe®(x)|< 2k}, cC={xeQ||o®(x)|=2K}.

Definition 1.1. (i) We denote by [o?-¢P(u)] the “restriction to C” of the measure
0P - P(u). More precisely, [6? - ¢P(1)] is a measure on & such that

[lo?-eP@] = [ o”-e2(a)

for all Borel subsets B of L.
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(i1) We define a vector valued measure sD(a) L inQ as
— D .
£2(a), = e2(8) ~[o? - 2] 25 = 2(4) = Jilo?-e2(0)] o

where ([o?-P(4)]o?, @)= ([oD-eD(u)], oPp) for all p € CY(2,R®).

(iii) We denote by [6?-€P(1)]™ and [6?-€P(1)]* the negative and the positive part of
the measure [o? - €2(4)].

Definition 1.2. (i) We shall say that the measure (1), is an L>-function in @ if there
exist functions y,; € L*(Q) such that

<eD(12)_|_ ,'P)z Lyij(x)¢ij(x)dx

forallg = {,;} € C(2,R®). In such a case we use also the symbol ¢/(#), to denote the
functions y; ;(x).

(ii) We shall says that the measure [6” - ¢P(u)]™ is an L2-function in § if there exists a
function n € L*(R) such that

([0 e2@)] ™, 9)= [n(x)o(x) dx

for all p € CJ(R) (we must have n(x) = 0 almost everywhere in A).
Definition 1.3. Set
P,(Q) = {i € BD(Q) | diva € L(R), (a) L € L}(Q), [0 -P(4)]” € L(2)}.

Notice that if # € P,() one has in particular that e(i) € L*(A).
Definition 1.4. For all functions 4 € BD(Q2) set

eP(u) = eP(a), — (1/2K?)[0® - €P(u)] oP.

Notice that
eP(u) = eP(u) + (1/2K2)[0D'£D(12)]+OD
and that
e?(u) =¢eP(u) inA.
On the space P,(§2) we shall take the norm

il gy = llitll gy + fﬂ |€2(a) | +IIdiv all 12q, + Ile2(i)l 20q)-

Remark 1.1. The space P,(2) has been defined so that if 4 € P (Q), then e(#) is square
summable in the elastic zone A, while in the plastic zone C, &(#) is decomposed as the sum
of an elastic part e®(a) € L*(®) such that ¢”-e?(#) <0 and a plastic part
(1/2K*)[a?-€P(1)]* 0” in the direction of o °.

2. It is well known that functions of bounded deformation may have discontinuities
along a surface; in this section we shall show that, with the additional requirement
divu € LA(Q), eP(u) € L*(Q), the discontinuity of # must be of a particular type.
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Let ¥, be an open set in R? such that ¥, N 92 is non-empty, and set T = ¥, N 9,
€, =Q U V. For all 4 € BD(Q,) set
it =traceof #|g., onT, u~ =traceofu|y, onT.
For all functions v: T’ > R? set, as usual,
7;(v) = 3[o;n; + on ], nis the normal to 9Q.

Recall that the measure (%) |r can be represented by integration on I' [1] as follows,
where J(? is the two-dimensional Hausdorff measure and B is any Borel subset of I":

je(u) = /T(w —47)dIC?, (2.1)
B B
/eD(u) = f#’(u* —u™) d9C?, (2.2)
B B
. — . g — DR N 2
thraces(u) ‘/Bdlvu fB(u u ) ndX
=ftrace(1(1)+ —u7))d¥?, (2.3)
B
[le@)|= [ e+ —a)|a%?. (2.4)
B B
Moreover, when (" —u~ ) -n = 0 ¥ %-almost everywhere on T, one has
) [— N b
[ 1e@) = [ |e°(a)|= Efg'“ —i™ | 4. (2.5)

Now, assume that o is a stress field in §, satisfying the hypotheses (H.1.1) in €,, and set
¢, ={x€@||e®(x)|= 2k}, 4,={x€Q]||e%x)|<|2K],
L= (L), Ly, Ly), Li(x)=02(x)n(x) fori=1,2,3,
[(a* =4~ )-L]" = max{(a* —u~)-L,0}, [(4~ —4~)-L]” = —min{(a* —a")-L,0}.
We have the following

PrROPOSITION 2.1. For all # € BD(Q,) and for all Borel subsets B of I' we have
f[oD-eD(a)] = [ oP-rP(it —i”)d%? (2.6)
B BNC

Moreover, if (4 —u~)-n = 0, 3 *-almost everywhere on I', we have

fB[OD~£D(a)] = fBﬂCI(zﬁ —4")-Ld2, @.7)
fB[oDwD(a)]J" = meCl[(a+ —a~ ) L]* d3C2, (2.8i)
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f[oD-eD(a)]‘ = f [(a* —a~)-L]” d%C?, (2.8ii)
B BNC,

feD(u)l:[TD(w —u‘)d‘JCZ—/ [(a* —a~)-L]o?dIC?, (2.9)
B B BNC,
Proof. By definition 1.1, we have, for all Borel subsets B of T',
[le® @] = [ o”-e(a)
BNC,

and, as a consequence of the representation formula (2.2), we have

f oDneD(u):f ol rP(ut —u" ) dH?
BNC, BNC,

hence (2.6) follows.

Now, recall that if (4™ —4~)-n = 0 one has 7(a¢* —4~) = 72(a* —u7) so that, also

taking into account the symmetry of o, one gets
T (at —u” Yol = (at —u” )L,
and (2.7) follows.

Formula (2.7) says that the function [(#" —u47)- L] | < is the density of the measure
[o?-eP(u)], with respect to the measure 3%, on I' and formulae (2.8) are then just a
corollary of the Radon-Nikodym theorem.

Finally, (2.9) follows from the definition of e?(#), and from (2.2) and (2.7). Q.E.D.

In the following two theorems we shall prove that, for a function u € P(R,), the
difference (¢* —#~ ) must be in the same direction as the vector L, = L — (L - n)n.

THEOREM 2.1. For all u € P,(£2,) we have that

it —i" =0  Hlae.in{x €T ||e?(x)|<|2K}, (2.10)
(¢t —a")n=0  H*ae.inT, (2.11)

[(a* —a")-L] =0  I*ae.inT, (2.12)

P(at —a~) —[(at —u")-L]e®?=0  Y*ae.inT, (2.13)

1
/ le(a)|= —f [(at —a) L] for all Borel sets B C I,  (2.14)
B

2K /snc,
1
|at —u™ |= E(“+ -4~ )L  H*ae.inT. (2.15)

Proof. Recall that if 4 € P,(Q,) one has e2(u) € L*(Q,); hence eP(i) € L*(A,) and
also e(u1) € L*(A,), so that [pe(u) = O for all sets B C A, of Lebesgue measure zero; this
holds in particular for all sets B C I' N 4, and (2.10) follows then from (2.1).

To prove (2.11), (2.12) and (2.13) one can follow the same method. As an example we
shall prove (2.12) (for that, we assume 2.11 has already been proved, so that (2.6) holds):
since # € P,(R,), we have that the measure [o6”-¢2(#)]” is an L?(®,) function and
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[lo? @] =0

for all subsets B of 2, of Lebesgue measure zero; this holds in particular for all B C T and
we obtain from (2.8) that (2.12) is true J(-almost everywhere in ' N C,. Taking into
account (2.10), we see that (2.12) holds also 9(-almost everywhere in T".

Now we prove (2.14). Recalls that, by definition,

e(u) = —d1vuI+s (1), +[o?-eP(u)]" 2K2 [0 e(a)]” ?

hence, for all Borel sets B C ,, it follows that

“[[ 2eeb(@)]" < [ 1e(a)|
/|d1vu|+f |eP(a),] + \/_K—/[ D.gD(u)]++ﬁfB[aD.sD(a)]_

and this, when B C T, taking into account (2.8), yields (2.14).
Finally, from (2.5) and (2.14) we get

—l—f|a+ —u" | dH? = L[[(a* —a)-L]"
V2 s 2K 78

for all Borel sets B C T, and (2.15) is also proved.
At this point we know from (2.15) that, 3(*almost everywhere in T, we have
(ut —u~)-L=0if and only if (#* —ua~) = 0, but we can tell more about u* —u~ .

THEOREM 2.2. If u € P,(2,), then we have
(at —ua") - —[(u —u" ) L]L,=0 (2.16)

9(C2-almost everywhere on T, and we have
|L(x)]|=K, (2.17)
at —u” =|a* —u"|L/K (2.18)

for 3C%-almost all x € T such that (¢* —u~ )(x) # 0.
Proof. Set (4™ —u~ ) = v. Take a point x € I such that

v(x)-n(x) =0, (2.19)
2(v) = 0. (2.20)

Choose a coordinate system in R> such that n(x) = (0,0, 1), call (v,, v,, v3) the coordi-
nates of v(x) and set
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Since v-n = 0 we have
0 0 0,2
P(v)=1(v)=| O 0 v,/2
v,/2 v,/2 0
Condition (2.20) becomes
a(ev, + fv,) =0,
b(ev, + fv,) =0,
c(ev, + fo,) =0,
d(ev, + fv,) =0,

—I;l - 211<2e(evI + fv,) =0,

v, 1

2 T Sx? 1 2) =0, ‘

5 5 f(ev, + fv,) =0 (2.21)

and (2.16) follows at x, from the two last lines in (2.21).
Since L, = (e, f,0)and L-v = L, v = ev, + fv,, if we assume that

L(x)-ov(x) #0, (2.22)
|6°(x)|= 2K, (2.23)
we obtain from (2.21) thata = b = ¢ = d = 0 and that

1
|Lt|= _|°D|:K’

2
and (2.18) also follows.

To conclude the proof of the theorem it is sufficient to notice that conditions (2.20),
(2.21) are satisfied JC-almost everywhere on T, and that, by (2.15) and (2.10), conditions
(2.22), (2.23) are satisfied J2-almost everywhere in the set {(xeT | (u* —a")(x) #0).
Q.E.D.

We also have a glueing theorem, which is a sort of converse of Theorem 2.1.

THEOREM 2.3. Let 2 € P(Q) and let ¢ € P,(2,\ Q) such that

i=g¢ H*ae.in{xeT||L(x)|<K}, (2.24i)
u-n=g-n  H%*ae.inT, (2.24ii)
[(g—u)-L]" =0 IH*ae.inT, (2.24iii)
2(g—ua)=[(g—u) L]e® H*ae.inT. (2.24iv)
Then the function v, defined by
. u in{Q,
v { ¢ inQ\Q

belongs to P,(£,).
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Proof. First, notice that © € BD(2,). In order to prove that div(v) € L%(Q,) it is
sufficient to recall that for all ¢ € C}(R,) we have

fgq;div(ﬁ)=f9(pdiv(a)+fr(g—a)-mp+ fﬂ\ﬁq:div(g)

where (g — #)-n = 0 on T by (2.24ii); hence it follows that div(v) = n € L*(Q,), where
we have set

_ [div(z) inQ,
~ldiv(g) inQ\Q.
Now we want to prove that ¢2(v), is in L?(2,). We have, by additivity of measures and
by (2.9),

fqve (0)L= qu,, u)¢+f oe(8)s

. —_ . 2 . _ ) _ . _ . .
+fr\clw‘?(g u) d} +fmq<v{'n?(g a) —[(¢ — a)- L]o®) dC?

where the last two terms are zero because of (2.24i, and iii); hence we have ¢; (o) € LY(Q))
foralli, j=1,2,3.
Finally, we have from (2.8)

fe(a?-e()" = [o(o® e2(@)” + [ol(g =) L17d%* + [ o(s”-¢(8))"

1

and by (2.24iv) we get also (62 ¢2(0))” € L%(Q,). Q.E.D.

3. In this section we are going to give a meaning to the expressions

Loijeij u), ];Qo,jnju
for o € 2(Q), u € P(Q), where
P(2) = {u € BD(2) | divu € L*(Q)},

(Q) = {o: Q-R°|o= {0} j=122 0;; are measurable,

0, = 0y, trace s € LX(R), 0”1, 0 < 2K, 0, € L(2)}.

The derivatives o,, ; are intended in the sense of distributions and we set dive =
{0,;.;}i=123- For the results in this section compare also with [6].

We shall consider the space of displacement fields
LP(Q) = {u € P() | ¢,(u) € L'(Q)}

and we remark that P(Q) N HLY(Q) C LP(Q).
We shall need the following lemma.
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LEMMA 3.1. Assume that  has a Lipschitz boundary. If w € LP(Q) and the trace of w on
0% is zero, then there exists a sequence of functions g, € C°(€2, R?) such that

gh - w in L3/2(Q),
e(gy) — e(w) inL'(Q),
divg, » divw in L?(Q).

Proof. By standard techniques in Sobolev space theory, we know that there exists a
sequence of functions w, € C§°(§?) such that

w, - w in L3%(Q),
e(w,) — e(w) inL'(Q),
divw, » divw in L¥?(Q).
Take then a sequence 7, € C5°(£) such that
n, » divw in L2(Q),
fﬂ(nh —divw,) =0 forallh

and, for every h € N, let f, € C§°(2) be such that ([3], remark 4)
dinh =mn, — div Wy, 1 fh” IR C”'ﬂh — div Wy, I 13/2.

Now the lemma is proved just by choosing g, = w, + f,,.
Now we shall give a meaning to o;;n, on Q.

THEOREM 3.1. There exists a bilinear form
(o, U)ag: Z(Q) X P(Q) - R

such that

(o,u);m:f o,n;u; if o and u are smooth in Q, (3.1)
a9

[{o,u),g] < IIGDIwaQ|£D(u)| +3lltrace o |l 2 (ldiv ull ;2 + lldivell ;s llull ;32
forall (o, u) € 2(Q) X P(2). (3.2)

Moreover, if © has a class C? boundary, one can prove that

1
[Covudaal < —=loPl [ |l a3 (3.3)

5

for all ¢ € () and for all u € P(Q) such that u-n = 0 on 9%.
Proof. In order for (3.1) to be satisfied, we shall define

1 .
(o,u) 9= '/;zoij,jui + Lo,feﬁ u) + -3—/;)trace odiv u (3.4)

for all 0 € 2(Q) and for all u € LP(Q) (notice that the right member of (3.4) wouldn’t
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have a defined meaning if ¢é°(u) were only a measure) and we have that (3.2) holds in this
case; moreover {0, u ) ,q is clearly bilinear.
Now, observe that, if u, v € LP(), one has

(o,u)s9=(0,0)s0 ifu=rvondQ. (3.5)

In fact, take a sequence g, € C§°() approximating w = u — v as in Lemma 3.1. By (3.2),
we have (o, w — g, )59 — 0 and since o, ; are derivatives in the sense of distributions we

have also (o, g, ;o = 0 for all h € N and (3.5) is proved.
Now, we are able to define (o, u),q for all u € P(2) by setting

(o,u)s0=1(0,0)s
where v is any function in LP() with v = u on 9. This is a valid definition because (i)
(0, 0),9 depends only on v, by (3.5); (ii) for all u € P(R) there exists a function
v € LP(R) with v = u on 9 (see Theorem 5.1 in the appendix of [2]).
In order to prove (3.2), take fixed o, 4 and let v, € P(Q) N H}!(2) be a sequence of
functions approximating u as in Theorem 5.1 of [2], i.e. such that

v, - u in L*?(Q),

IAECOIESRECIR
divo, » divu in L}(Q),

vy |asz =u Ian-
For all & we have (o, u),q = (0, v,),9 and, since (3.2) holds for all v,, it also holds at
the limit because of (3.6).
Finally, estimate (3.3) follows from (3.2) because, for all u € L'(3Q) with u-n = 0 and
for any given p > 0, there exists (Theorem 5.2 in [2]) a function v € P(2) N H\(R) such
that

[l o= o [ 1l +.

Idivoll 2 <p,  llull,2<op,

so that we have for all p > 0

(0, u) a0l <|(a, 0)]sa < %Ilo”llwf9|u| +3pC(0). QED.

Remark 3.1. Theorem 3.1 says that, for all 0 € Z(£2), the trace o;;n, on 9§ belongs to

the dual space of the traces of functions in P(2) (or in P(2) N HLY(Q), or in LP(Q)). As
far as I know, it is an open question whether or not every “vector field” in this dual
corresponds to a; ;n; for some a € Z(L).

Now we shall give a meaning to [, 0, ¢, (u).

THEOREM 3.2. There exists a bilinear form
(o,u)g:2(Q) X P(2) >R
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such that

(o,u)g= js;o,je,j u) ifue LP(Q), (3.7)

1 .
[{o,u)g|l < ﬁK/;2|eD(u)| +§||traccoll,_z||d1v ull 2 (3.8)

for all (o, u) € () X P(Q).
Proof. For all ¢ € () and for all u € P(Q) define

<°’ “)9 = _fﬂoij,j“i + <°’ “>aﬂ-

Obviously, (o, u)g is bilinear and (3.7) holds by the definition of (o, u)g. In order to get
(3.8), take a sequence of functions v, € P(2) N HL(Q) converging to u as in (3.6) and
notice that

(0,04)0= "fﬂdi""“’h + (0,0, ) 90

= —fdivo-v,, + (o, u)sg > (0, u)g
Q
while for all » € N we have
[{a,0,)ql < ﬁK/s‘z]eD(v,,H + }itrace o |l ;2 lldiv v, Il ;2

and (3.8) follows taking the limit for 4 —» oo.

Remark 3.2. In the proof of Theorem 3.2 we have used the following fact that we want
to point out explicitly: if v, € P(R) N HLY(Q) converge to u € P(R) as in (3.6), one has
that (o,v,)q — (0,u)q. Since any function u € P(Q) can be approximated by a
sequence v, as in (3.6), one could use the preceding property to define (o, u)g.

Now we shall see how formulae (3.1), (3.7) work in the case that some continuity is
assumed for o2,

THEOREM 3.3. Let 6 € =(£2) such that 62 € C°(2); then we have
1
_(.D..D .
(o,u)g= fﬂa e?(u) + 3fgtraceodlvu

for all u € P().
Proof. Take a sequence v, € P(Q) N H\!(Q) approximating u as in (3.6); by Remark
3.2 and by (3.7) we have

(o,uyg= hlim {/o”-e”(v,,) + -;—f traceodivv,,}. (3.9)
-0 |VQ Q

Observe that the convergence (3.6) implies in particular the weak convergence of the
measures e2(v,) to e2(u), i.e.

fﬂ ¥,e2(0,) - jg Je2(u) forally € (@) (3.10)
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Take a fixed number § > 0 and let V' be an open set such that

vccQ, f|sD(u)|=O, f|eD(u)|<O (3.11)
£14 Q\V
and consequently such that
lim |eP(v,)|< 8. (3.11y
h—o YO\V

Now,if ¢ € CJ(R),0< @ <1,¢ = lin V, we have

hlir{.lo fﬂ{oD-e(vh) —02-eP(u)}

= lim [ (1=9)o” ("(v,) = ¢”(w) + lim [0 (e”(v,) = &(u))

h— oo

where, by (3.11) and (3.11), the first limit on the right side is less than 2y2 K& and the
second limit is zero by (3.10). Because § > 0 is arbitrary, we have proved that

li . oD — D _D
Jim 0-e (vp) /Qo eP(u)

and, as from (3.6) it follows obviously that

lim f trace s divo, = f trace o div v,
h—-o0 JQ Q

the theorem is proved by (3.9). Q.E.D.
We need the following lemma to prove Theorem 3.4.

LEMMA 3.2. Let £, be an open set such that €, DD @ and let o € Z(£,) such that
o? € C%Q); then there exists a sequence a* € Z(2) N C'(2) such that

(a*)” > 6 uniformly on &,
trace & — traceo in L*(Q),
o, —o,, inL*(RQ)
Proof. Just take a sequence of mollifiers y, in R* with diam(spt(y,)) < dist(Q, 9Q,) and

set, for all A,
ol = o, *y, fori,j=12,3 Q.ED.

V=

THEOREM 3.4. Let ©, be an open set in R? such that @ C C Q,, let 0 € 2(2,) such that
o? e Cc%Q))andset L= (L, L,, Ly),L,= L — (L-n)n, where

L(x) = (x)n,(x). (3.12)
Then we have
(o,u)m:me,-u (3.13)

for all u € P(§2) such that u-n = 0 on 9{).
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Proof. Take a sequence " € 2(Q) N C Q) approximating o as in Lemma 3.2. For all 4
we have, by Green’s formula (Theorem 1.4),

[ atm = [(@Be,(0) + 3 [ waceatdivut ol u  (3.14)

where, as u-n = 0 on 0%,

-/a ,jj,—f(a")jnu

Taking the limit in (3.14) for h — oo, and also using Theorem 3.3, we obtain

j;no,jnju, (o,u) a0

where, again because u-n = 0 on 9%,

/;Qo,jnju,—/L u. Q.E.D.

4. In this and the following section, we shall study problem (P.1) in the case I';, = 94,
I'y = @, that is, we study the Dirichlet problem for #. More precisely, in this section we
shall give an existence theorem for problem (P.2) and in the next section we shall see how
this yields a (necessarily weak) solution to problem (P.1).

We shall need the following assumptions on the given state of stress o: there exists an
open set £, D D § such that o is defined also in £, o satisfies hypotheses (H.1.1) in &,
and the distributions o;; ; are L? functions in @, (hence we have also ¢ € 2(Q))).
Moreover, we shall assume that

(H.4.1) there exists a stress field a € 3(§2) such that

(a,9)qg=1(0,9)y forallg € P(Q) (4.1)
and that [ «? |, < V2 K.
Notice that (4.1) implies in particular that a;; ; = 0;; ; in € in the sense of distributions
and that

(0,u) 0= (a,uy,sq forallu € P(Q). (4.1
Formula (4.1)' is just a weak formulation of the condition

o,n; = a;n; ondf.

In conclusion, formula (4.1) says that o and «a are in equilibrium with the same system of
forces.

If (H.4.1) holds, we say that the load state of the body associated with o is safe.

Remark 4.1. Obviously, the load state is safe if ||o? o < V2 K, but, in such a case, the
body would behave in a purely elastic way. It seems to be natural, however, to have an
elasto-plastic stress state o (6°(x) = v2 K in some part of 2) which is in equilibrium with
a safe load (compare also with Theorem 1.1 in [2]).

We shall consider the following problem (later we shall take into account also the body
forces f ):
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PROBLEM (P.2). Given a stress field 0 € 2(8,) satisfying (H.1.1) in €, and (H.4.1), and
given a function ¢ € P,(2,) N HLX(R,), find a minimum point for the functional

E(u) = %/ﬂ(div i)’ dx + ;Lf9|eD(a)|2 dx
among the functions # € P () such that
u=g Hae.in{x€dQ||L(x)|<K},
u-n=g-n (4.2)
(g —a) —[(g —u) L]e? = JC%-a.e. on 3Q.

[(¢—u)-L]" =0

Notice that the two traces g* and ¢~ of ¢ on dQ coincide because g € H!(2,), so that
we can talk of the trace of g on 92.

Remark 4.2. A remark is in order about the fact that both ¢ and g are required to be
given in a larger set than Q. Of course, one would like to be able to work without this
assumption and this could be accomplished, for example, if one had suitable extension
theorems for functions of 2(Q) and of P(R) (at least in the case of a smooth 99). It
should be noticed, however, that, if o and g are Lipschitz-continuous functions in £, they
can be extended as required. Notice also that for the Neumann problem (see Sec. 6), we
shall require only that ¢ be defined in €.

To show the existence of a solution to Problem (P.2), we shall use the direct method of
calculus of variations; and we shall need suitable compactness, coerciveness, semicontinu-
ity results which we shall prove first.

Set U= {u € P(Q) | u satisfies conditions (4.2)}.

THEOREM 4.1. Given a stress field o € 2(Q,) satisfying (H.1.1) in 2, and (H.4.1), and
given a function g € P,({,), there exist two positive numbers ¢ and M, depending on o, g,
Q, K, K, u (but not on ) such that

E/(u) = cllullp gy — M

for all « € U. We say then that E\ (%) is coercive on U.
Proof. Take u € U, then, by Theorem 3.4, we have

0,8 —u = s —u)-L;
(0,8~ 1)s0 fm(g )L,
by Theorem 2.1 we have
J(g=i)L=K[ |g—ul;
3Q 39

and by Theorem 3.3, recalling Definition 1.4, we get

(o,u)g= /QoD-eD(a) + fg[aD~sD(a)]+ +%fﬂtraceodiv u.
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It follows that

E,<a>=71<dwu> +uf 1eP@) P = (o u)a = (0,6~ i)an
+ [o? %) + [[o”-eP(@)]"

l . o . .
+§/;2tracead1vu+KfaQ|g—g,
where, by the safe load assumption (H.4.1) and by Theorems 3.1, 3.2, we have

1 .
[(ovyal =[(avi)al < (1 = G)VZK [e2()| + 5 lrace al 2 div il

(o, @Yol =[(a i)aal < (1= G)K[ &= u]d?,

where 0 < C, < 1. Now, by the Holder inequality and recalling that

D(y)|=< eP(u +~—] o?-eP(u *
we obtain

Ky

E(u)= 22 [(diva)’ + G [ 1eP@) P+ 2KG [ |e°(a)|

+cOKfaQ|u—g|d€}cz—M,(Ko,p,K,a, 2. Q)

and, using the Poincaré inequality (Theorem 1.2) to estimate ||u|| ;,, the theorem follows.

Q.E.D.
Remark 4.3. If E (i) is coercive on U and || f|l 5 is sufficiently small, then the

functional
E(u)— u

is also coercive on U. In fact, one has

J
Q
for allu € P,(Q2).
Definition. 4.1. We shall say that a sequence of functions u, € P,(f2) converges
P (Q)-weakly tou € P (Q) if

4, » u in L'(Q) and weakly in L>/%(Q),

< Wl psllall e < CH I sllall p g

diva, - diva weakly in L*(Q),
e?(u,), - eP(u), weaklyin L*(Q),

[0?-€P(u,)] —[0?-€P(ua)] weakly as measures in 2,
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and if there exist a non-negative function y(x) € L*(R) and a positive measure p, in
such that

[0 -eP(u,)]” >y weaklyin L2(Q),
[0?-€P(4,)]" — p, weakly as measures in 2.
Remark 4.4. If u, — u P (2)-weakly, then
y(x) =[o? - e2(4)] (x) ae.inQ.
In fact, if we consider the positive measure p,(B) = [p y(x) dx, we have
[o? - e2(@)] ~[oP+e2(@)] "= o —
hence [6? - eP(#)]” < p, and the same holds for the densities.
Now we shall give a compactness theorem.
THEOREM 4.2. Let u, € P () be such that
la,llpgy<c<+oo forallh €N;

then there exists a subsequence Uy, that converges P,({)-weakly to some u € P,(Q).
Proof. If the sequence u, is bounded in P »(£2), it is bounded also in BD() and, by
Theorem 1.3, possibly taking a subsequence, we have

4, > u in LY(R)

for some function ¥ € BD(£). From this it follows in particular that
fd,,-(p -»/a-q) for all p € C(R,R?),
Q Q
f\pdiv 1, —»f\pdiv u forally € C(Q),
Q Q

and, as the norms /4,52, and lldiv i, 2o, are bounded, we have u € L¥/%(Q),
divu € L¥(Q) and
u, > u weakly in L*/%(Q),
divu, —» dive weakly in L2(Q).
In a similar way, we get that ||e(u)ll ;2 4, < + oo and that
e(u,) > e(u) weaklyin L2(A).
Now we want to prove that

[0?-¢P(u,)] »[0?-e?(a)] weakly as measures in Q. (4.4)

In order to do that, consider the measures e°(i,,) | ¢ defined as

feD(a,,) lc = f ¢®(u,) for all Borel sets B C
B BAC
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(recall the definition of.the sets C and A4 in Sec. 1) and let us prove that
fg-eD(u,,) lc - fg-eD(ti) |o forallg € CO(2,R®). (4.5)

Take a function g € C2(2, R®), take a number 8 > 0, and let ¢ € CP(R) be such that
Y(x)=1 forallx € C,

f |\pg|2<82.
A

Then we have

f&e"@) e = [ (v8)-"(@)

(and similarly for all 4, ) so that
g2 o~ [g-e"C
| [(v8)-e2(a) — [ (40)-e2(@)

+M(¢g).ev(a,,) ~ [ (¥e)- ()
(4.6)

where the first term on the right side of (4.6) goes to zero for 4 — oo and the last term is
less than

5- (suplleD(a,,)IILz(A) + ueD(u)an(,,)) < 26c.
h

Taking the limit of both sides in (4.6) for A — oo we get (4.5). Formula (4.4) follows now
from (4.5) just by looking up definitions.

By (4.4) we get
eP(u,), — eP(u), weakly as measures in
and, since
NeP (i) o Nl 2y < i1l pqy < ¢,
we also get

eP(u,), - €eP(u), weaklyin L*(Q).

Finally, as we also have

fﬂ[o"-s”(u,,)]Jrs\/ch, fg[a”-e"(uh)]'sﬁKc,

again possibly taking a subsequence, we have
[0 -e2(a,)] "~ m

["D 'eD(“h)]— i ]

where p, and p, are positive measures of finite mass in 2, and one can find a non-negative

weakly as measures in
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function y(x) € L*(2) such that p,(B) = [ y(x) dx for all Borel subset B of 2 and
[0?-¢P(4,)]” »y weaklyin L*(R). Q.E.D.
Now we are going to prove a closure theorem.
THEOREM 4.3. Let o and g be as in Theorem 4.1. Let a4, € U, u € P,(Q) be such that
u,>u  P(Q)-weakly,
iyl pgy<c<+oo forallh €N;

then u € U, i.e. u satisfies the boundary conditions (4.2).
Proof. Consider the functions v, defined by

. |un inQ,
On = g inQ\Q.

By Theorem 2.3 we know that o, € P,(Q,) for all 4, and we have
1641l gy < Wity ll oy + g1l p gy + ja 1€%(0,)
where

: 1 o . ;
Jale"on 1= 5= [ 1in = 81457 < cost(liy o, + &1 moie)-

Now, by Theorem 4.2, there is a subsequence Oy, that converges P (Q,)-weakly to some
function v € P,(£,) and it must be

. |4 in,
“T1g inQ\&.

Hence, by Theorem 2.1, we see that u satisfies conditions (4.2). Q.E.D.
Last, we give a semicontinuity result.

THEOREM 4.4. The function E,(#) is sequentially lower-semicontinuous with respect to the
P (§2)-weak convergence.

Proof. Recall that
Ko

E\(i) = = L(diva)zdx+u/;2|sD(tZ)J_|2dx

+,u.fﬂ{[oD~eD(12)]_(x)}2dx. (4.7)

By well-known theorems, the first two terms on the right side of (4.7) are lower-semicon-
tinuous with respect to the weak convergence in L*(Q) of div %, and &2( u,), . For the
same theorems we also have, for any sequence u, - u P,()-weakly:

min lim Q{[o’)os"(ah)]_(x)} dx>j;z|y(x)|2dx

h— o0
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where, by Remark 4.3,
2 D, .D(:\]™ 2
fﬂly(x)| dx>f9{[o ¢(1)] " (x)} dx. QED.

Now we are ready to prove our existence theorem for Problem (P.2).

THEOREM 4.5. Given o and g as in Problem (P.2), there exists a minimum of the functional
E (u) among the vector fields u € P () that satisfy the boundary condition (4.2).
Proof. We have

—M< inf E\(0) <E|(g) < +oo.
sEU

Take a sequence u, € U such that

lim E (4,) = inf E(v).

h— o0 veEU
We have, by Theorem 4.1,

"ah”po(g) < El(uh) + M < cost< +o0

and by Theorem 4.2, possibly taking a subsequence, we get

u,>u  P,(Q)-weakly
for some u € P,(). By Theorem 4.3 we know that # € U and by Theorem 4.4 we obtain

E,(4) = inf E/(v). Q.E.D.
sEU

Obviously, one also has the following result.

THEOREM 4.6. Under the conditions of Theorem 4.5, if || £ || L3 1s sufficiently small, there
exists in ¥ a minimum point for the functional

E (1) — jgfa dx.

S. In this section we shall obtain a weak solution to Problem (P.1) (in the case that
I, = 9Q) from every solution to Problem (P.2).
Let u be a solution to Problem (P.2) and set

6P =2pel(u),
trace 6 = 3K, div u,
A= zéz[ob-sb(u)]"L. (5.1)

It is clear that the constitutive laws for the rates are satisfied in the sense that

e(u) = 9+<() trace 61 + —21?6‘) + Aa?

where A is a positive measure which is zero in the set {x € 2| |6®(x)|< V2 K} and is
supported by the set C = {x € €| |0”(x)|= V2K }; moreover, in the set C, A is the
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positive part of the measure o?-¢P(u); hence A is concentrated only in the set where
o?-eP(u) = 0, as was required in (0.4). Obviously we have also

di? . o,? <0 (5.2)
in the set C, and we remark that 6,7 - 6,” = 0 where A > 0.

Actually, 62 is not necessarily defined for all x € @ and (5.2) makes sense only almost
everywhere in @, but we can redefine 62 in a set of Lebesgue measure zero in order to
have (5.2) true for all x € C.

To show that (#, g, A) is indeed a solution to Problem (P.1), we still have to check the
equilibrium condition (0.1) (we do not have (0.2) since I’y is empty). To do that we shall
use the Euler equation of the functional E(4):

d . .
EE,(u +1¢)|,.o=0
for all € P,(Q) such that (5.3)
¢=0 I*ae.in{x€dQ||L(x)|<K]},
¢-n=0, [¢-L] =0, 72(¢) —[¢-L]e?=0 9I(*a.e.indq.

We shall only need to consider (5.3) in the case that ¢ is also in C'(2).
We have

EEl(u-i-t(p)|r:0=K0de1vudlv<pdx+2uj;zeb(u)_,_£D(q>)dx

d . . - 2
gy [ {[o% (2@) + 2] ()} de g
where the last term is equal to

2 [ [o?e2()]” (x) 5 {[07 (2(a) + 1e”(@)] ™ ()} |y

= —2u 0% e2()] " (x)(o?€%(3)) d (5.4)
because, if [0 - e2(1)]” (x) > 0, we have, for all 7 in a neighborhood of zero,

[o0?-e2(a) +10”-e2(¢)] ™ (x) =[0”-&”(&)] ™ (x) — 1(o”-£%(¢))
while, if [02 - e2(&)]” (x) = 0, we are not interested in the value of the derivative in (5.4),
as it is multiplied by zero.
Concluding, we llave that the Euler equation for the functional E(u) is, for all
admissible ¢ in C'(R),

Kojs;div udive + ZuLeD(u)leD((p) - 2;1/;2[00 -eP(a)]”

and that we can also write

6P
2K?

e%(¢) =0

/Q(Kodiva+2pe’3(u))e(¢) = fga -e(¢) = 0. (5.5)
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Now, as (5.5) holds in particular for ¢ € C°(2) we have
6,;,; = 0 in the sense of distributions in £

which is the equilibrium condition (0.1) in our case, i.e. with f = 0. Obviously, if we had
taken a minimum # of the functional

E (1) — fgﬁz dx

we would have obtained in the same way that 6,;.; + £ = 0 in the sense of distributions in
Q.

6. In this section we shall consider Problem (P.1) in the case I'y, = 9Q, I, = &, i.e. in
the case of Neumann boundary conditions. As we did for the Dirichlet problem, first we
shall find a rate of displacement # that minimizes a suitable energy functional E,(#), then
we shall obtain from # a weak solution to Problem (P.1).

We assume that

fer¥(Q), FelL*(Q);
we assume also that o € Z(Q), with 6? € CO(Q), is a given stress state satisfying the safe
load condition (H.4.1), and we set

E,(u) = -22f9(d1v i)’ dx+u/ﬂ|e‘)(u)|2 dx — fnfu dx — /astu dic?

Define a linear functional T,: BD(Q) - $ = {a A x + b|a, b € R?} as follows [5]:
take a fixed point x, € Q and a positive number R < dist(x,, 0§2), then set

3
[(Tou)(x)], = % gl (o1, (1) = ;i (1)) (x = xo), + n(u)
where
3
47R3
4

pij(u) = (u,(y) = m.(u)) ay
’ 7R (¥ € Br(x0)|(y—x0)-6,>0}) )

w0 == wna,
Br(x0)

and {6,, 6,, 6,} is an orthonormal basis of R>.

Notice that | Tyullgsxps < Cllull gy

Now consider the following

PrOBLEM (P.3). Minimize the functional E,(#) among the functions # € P,(2) such that
Ty(u) = 0.

In order to find a solution to Problem (P.3), we have to prove the coerciveness and the
semicontinuity of E,(#) and, to do that, we have to impose some requirements on f, F. We
shall give a sufficient and almost necessary condition on £, F in order for Problem (P.3) to
have a solution.

Let us begin with a few definitions.
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Definition 6.1. We shall say that a Borel function a: € - R®, @ = {4, ;) belongs to the
space = () if
a;;(x) =a,(x) forallx €Q,

f|o’z(x)|2dx< + 0,
Q

&”(x)-0P(x) <0 forall x € Q such that | 6®(x) |= 2 K.
Definition 6.2. We define a function

(&, ¢ )a: 2,(2) X P(2) »[— o0, +0)

as
(@, )= %fﬂtraceadiwpdx + fﬂd -eP(¢) dx
+/;2aD-[oD'£D(q'>)]+oD (6.1)
where
fa® [e”e%(9)] " o” = f(a®a”)e” e(9)]" (6.2)

is defined as the integral with respect to the positive Radon measure [6? - 2(¢)]™ of the
Borel function (a? - ¢?), which is non-positive on the support of [a? - eP(¢)]* .
Definition 6.3. We shall say that @ € = (2) is ( f, F)-admissible if

(a,¢)g= /fqb +/ F¢ forallg € P(Q). (6.3)
Q aQ
Notice that (6.3) is just a weak formulation of
&;,+f=0 inQ,
a;n;=F, ondQ.

If there exists a ( f, F)-admissible stress rate d, then we can estimate the force terms in
the functional E,(u).

LEMMA 6.1. If @ € 2 (Q) is ( f, F)-admissible, we have, for all € P,(),

s [(@ 0P o? ()]

1 . - . .
glltrace all 2 lldiv all 2 + &Pl 2 lleP(a)ll 2 —

> —ffu—f Fu > — 7 lltrace all 2 Idiv il 12 = 162 121l €2 (i)l 2.
Q aQ

Proof. Obvious.
Now we have a coercivity result for E,(u).

THEOREM 6.1. If there exists a ( f, F)-admissible stress rate field & then the functional
E,(u) is coercive on P (8) N {T,u = 0}. More precisely, there exist two positive numbers
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¢o» M (depending on p, K, K, 0, &,  but not on ) such that
Ey(a) = cyllall p gy — M forallu € P,(Q) with Tyu = 0. (6.4)

Proof. By Theorem 3.3 we have
—(o,u>ﬂ+fo”.s”(a)+ %traceodiva=0. (6.5)
Q

Adding (6.5) to E,(u), arguing as in the proof of Theorem 4.1, and taking into account
Lemma 6.1 we get

Ez(a)>cg){f9(diva)2dx+/Q|ev(a)|2dx+ /Q|£(11)|} -

and, recalling Theorem 1.1, as Ty = 0, we get (6.4). Q.E.D.

Remark 6.1. Notice that we didn’t have to assume that ¢ is defined in an open set
Q, DD

Remark 6.2. 1t is also possible to prove (6.4) under the condition that || £l 5, | Fll
are sufficiently small.

We have already proved (see Theorem 4.4) the lower-semicontinuity of the first two
terms of the functional E,(#) and we only need to see what happens for the force terms.

THEOREM 6.2. If there exists a ( f, F)-admissible stress rate field & such that
@”(x)-6?(x) =0 forallx € Qwith|s?(x)|= 2K (6.6)

then the functional E,(u#) is sequentially lower semicontinuous with respect to the
P (2)-weak convergence.

Proof. Take u,,, u € P,(2) such that u, — u P (Q)-weakly. By (6.1), (6.3) and (6.6) we
have, forallh € N,

. . 1 . .
—/ﬂfu,,— faQFu,,: —gfﬂtraceddlva,, - fQézD-eD(u,,)l
1
2K2£2dD-[oD-eD(ah)]oD

where the last term is zero because a&”-o? is zero in the support of [¢?-eP(u,)]. Now,
taking the limit for 7 — oo, we get

hlin;{ ffu;, fFu,,} > — ftrace aleu—/ e2(a),
= ~(aa)g=~[ju= [ Fi

and, taking into account also Theorem 4.4, our theorem is proved. Q.E.D.
Here is the existence theorem for Problem (P.3).

THEOREM 6.3. If there exists a ( f, F)-admissible stress rate & such that (6.6) holds (and
under the hypotheses made on f, F, o at the beginning of this section), then there exists a
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minimum point for the functional E,(#) among the functions u# € P(Q) such that
Tyu = 0.

Proof. Notice that the functional E, is not identically +co. Let %, be a minimizing
sequence. Then: u, is bounded in P,(f2) by Theorem 6.1; there is a subsequence thy, that
converges P (2)-weakly to some # € P,(2) by Theorem 4.2; as Tyu, = O for all & we also
have T,u = 0, and # is a minimum point for E, by Theorem 6.2. Q.E.D.

For any solution # to Problem (P.3), define ¢ and A as in (5.1). Again, we have that the
constitutive laws for the rates are satisfied by definition, and we have to see what happens
for the equilibrium conditions. In this case, we have that the Euler equation (see Sec. 5) is

[(Kodiv al + 2pe®(u))e(¢) — ff'qb ~ f Fp=0 (6.7)
Q Q 30
for all ¢ € P,(R) such that Typ = 0; hence we have
/;ldijeij(q')) - /;If[(P_ Tl — _/;QF[(F"_ TZ)‘P] =0

for all ¢ € P,(R), where by (6.3) and (6.1)

[f T+ [ FTp=(aTp)a=0

Q El)
as &Ty@) = 0. In conclusion, we have that (6.7) holds for all ¢ € P () and, taking
¢ € C§(R), we have that

Gij. +/=0 (6.8)

in © in the sense of distributions, while formula (6.7) for ¢ € C2(Q) is a weak
formulation of

Remark 6.3. Obviously, ¢ is a ( f, F)-admissible stress rate field; hence a necessary
condition to have a solution to Problem (P.3) is that there exist a ( f, F)-admissible stress
rate field. We have seen that this condition is also sufficient, if we also assume (6.6). It
would be nicer if one could prove the existence theorem without using (6.6). It should be
noted, however, that condition (6.6) also is a natural one, in fact, this condition is
necessary on (df/dt)(t), (dF/dt)(t) at each instant of time, if one wants to have a solution
{u(t), o(1)} to the quasi-static problem such that o(#) is a differentiable function of z.

We end this section by showing that the stress rate field 6 minimizes a suitable
complementary energy functional, among the ( f, F)-admissible stress rate fields.

THEOREM 6.4. Let # be a solution to problem (P.3), let ¢ be defined as in (5.1) and set

Y(a) = QLKO(traceéz)2 + —21‘-; | &P
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then we have
qu(a) < f\p(a)
Q Q

for all ( f, F)-admissible stress rate fields .
Proof. By the convexity of the function ¥ and by (5.1), we get

fﬂxp(a) - fg\l'(d)>2fg(e(u) —Ae?)(a —d)

and the theorem follows by recalling that we have

/Qe(a)a= fﬂe(u)d

because both a and 6 are ( f, F)-admissible; we have
[ (6 -0?)o?-e?(@)] " =0
because 6 - 02 = 0 where [62 - £2(i)]" is non-zero, and we have
- [(6 0”0 e2(@)] " =0
because 0”& < 0 where |6%(x)|=V2K. QE.D.
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