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Introduction. In this paper we shall consider an isotropic and homogeneous elasto-per-

fectly plastic body, subject to the Prandtl-Reuss constitutive law with the von Mises yield

condition. We shall be concerned with the existence of the rate of stress and of the rate of

displacement corresponding to a given state of stress, to a given rate of the force density,

and to given boundary conditions.

We use the following notation. The body, in its nondeformed state, occupies a bounded

connected open set S2 C R3; TD and TA, are subsets of 3fi such that ro U FA, = 3fi,

ro n Tv = 0; n(x) is the outward unit normal vector to at x. We are given a state of

stress a = {a,- ■},■ •_ , 2j3: ̂  -» R9 with oIJ = aji and such that | aD |< y/lK on £2, where aD is

the deviator of a and AT is a positive constant called the yield constant. The functions

f(x): S2 IR3, F(x): TN -> R3, g(x): -» R3 are given.

We shall consider the following problem (see [7]):

Problem (P.l). Find under what conditions for the data there exists, in some space of

functions or distributions, a triple {«, a, X}, where

such that

u: £2 -> R3,

d={d,7}(y=1

A: S2 - R,

°ij aji '

*ij.j+fi = 0 in £2, (0.1)

oiJr,j = Fi onT^, (0.2)

e{u) = -^ ir&ct 61 + y^6d + \oD, (0.3)
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= 0 where | a D | < ^2 K, or

X-j where | aD |= \jl AT and aD ■ e°(u) < 0, (0.4)

*0 where | oD | = fifC and oD ■ eD(u) > 0,

6 (*)•aD(x) < 0 if | oD(x) |= ^2K, (0-5)

where £,7(m) = j(dUj/dxj + 3ii,/3x,).

We have used the summation convention over repeated indices. We denote by dlJ J the

derivative (3/3xj)6lj, K0 and fi are positive numbers, and I is the identity matrix.

Notice that all the functions in problem (P.l) depend on the space variable x only, and

not on time. The dot on u, 6 does not mean differentiation with respect to time, and is

there only to remind us that we are dealing with functions that satisfy the equation for the

rates of the stresses and of the displacements.

In what follows, we shall consider problem (P.l) only in the case of Dirichlet boundary

conditions (i.e. TN = 0) and in the case of Neumann boundary conditions (i.e. = 0).

The case of mixed boundary conditions offers a few technical difficulties and we leave it

to a subsequent paper.

The solution of problem (P.l) can be interesting from the point of view of a proof of the

mathematical consistency of the theory of plasticity (Koiter [7, introduction]) and as a

possible first step towards a solution of the evolution problem, particularly in the

quasi-static case. A proof of the existence of weak solutions to these last problems is given

in Duvaut and Lions [4, Chapter V] and in Suquet [10], but the point of view from which

we are looking at the problem is different; it is close to that adopted in Temam [11] and

Anzellotti and Giaquinta [1, 2] for the existence of the stresses and displacements in the

case of Hencky's total deformation theory. In fact, as in [2], we use the direct method of

the calculus of variations to minimize a suitable energy functional in order to get the rate

of displacement w. Then we define d and A starting from u, and the constitutive law is

satisfied automatically by 6, X by the choice of the space /^(fl) of the admissible

displacement rates.

The basic notation and the definition of P„(fi) are given in Sec. 1. We define the space

/^(fi) so that the deformation energy of a vector field u G Pa(&) is finite; hence we say

that u G Pa(&) if:

(i) it £ BD(i2), where BD(fi) is the space of functions of bounded deformation

introduced and studied in [8, 9, 5],

(ii) div u G L2(fi),

(iii) in the elastic zone A = (x G £2 | | a°(x) \< {1K}, we have that eD(it) is square

summable,

(iv) in the elasto-plastic zone C= (xefij |aD(x)|= /2K}, we have that eD(u) is

decomposed as the sum of an elastic part eD(u) G L2(fl), such that eD(u) ■ aD < 0, and a

plastic part {\/2K2)[oD ■ eD(u)]+ oD, which is in the direction of aD, where [o£>-££'(m)] +

is a positive measure.
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In Sec. 2 we study the possible kind of discontinuity of a function « G P0(S2) along a

surface T C S2, and we prove that the difference (u+ — u~) between the traces of u on the

two sides of T must be zero, not only at those points x E T where | oD(x) |< -jl K, but at

3C2-almost all points x where I L,(x) |< K, where L, is the tangent part of the traction

L, = OjjVj (c is the normal to T). Moreover, we prove that if the difference («+ — ii~ )(x) is

nonzero then it must be in the same direction as L,(x).

In Sec. 3 we give a meaning to the integrals Jda a,luJnl and fa a^e^iu), for all a such

that trace a E L2(£l), | a° |< +00, a(y; G L3(S2), and for all u G BD(i2) such that

div u G L2(S2). These results follow mainly from an approximation theorem given in [2]

and are needed for use in Sec. 4. For these results compare [6].

In Sec. 4, we consider the functional

£|(") = i (div u)2 dx + 11 ( | eD(u) |2
1 Ja

representing the energy of the elastic part of the deformation rate e(ti). This energy does

not take into account the plastic component of the deformation rate which is in the

direction of oD\ hence Et(u) cannot bound the integral /|e(ti)|2. However, it can be

proved that, under essentially the safe load condition (H4.1) for the stress state a, one has

E^u) > c f I eD(u) I — M
Ju

for all u G P„(8). This fact gives the coerciveness of E,(ti) on the space of all u E Pa(&)

that take, in a suitable sense, a given boundary value g (see Theorem 4.1). It is then proved

(theorem 4.2) that the bounded sequences in P0(8) are compact with respect to a suitable

P„(8)-weak convergence (see Definition 4.2) and that the functional £,(«) is lower-semi-

continuous with respect to this convergence. An existence theorem is finally given for the

minimum problem:

£,(m) = min,

®(g-ii) = 0, (P.2)

where 9>(g — ti) = 0 is a set of boundary conditions that mean

(g — ti)(x) = 0 at points x E dti where the norm

of the tangent part L, of the traction force

{°ijnj}i= 1 2 3 d°es not attain the yield

value K;

(g-u)(x) = (\/K)\g-u\L, if (g — «)(x) 0.

In Sec. 5, we show how one can obtain a solution (ti, d, \) to problem (P.l), in the case

of Dirichlet boundary conditions, from every solution u to the minimum problem (P.2). As

we have already said, we define d and X starting from it (see (5.1)), and the constitutive

laws are automatically satisfied, while the equilibrium conditions are checked using the

Euler equation of the functional E].

The boundary condition u = g is satisfied only in the weaker sense (0.6).

In Sec. 6 we study the problem of Neumann boundary condition. We introduce another
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functional E2(u) and we study a new minimum problem (P.3). We consider a space 2„(£2)

of stress rates and we say that a stress rate a £ 2a(£2) is (/, /" (-admissible if

a,y.;+i = 0 infi,

aijnJ = Fl on rv

hold (in a suitable weak sense). Clearly, in order to have a solution to our problem, we

must impose conditions on /, F. We can prove that if /, F are such that there exists a

(/, F)-admissible stress rate a, then the functional E2(u) is coercive; moreover, if a can be

found such that

";7'a!7=0 in | | a£>(x) |=/2/f | (0-7)

also holds, the functional E2(u) is lower-semicontinuous. Under these conditions we prove

the existence of a solution to (P.3) and, as for the Dirichlet problem in Sec. 5, we find a

solution {ti, d, X} to problem (P.l) (now in the case of rD = 0).

It must be noticed that the existence of a (/, /)-admissible stress rate is a necessary

condition in order to have a solution to the minimum problem (P.3); and condition (0.7),

too, must be satisfied by a(x, t) = (3/9t)a(x, t) if a is a solution to the quasi-static

problem and is differentiable with respect to the time t. On the other hand, condition (0.7)

seems unnecessary for the existence of it, a in our case, and it would be desirable to have a

proof of the semicontinuity of E2(u) that does not rely on (0.7).

Finally, at the end of Sec. 6, it is proved (see Theorem 6.4) that the stress rate d, in the

case of Neumann boundary conditions, minimizes a complementary energy functional

among the (/, F)-admissible stress rates. Since this complementary energy is a strictly

convex functional, we obtain that the stress rate d is unique.

I would like to thank Mariano Giaquinta for many stimulating conversations, and G.

Strang, R. Temam, and P. Villaggio for some useful comments.

1. In this section we set notation and define a space Pa(&) of vector fields in £2. This is

the space in which we shall later look for m.

We shall assume that £2 is a bounded connected open set in (R3 with a Lipschitz

boundary. Recall that a vector field u: £2 -» U3 is said to be of bounded deformation

(u G BD(£2)) if u G L'(fi) and the distributions

( .1/9", 1 d«,-

£'^") 2 \ 3x; 3x,

are measures of bounded variation in £2. The space BD(£2) is given the norm

H"Hbd(S2) = / \ u\dx + J | c(m) |

where, for all Borel sets B C £2, fB \ e(u) | denotes the value on B of the measure total

variation associated to the vector measure e(u) = {e,- -(")},,y= 1,2,3-

For the properties of the space BD(£2) we refer to [9, 5] and also to [1, 2], For the

convenience of the reader, we collect here a few results that will be needed for what

follows.
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Theorem 1.1 (a Sobolev-Poincare inequality). Let <5 = {a A x + b \ a, b G R3} be the

space of infinitesimal rigid motions in R3. For any continuous linear functional T: BD(fi)

-» 3 such that T(tj) = 17 for all rjGf, there exists a constant c(Q, T) such that

II" - r(«)H O'Htt) ̂ c(fl' T)j I £(M) I

for all u G BD(fi).

Theorem 1.2 (a Poincare inequality with compact support). There exists a constant c(fl)

such that

(fl){ f j e(w) I + /" \u\d%
l/a •'an

II "II £.'(0) ̂ c<

for all u E BD(fi).

Theorem 3.1 (compactness). For any sequence of functions uh G BD(S2) such that

II uh II bd(Q) < M < + 00 for all //

there exists a subsequence that converges in L\Q,) to some u G BD(fl).

Theorem 1.4 (trace theorem). There exists a linear operator y : BD(S2) -» L'(9£2) such that

y(m) = u |3S2 for all u G BD(S2) n C°(fl) and such that

[ | y(w) I d%2 < c(n)||e(«)||BD(8) for all u G BD(fl).
•'an

Moreover, the following Green's formula holds for all <p G C'(^):

fjeu(U) + yju,^ + „,|j| dx = \jj[nly(u)] + i.yy(«)J d%\
j

For the sake of brevity, we shall usually write u instead of y(u).

We shall make the following assumptions on the stress state a:

the deviator aD of a is continuous in fl,

| oD(x) |< \fl A"for all x G fi, (H.l.l)

trace a G L2(fl).

For all u G BD(£2) we consider the real-valued measure an ■ eD(u), defined in £2 by

(oD ■eD(ii),<p)= (e?j(u),<poP) for all <p G C0°(S2).

The elastic and plastic zones are

A — |^Gfi||a£>(x)|</2A'j, C— (x G | | a^x) |= /2X"}.

Definition 1.1. (i) We denote by [aD ■ eD(u)\ the "restriction to C" of the measure

aD ■ eD(u). More precisely, [oD ■ eD(ii)] is a measure on such that

J n JBDC

for all Borel subsets B of S2.
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(ii) We define a vector valued measure in Q, as

] O | 2A

where {[oD • eD(u)]oD, <p) = ([a° • e°(«)], aD<p> for all <p E C0°(fl, IR9).

(iii) We denote by [oD • e^zi)]- and [aD-£D(ii)]+ the negative and the positive part of

the measure [aD • eD(u)].

Definition 1.2. (i) We shall say that the measure e°(u)± is an L2-function in S2 if there

exist functions y, £ L2(i2) such that

(e°(u).L ,<p)= J^fij(x)<pij(x) dx

for all (p = {<Pij} G C0°(S2, IR9). In such a case we use also the symbol ef}(ti)± to denote the

functions y0(x).

(ii) We shall says that the measure [aD ■ e°(u)]~ is an L2-function in if there exists a

function 17 £ L2(Q) such that

([CTD-eD(ii)]~ ,<p) = J^(x)<p(x)dx

for all <p E C0°(fl) (we must have rj(x) = 0 almost everywhere in A).

Definition 1.3. Set

P„(fl) = {« G BD(fl) | div it E L2(ti), eD(u)±E L2(Sl), [aD-eD(u)]~ E L2(fi)}.

Notice that if ii E Pa(i2) one has in particular that e(u) E L2(A).

Definition 1.4. For all functions ti E BD(i2) set

eD(u) = £»x - (1/2K2)\oD zD{u)Y oD.

Notice that

eD{u) = eD(u) + (\/2K2)[aD ■eD{u)} + aD

and that

e°(u) = eD(u) in A.

On the space Pn(&) we shall take the norm

iyo) = +l|divti||L2(C) + \\eD{u) I L2(Sl)-

Remark 1.1. The space Pn(f2) has been defined so that if it E PJ&), then e(ii) is square

summable in the elastic zone A, while in the plastic zone C, e(u) is decomposed as the sum

of an elastic part eD(u) E L2(fi) such that aD-eD(u)< 0 and a plastic part

(\/2K2)[aD ■ eD(ti)]+ aD in the direction of oD.

2. It is well known that functions of bounded deformation may have discontinuities

along a surface; in this section we shall show that, with the additional requirement

div ti E L2(ii), eD(u) E L2(fi), the discontinuity of it must be of a particular type.
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Let F, be an open set in IR3 such that F, D is non-empty, and set T = F, D 9S2,

U F,. For all u £ BD(fi,) set

u+ = trace of u |a on T, ii~ = trace of u |a on I\

For all functions v: T -> IR 3 set, as usual,

Tjj(v) = {[v^j + VjHj], n is the normal to 90.

Recall that the measure e(w) |r can be represented by integration on F [1] as follows,

where DC2 is the two-dimensional Hausdorff measure and B is any Borel subset of T:

(e(u) — f t(u+ — u~ ) d%2, (2.1)
J b J B

f eD(u) = f td(u+ ~u~) d%2, (2.2)
JB B

I trace e(u) = j div u = f( u+ — u~ )• n d%2
J B •'B •'b

— f trace(T(ti+ — ti~ )) d%2, (2.3)
JB

f | e(ii) | = f | t(m+ — u~ ) | d%2. (2.4)
JB JB

Moreover, when (it' —u~)-n = 0 "X 2-almost everywhere on T, one has

f |e(w)|= f | eD(u)| = -L- ( | u+ — u~ | d%2. (2.5)
JB JB ^2 JB

Now, assume that a is a stress field in £2, satisfying the hypotheses (H.l.l) in £2,, and set

C, = |xGfi|||aD(x)|=/2Ar|, A, — [x E \ \oD(x) \ < \jl ,

L = (L\, L2, L3), Lj(x) = ofj(x)nj(x) fori =1,2,3,

[(w+ -u~)-L\+ = max{(w+ -u~)-L,0), [(«" -u~)-L]~ = -min{(w+ -u~) L,0}.

We have the following

Proposition 2.1. For all ii €E BD( £2,) and for all Borel subsets B of T we have

f[aDeD(u)\= f od-td(u+—u ) d%2 (2.6)
jb JBnc|

Moreover, if (ii+ — u~~) • n = 0, 3C2-almost everywhere on T, we have

f [aD ■ ed(u)] = f (w+ —u~ )■ L d%2, (2.7)
jb •/sncl

f[oD-eD(u)Y = j [{u+ -u~)-L]+ d%2, (2.8i)
JB JBCC,
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f[aD-eD(w)] = f [(ti+—m_)-L] d%2, (2.8ii)
JB JBDCl

f eD(u)x= f td(u+ — u~ ) d%2 — ( [(u+ -u~)-L\oDd%2, (2.9)
•'ft •'ft J r nr.

Proof. By definition 1.1, we have, for all Borel subsets B of I\

f[oD-eD(u)} = J aD ■ eD(u)
•'r Jnr\r./BHC]

and, as a consequence of the representation formula (2.2), we have

f oD-eD(u) = ( aD ■ td(u+—u~ ) d%2\
JBnc, ^Bnc,

hence (2.6) follows.

Now, recall that if (u+ -u~)-n = 0 one has t(«+ — ti~) = tD(u+ ~u~) so that, also

taking into account the symmetry of a, one gets

t,f(ti+ -u~ )aP = (u+ -u~ ),Li

and (2.7) follows.

Formula (2.7) says that the function [(ti+ — u~) L] |c is the density of the measure

[aD-eD(M)], with respect to the measure 3C2, on F and formulae (2.8) are then just a

corollary of the Radon-Nikodym theorem.

Finally, (2.9) follows from the definition of cZ)(m)_l and from (2.2) and (2.7). Q.E.D.

In the following two theorems we shall prove that, for a function u £ Pa( 12,), the

difference (ii+ —u~) must be in the same direction as the vector L, = L — (L • n)n.

Theorem 2.1. For all u E /^(fi,) we have that

u+— m~ = 0 %2-a.c. in (x G T | |a°(x) |< fix], (2.10)

(u+-u~)-n = 0 9C2-a.e. in T, (2.11)

[(ii+—w~)-L] =0 DC2-a.e. in T, (2.12)

td(u+ — u~ ) — [(w+ — u~ )• L]aD = 0 %2-a.s. in T, (2-13)

f | c(m) | = —=—f [(u+ — ii )• Z,]+ for all Borel sets B C T, (2.14)
Jr \j2XJr"^r-snc,

1
\u+—it |= — (ii+ — u )■ L 3C2-a.e. in T. (2-15)

A

Proof. Recall that if u E ^(fi,) one has eD(u) E L2(fi,); hence eD(u) E L2(AX) and

also e(u) E L2(A\), so that /B e(u) = 0 for all sets B C Ax of Lebesgue measure zero; this

holds in particular for all sets B C T fl Ax and (2.10) follows then from (2.1).

To prove (2.11), (2.12) and (2.13) one can follow the same method. As an example we

shall prove (2.12) (for that, we assume 2.11 has already been proved, so that (2.6) holds):

since ii E Pa(ti,), we have that the measure [aD ■ £°(m)]~ is an L2({2,) function and
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/V-6»]- = 0
JB

for all subsets B of of Lebesgue measure zero; this holds in particular for all B C T and

we obtain from (2.8) that (2.12) is true 3C2-almost everywhere in T n Cx. Taking into

account (2.10), we see that (2.12) holds also DC2-almost everywhere in F.

Now we prove (2.14). Recalls that, by definition,

e(ii) = 4 div ul + eD(ii)± + \oD ■ e£>(w)]+ - - [aD • eD(ii)] °
3 2K2 J 2 K2'

hence, for all Borel sets B C 12,, it follows that

and this, when B C T, taking into account (2.8), yields (2.14).

Finally, from (2.5) and (2.14) we get

-p f | u+ — u~ | d%2 = —i—f [(u+— u~ )■ L] +
y2 jb j2KJB

for all Borel sets fiCT, and (2.15) is also proved.

At this point we know from (2.15) that, DC2-almost everywhere in T, we have

(u+ — u~) • L = 0 if and only if (ii+ — ii~) = 0, but we can tell more about u+ —u~ .

Theorem 2.2. If it e P„(Qi), then we have

(ti+ -u~) - -^[("+ -«")• L,]L, = 0 (2.16)
K

DC 2-almost everywhere on T, and we have

| L,(x) |= K, (2.17)

u+ — it" =| ii+ — u~ | Lt/K (2.18)

for 3C2-almost all x G T such that (ii+ —u" )(x) ^ 0.

Proof. Set (m+ ~u~) = v. Take a point x G T such that

v(x)-n(x) = 0, (2-19)

T±(v) = 0. (2.20)

Choose a coordinate system in R3 such that n(x) = (0,0,1), call (o„ v2, v3) the coordi-

nates of v(x) and set

a d e

oD= d b f

e f c.
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Since v n = 0 we have

rD(v) — t(v) =

Condition (2.20) becomes

0 0 Uj/2

0 0 v2/2

u,/2 v2/2 0

o2 1

a(evt + fv2) = 0,

b(ev} + fv2) = 0,

c(evi +fv2)= 0,

d(ev] +fv2) = 0,

~Je(evi +M) = o,

f(ev, + fv2) = 0, (2.21)
2 2K2

and (2.16) follows at x, from the two last lines in (2.21).

Since L, = (e, /, 0) and L ■ v = Lt ■ v — ev, + fv2, if we assume that

L(x)-ov(x) # 0, (2.22)

\oD(x)\= JlK, (2.23)

we obtain from (2.21) that a = b = c = d= 0 and that

and (2.18) also follows.

To conclude the proof of the theorem it is sufficient to notice that conditions (2.20),

(2.21) are satisfied 3C2-almost everywhere on T, and that, by (2.15) and (2.10), conditions

(2.22), (2.23) are satisfied 3C2-almost everywhere in the set {x G T | (w+ — it' )(jc) ¥= 0}.

Q.E.D.
We also have a glueing theorem, which is a sort of converse of Theorem 2.1.

Theorem 2.3. Let u G ^(fi) and let g G />a(fl,\fl) such that

u — g DC2-a.e. in {x G T | | L,(jc) |< A"}, (2.24i)

u-n=g-n %2-a.e. in T, (2.24ii)

[(g — u)-L] —0 3C2-a.e. in T, (2.24iii)

T°(g — w) =[(g - u)-L\oD 3C2-a.e. in F. (2.24iv)

Then the function v, defined by

it in £2,

g inS2,\S2

belongs to /^(^i).

v =
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Proof. First, notice that ti> £ BD(fi,). In order to prove that div(t)) e L2(fi,) it is

sufficient to recall that for all <p £ C0l( 12,) we have

f (pdiv(v) — [<pdiv(ti)+ f(g-u)-n<p+ f jpdiv(g)
Ja, Jr Ja,\a

where (g — ti) • n — 0 on T by (2.24ii); hence it follows that div(t>) = tj £ L2(fi,), where

we have set

V
idiv(ii) in £2,

div(g) infi,\fl.

Now we want to prove that e°(i>)± is in L2(UX). We have, by additivity of measures and

by (2.9),

/ <PCo(v)±= f<pe°(ti)± + f _<pe?(g)
J ci. Jo. Jo.\ .0

+ f vrfig - u) d%2 + j q>{rP(g-u) ~[{g - u)-L]o°j) d%2
r\c, rnc,

where the last two terms are zero because of (2.24i, and iii); hence we have e?(i>) £ L2(fl,)

for all j — 1,2,3.

Finally, we have from (2.8)

J <p(oD-eD( «)) = f cp(oDeD(u)) + f <p[(g - ti)-L] ~ d%2 + J _<p(aD ■ eD(g))
Jr Ja{\Q

and by (2.24iv) we get also (oD ■ eD(v))~ £ L2(fl,). Q.E.D.

3. In this section we are going to give a meaning to the expressions

// °unjui
Ju Jaa

for a £ 2(fi), u £ P(&), where

P(B) = (w £ BD(Q) | divu £ L2(fl)},

2(B) = {a: B -» R9 | a = [aij)i =l>2,3. %-are measurable,

0,j = Oji, trace a £ L2(B), Ik^ll^o < {lK, al]J £ L3(B)}.

The derivatives a, are intended in the sense of distributions and we set div a =

{aij , 2>3. For the results in this section compare also with [6].

We shall consider the space of displacement fields

LP(B) = {« £ P(Q) | e,j(u) £ L'(0)}

and we remark that P(B) fl //^(B) C LP(B).

We shall need the following lemma.
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Lemma 3.1. Assume that 12 has a Lipschitz boundary. If w G LP(12) and the trace of w on

912 is zero, then there exists a sequence of functions gh G C™( 12, R3) such that

gh -> w in L3/2(12),

e(g*)"»e(w) in L'(12),

divgh -> div w in L2(12).

Proof. By standard techniques in Sobolev space theory, we know that there exists a

sequence of functions wh G Cif(Q.) such that

whw in L3/2(12),

e(wA) -> e(w) inL'(12),

div wh -> div w inL3/2(12).

Take then a sequence rjh G C0°°(12) such that

t)h -* div w in L2(12),

f (t)h — div wh) = 0 for all h
J O

and, for every /iGM, let fh E C0°°(12) be such that ([3], remark 4)

div/* = i?A - div wh, \\fh\\Hw <C\\yh- div wh\\Lm.

Now the lemma is proved just by choosing gh = wh + fh.

Now we shall give a meaning to o^rij on 312.

Theorem 3.1. There exists a bilinear form

(a,M)3fi:2(S2)XF(S2)^R

such that

(°>u)aa— / aaniui if a and u are smooth in 12, (3.1)
•'an

| (a, u ) 3q| < IIII oo f I eD(u) I + jlltracea||£2||div u\\ Li + ||divor || ̂ 31| w || ̂ 3/2
Ja

for all (a, w) G 2(12) X P(12). (3.2)

Moreover, if 12 has a class C2 boundary, one can prove that

l(o. ">aal < -^W°DWoo( \u\d%2 (3.3)
/2 JdSl

for all a G 2(12) and for all u G P(12) such that u ■ n = 0 on 812.

Proof. In order for (3.1) to be satisfied, we shall define

(®. M)aa = + /CT,%(") + jf trace adiv u (3.4)
£2 £2 12

for all a E 2(12) and for all u E LP(12) (notice that the right member of (3.4) wouldn't
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have a defined meaning if eD(u) were only a measure) and we have that (3.2) holds in this

case; moreover ( a, u ) 3n is clearly bilinear.

Now, observe that, if u, v E LP(ti), one has

(a, «)9j2 = (a, v)da ifu = vondti. (3.5)

In fact, take a sequence gh G approximating w = u — v as in Lemma 3.1. By (3.2),

we have (a, w — gh)dSl — 0 and since oi] j are derivatives in the sense of distributions we

have also ( a, gh ) = 0 for all h E and (3.5) is proved.

Now, we are able to define (a, u)for all u E P(Q) by setting

(°> ">30 = (a.«>30

where v is any function in LP(il) with v = u on dQ. This is a valid definition because (i)

(a, v)aa depends only on v |3f2 by (3.5); (ii) for all u E P(Sl) there exists a function

v E LP(Sl) with v = u on (see Theorem 5.1 in the appendix of [2]).

In order to prove (3.2), take fixed a, u and let vh E P(i1) D 7/^(12) be a sequence of

functions approximating u as in Theorem 5.1 of [2], i.e. such that

vh -» u in L3/2(£2),

/ leK)b/ | e(«) I .jq

divu^-»divM inL2(S2),

vh Ian ~ u |an-

For all h we have (o,u)m= (a, vh)da and, since (3.2) holds for all vh, it also holds at

the limit because of (3.6).

Finally, estimate (3.3) follows from (3.2) because, for all u E L'(8S2) with u ■ n = 0 and

for any given p > 0, there exists (Theorem 5.2 in [2]) a function v E P(&) n H^il) such

that

/ |e°(o)|< -p/ | " | +P,JS). J1 JAO.]/2 •'aa

||div»||£2 < p, ||u||L3/2 < p,

so that we have for all p > 0

\(",u)da\<\(a,v)\m^ -^r\\aD\\x f | « | + 3pC(o). Q.E.D.
\j2

Remark 3.1. Theorem 3.1 says that, for all a E 2(S2), the trace olJnJ on 3S2 belongs to

the dual space of the traces of functions in P(tt) (or in P(tt) n H^(9,), or in LP(Q)). As

far as I know, it is an open question whether or not every "vector field" in this dual

corresponds to a^tij for some a G 2(S2).

Now we shall give a meaning to /a o^e^u).

Theorem 3.2. There exists a bilinear form

(a> M)n: 2(S2) X P($l) —> IR
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such that

(<*> «>o = ja°u£'Au) if"e Lp(®)' (3-7)

|(a, u)a\ < ]fl Kf^ | eD(u) | + j||tracea||L2||div u\\Li (3.8)

for all (a, u) G 2(0) X i'(B).

Proof. For all a G 2(£2) and for all u G P(&) define

(a, u)a = - f oyjUi + (a, «)80.

Obviously, (a, «>fl is bilinear and (3.7) holds by the definition of (a, u)a. In order to get

(3.8), take a sequence of functions vh G P(&) n H^(&) converging to u as in (3.6) and

notice that

<°'vh)a = ~ f di vit, + (a, u„)3S2
JQ

= - ( diva -vh + (a, u) - (a, u)Q

while for all h E fol we have

I(ff,o*)o| <^Kfa le°K)l + 3II trace a || Li lldiv vh || Li

and (3.8) follows taking the limit for h -» oo.

Remark 3.2. In the proof of Theorem 3.2 we have used the following fact that we want

to point out explicitly: if vh G P(£l) Pi ///^(Q) converge to u G P(&) as in (3.6), one has

that (a, vh)a -* (a, «)n. Since any function m G P(S2) can be approximated by a

sequence as in (3.6), one could use the preceding property to define (a, u)a.

Now we shall see how formulae (3.1), (3.7) work in the case that some continuity is

assumed for a D.

Theorem 3.3. Let a G 2(fi) such that aD G C°(£2); then we have

(a, u)a— (oD ■eD(u) + \ f traceadiv u

for all u G f(fi).

Proof. Take a sequence vh G P(fi) n //,^(0) approximating u as in (3.6); by Remark

3.2 and by (3.7) we have

(a,u)a - lim \ f aDeD(vh) + \ f trace adivuj. (3.9)
a-oo 1/n j J

Observe that the convergence (3.6) implies in particular the weak convergence of the

measures eD(vh) to eD(u), i.e.

/ VoK) "* / for a11 * G Co°(")9- (3.10)
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Take a fixed number S > 0 and let V be an open set such that

195

FCCfi, \ | e°(«) |= 0, f | eD(u) |< 0 (3.11)

and consequently such that

lim
h^cc JSi\V

Now, if <p G C0°(i2), 0 < <p < 1, <p = 1 in V, we have

/ |eDK)|^s. (3.11)'
•'.OX V

lim ( (aD-e(vh) — aD-eD(u))
h — x •'fi

lim f (1 - <p)oD ■ (eD(vJ - eD(u)) + lim f cpoD ■ (eD(vh) - eD(u))
h-> cc JQ h-*cc♦oo

where, by (3.11) and (3.11)', the first limit on the right side is less than 2]/2KS and the

second limit is zero by (3.10). Because 5 > 0 is arbitrary, we have proved that

lim
h-» oo

J a ■ eD(vh) = J aD ■ eD(u)

and, as from (3.6) it follows obviously that

lim I trace a div vh = I traceadivu,
h-oo Ja Ja

the theorem is proved by (3.9). Q.E.D.

We need the following lemma to prove Theorem 3.4.

Lemma 3.2. Let £2, be an open set such that S2, D D £2 and let a G 2(S2,) such that

aD £ C°(S2); then there exists a sequence ah G 2(fi) fl C'(fl) such that

(ah)D -> aD uniformly on i2,

trace ah -» trace a in L2(S2),

«ijj -* °uj in l3(°)

Proof. Just take a sequence of mollifiers \ph in R3 with diam(spt(^)) < dist(£2, 912,) and

set, for all h,

aU ~ °ij * th forJ ~ h2,3. Q.E.D.

Theorem 3.4. Let 12, be an open set in R3 such that S2 C C S2,, let a G 2(J2,) such that

aD G C°(S2,) and set L = (L,, L2, L3), L, = L — (L • n)n, where

Li(x) = °u(x)nj(x). (3.12)

Then we have

(a, u)sa = f L, u (3.13)
•'30

for all u G P(i2) such that u ■ n = 0 on 3£2.
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Proof. Take a sequence ah E 2(Q) n C'(£2) approximating a as in Lemma 3.2. For all h

we have, by Green's formula (Theorem 1.4),

/ = /(a*).7««y(") +|/ traceahdiv u+ f a^JJui (3.14)
JdQ

where, as u • n — 0 on 9fi,

/3J2 /as2

Taking the limit in (3.14) for h -* oo, and also using Theorem 3.3, we obtain

I aunju, = ( (<*h)unjU,.
J*Q, JdQ

oo, and also using Th

( oPrijUj = (a, u)i
•'an

' aa
•'an ' '

where, again because u ■ n = 0 on 9fl,

f °ijnjui= f L, u■ Q-E.D.
JdU •'90

4. In this and the following section, we shall study problem (P.l) in the case VD = 9fi,

= 0, that is, we study the Dirichlet problem for u. More precisely, in this section we

shall give an existence theorem for problem (P.2) and in the next section we shall see how

this yields a (necessarily weak) solution to problem (P.l).

We shall need the following assumptions on the given state of stress a: there exists an

open set £2, D D Q such that a is defined also in Q,, a satisfies hypotheses (H.l.l) in fl,,

and the distributions <j(- ■ ■ are L? functions in S2, (hence we have also a E 2(fl,)).

Moreover, we shall assume that

(H.4.1) there exists a stress field a E 2(S2) such that

(a,(p)B = (o,<p)a for all <p E P(Q) (4.1)

and that lla^ll^ < JlK.

Notice that (4.1) implies in particular that atj j — alf J in £2 in the sense of distributions

and that

(®, ")an = <«, ">aa for all m E />(S2). (4.1)'

Formula (4.1)' is just a weak formulation of the condition

ajJnJ = aijnj on 9£2.

In conclusion, formula (4.1) says that a and a are in equilibrium with the same system of

forces.

If (H.4.1) holds, we say that the load state of the body associated with a is safe.

Remark 4.1. Obviously, the load state is safe if Ha^ll^ < \flK, but, in such a case, the

body would behave in a purely elastic way. It seems to be natural, however, to have an

elasto-plastic stress state a (aD(x) = y/2 K in some part of fi) which is in equilibrium with

a safe load (compare also with Theorem 1.1 in [2]).

We shall consider the following problem (later we shall take into account also the body

forces /):
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Problem (P.2). Given a stress field a G 2(12,) satisfying (H.l.l) in 12, and (H.4.1), and

given a function g 6 P,(S1,) (1 //^(fi,), find a minimum point for the functional

^i(") = f (^v ")2 dx + [if | eD(u) |2 dx
L Ja Ja

among the functions u G P0(S2) such that

u = g DC2-a.e. in (x e 312 | | L,(x) |< /£},

u-n-g-n\ (4.2)

tD(g — u) — [(g — «)• L] <jc = 0 >DC2-a.e. on 312.

[(g- u)-L]~ = 0 j

Notice that the two traces g+ and g~ of g on coincide because g E so that

we can talk of the trace of g on 312.

Remark 4.2. A remark is in order about the fact that both a and g are required to be

given in a larger set than S2. Of course, one would like to be able to work without this

assumption and this could be accomplished, for example, if one had suitable extension

theorems for functions of 2(12) and of ^(12) (at least in the case of a smooth 3S2). It

should be noticed, however, that, if a and g are Lipschitz-continuous functions in 12, they

can be extended as required. Notice also that for the Neumann problem (see Sec. 6), we

shall require only that a be defined in 12.

To show the existence of a solution to Problem (P.2), we shall use the direct method of

calculus of variations; and we shall need suitable compactness, coerciveness, semicontinu-

ity results which we shall prove first.

Set U = {u E P„(12) | u satisfies conditions (4.2)}.

Theorem 4.1. Given a stress field a E 2(12,) satisfying (H.l.l) in 12, and (H.4.1), and

given a function g G /><l(121), there exist two positive numbers c and M, depending on a, g,

12, K, K0, ju (but not on u) such that

£,(«) > clli/ll^nj - M

for all u E U. We say then that £,(«) is coercive on U.

Proof. Take u E JJ\ then, by Theorem 3.4, we have

(°. g - ")aa = f (g ~ u)-L,\
JdQ

by Theorem 2.1 we have

( (g~u) Lt = Kj \g~u\ ■
Jm •'aa

and by Theorem 3.3, recalling Definition 1.4, we get

(a,u)a= foD-eD(u)+ f[aD-ED(u)] ++\f traceadivji.
Jn j jd.
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It follows that

£i(") = -y /(div u)2 + p.J \eD(u)\2 - (<r, ti)a - (a, g - u)

+ 1

f aD • eD(u) + f[oD-eD(u)] +
Ja

4 f trace a div w + K [ I £ — el
3 Ja L o15 * 1•'3J2

where, by the safe load assumption (H.4.1) and by Theorems 3.1, 3.2, we have

|(ff, ii)a| =|(a, ii)0| < (1 — C0){2K J | e°(«) | + j 11 trace all Li lldiv u || Li,

l(a, W>3S2| =|(«, W>3S2| < (1 - C0)K( |g - u | d%2,

where 0 < C0 < 1. Now, by the Holder inequality and recalling that

we obtain

E\(*) > fy / (div ti)2 + J J \eD(ii)\2 + <J2KC0[ \ eD(u) \
4 Ja 4 Ja Ja

+ C0Kf \u-g\d%2-Mx(K0tlL,K,eL,g,to)

and, using the Poincare inequality (Theorem 1.2) to estimate ||w||Li, the theorem follows.

Q.E.D.
Remark 4.3. If E{(u) is coercive on U and ll/ll^ is sufficiently small, then the

functional

£i(") _ jja

is also coercive on U. In fact, one has

//
|| / || ^3 || li || ^ C || / || ^3 || li || ^(S2)

for all u €E

Definition. 4.1. We shall say that a sequence of functions uhEP0($l) converges

Pa(£2)-weakly to u £ Pa(&) if

uh-*u in L'(fl) and weakly in L3/2(fl),

div iih -» div u weakly in L2(fl),

eD(")x weakly in L2(S2),

\aD • eD{uh)\ ->[orD • eD(w)] weakly as measures in £2,
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and if there exist a non-negative function y(x) G L2(ft) and a positive measure /x, in ft

such that

[afl - e/'(ti/,)] -» y weakly in L2(ft),

[aD • eD(tiA)]+ -» ni weakly as measures in ft.

Remark 4.4. If uh -» u /"„( ft)-weakly, then

y(x) >\oD ■ eD(ti)] (x) a.e. in ft.

In fact, if we consider the positive measure n2(B) = fB y(x) dx, we have

[oD-eD(u)]+ -\oD-eD(u)}~ = lii - #i2;

hence [aD ■ eD{ii)]~ < /x2 and the same holds for the densities.

Now we shall give a compactness theorem.

Theorem 4.2. Let uh £ ^(B) be such that

II uh || P^(a) c < + oo for all h G I^J;

then there exists a subsequence uh that converges Pa(£l)-weakly to some u G Po(0).

Proof. If the sequence uh is bounded in Pa(Q), it is bounded also in BD(ft) and, by

Theorem 1.3, possibly taking a subsequence, we have

uh -» u in L'(ft)

for some function u G BD(ft). From this it follows in particular that

f uh ■ <jp -» f u • <p for all <p G Q°(ft,R3),
•'o Ja

Jxj/div uh -» J\pdiv m for all \p G C0°°(ft),

and, as the norms HwJILv2(n) and ||div uh || L2(Sl) are bounded, we have u G L3/2(ft),

div u G L2(ft) and

uh -> u weakly in L3/2(ft),

div uh -» div u weakly in L2(ft).

In a similar way, we get that ||e(ii)|| Li(A) < + oo and that

e(uh)-> e(u) weakly in L2( A).

Now we want to prove that

\oD • eD(uA)] -*\od ■ eD(u)] weakly as measures in ft. (4.4)

In order to do that, consider the measures e°(uh) |c defined as

feD(uh)\c= f eD{uh) for all Borel sets B C ft
jb JBnc
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(recall the definition of. the sets C and A in Sec. 1) and let us prove that

JgeD(uh) lc -*(g-eD(") \c for all g G C0°(S2, R9). (4.5)
•'a Jsi

Take a function g G C0°(£2, R9), take a number 6 > 0, and let G C0°(fi) be such that

>P(x) — 1 for all x E C,

I \tg\2<82.
J A

Then we have

|c = f(*gY*D(*)

(and similarly for all uh) so that

/g-eD("h) |c~ f g£°(")
Ja Ja

< f (4>g)-£D(uh) ~/(^)"eD(") +|/(^)-£0("a) _ f(tg)eD(u)
£2 £2 I /4

(4.6)

where the first term on the right side of (4.6) goes to zero for h -» oo and the last term is

less than

6 • ( sup IIe/3()II o-(A) + ll£D(«)ll l2(A)\ ^ 25c.
v h '

Taking the limit of both sides in (4.6) for h -» oo we get (4.5). Formula (4.4) follows now

from (4.5) just by looking up definitions.

By (4.4) we get

£°(e°(«)-L weakly as measures in £2

and, since

II eD( "a)x II L2(f!) ̂ II "/I II P„(S2) ^ c>

we also get

e°(^h)±~* e°(^)± weakly in L2(fl).

Finally, as we also have

jJ_aD-eD(uh)]+ < \f2Kc, J^\oD ■ eD(wj] <flKc,

again possibly taking a subsequence, we have

[o/>-eD(iij]+ -ji, ,, . Q
weakly as measures in 11

[aD-eD(uh)\ -> (i2

where ju( and jn2 are positive measures of finite mass in £2, and one can find a non-negative
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function y(x) G L2(12) such that /x2(5) = fB y(x) dx for all Borel subset B of 12 and

\aD -» y weakly in L2( 12). Q.E.D.

Now we are going to prove a closure theorem.

Theorem 4.3. Let a and g be as in Theorem 4.1. Let uh E U,u G PJ&) be such that

uh~* u P0( 12)-weakly,

II uh || P^a) < c < + oo for all A G N;

then u E U, i.e. u satisfies the boundary conditions (4.2).

Proof. Consider the functions vh defined by

_ juh in 12,

h jg inl2,\12.

By Theorem 2.3 we know that i>h E P0( 12,) for all h, and we have

II vh II < II uh II /.^n) + II gll I e°(vh) I

where

/ I e°(^h) l= ~r j I "a — #1 ^ C°St(ll II BD(J2) + II^IIbD(O))-
Jda /2 Jsa

Now, by Theorem 4.2, there is a subsequence i>h that converges P0( 12,)-weakly to some

function v G Pa(S2,) and it must be

v =
u in 12,

g in 12,\12.

Hence, by Theorem 2.1, we see that it satisfies conditions (4.2). Q.E.D.

Last, we give a semicontinuity result.

Theorem 4.4. The function E\(ii) is sequentially lower-semicontinuous with respect to the

12)-weak convergence.

Proof. Recall that

£i(") = ~2 / ")2 dx + nj | efl(w)x|2 dx

+ vf^{[°D(x)}2 dx. (4.7)

By well-known theorems, the first two terms on the right side of (4.7) are lower-semicon-

tinuous with respect to the weak convergence in L2(12) of div uh and eD(uh)± . For the

same theorems we also have, for any sequence un-> u P0( 12)-weakly:

minlim f ([aD • e°(MA)l (x)}2 dx > f |y(x)|1 dx
h—cc J a
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where, by Remark 4.3,

J\y(x)\2dx> J |[o0-e0(ti)] (x)}2 dx. Q.E.D.

Now we are ready to prove our existence theorem for Problem (P.2).

Theorem 4.5. Given a and g as in Problem (P.2), there exists a minimum of the functional

E,(u) among the vector fields u G Pa( 12) that satisfy the boundary condition (4.2).

Proof. We have

— M < inf £,(ti>) <£,(£)<+oo.
vSU

Take a sequence uh G U such that

We have, by Theorem 4.1,

lim E\(uh) = inf £](«;).
h— 00 veu

< E\( "h) + M < cost < +00

and by Theorem 4.2, possibly taking a subsequence, we get

uh -» u Pa(fi)-weakly

for some u G Pa(il). By Theorem 4.3 we know that u E U and by Theorem 4.4 we obtain

£,(«) = inf £1(1;). Q.E.D.
veu

Obviously, one also has the following result.

Theorem 4.6. Under the conditions of Theorem 4.5, if II / II Li(Sl) is sufficiently small, there

exists in V a minimum point for the functional

£,(m) — J fii dx.

5. In this section we shall obtain a weak solution to Problem (P.l) (in the case that

rD = 3S2) from every solution to Problem (P.2).

Let u be a solution to Problem (P.2) and set

6° = 2 \ieD{u),

trace a = 3AT0div u,

(5'"

It is clear that the constitutive laws for the rates are satisfied in the sense that

e(") = Trlr" trace 61 + + Xa°
9 K0 2/i

where A is a positive measure which is zero in the set {x G | | oD(x) |< /IK} and is

supported by the set C = {x G | | oD(x) \ — J2K}\ moreover, in the set C, A is the
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positive part of the measure aD ■ eD(u)\ hence \ is concentrated only in the set where

oD ■ eD(u) > 0, as was required in (0.4). Obviously we have also

0 (5.2)

in the set C, and we remark that 6® ■ a'- = 0 where \ > 0.

Actually, dD is not necessarily defined for all x G 12 and (5.2) makes sense only almost

everywhere in 12, but we can redefine 6° in a set of Lebesgue measure zero in order to

have (5.2) true for all x G C.

To show that (u, a, \) is indeed a solution to Problem (P.l), we still have to check the

equilibrium condition (0.1) (we do not have (0.2) since is empty). To do that we shall

use the Euler equation of the functional £,(ti):

— E,(u + t(p) |J=0 = 0

for all <p G P„(H) such that

(p = 0 3C2-a.e. in {x G 912 | | L,(x) |< A"),

(p ■ n = 0, [<p L] =0, rD(<p ) — [<p ■ L\aD = 0 3C2-a.e. in 912.

We shall only need to consider (5.3) in the case that <p is also in C'(S2).

We have

^rE\(u + t<p) I 0 = K0f div ii div <p dx + 2 [if eD(u)±eD(<p) dx
dt Jq jq

+ llJt (eD^ + ^"P))] ^^)}2^ l'=0

where the last term is equal to

2/1/o[.0-«»(4)]-W^{[.».(.°(i) + «»(,p))]-(«)} |,.0&

= -2iij^[oD-£D(u)y(x)(oD-eD(<p))dx (5.4)

because, if [aD ■ eD(u)]~ (x) > 0, we have, for all t in a neighborhood of zero,

\aD-eD(u) + taD-eD(cp)] (x) = [aD ■ eD( it)] ~ (x) - t(oD ■ eD(<p))

while, if [aD ■ e°(w)]_ (x) = 0, we are not interested in the value of the derivative in (5.4),

as it is multiplied by zero.

Concluding, we have that the Euler equation for the functional £,(«) is, for all

admissible <j> in C'(12),

K0f div it div <p + 2/xf eD(it)±eD((p) - 2/x f [aD ■ eD{it)]~ -^~j-eD(<p) = 0
Ja Ja Ja 2K2

and that we can also write

f (AT0 div it + 2/ieD(u))e((p) = fae(<p) = 0. (5.5)
Jo. Jq.
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Now, as (5.5) holds in particular for <p E C<f(B) we have

Ojjj = 0 in the sense of distributions in S2

which is the equilibrium condition (0.1) in our case, i.e. with / = 0. Obviously, if we had

taken a minimum u of the functional

E,(u) — f fu dx
J o

we would have obtained in the same way that 6ij.J + / = 0 in the sense of distributions in

fl.

6. In this section we shall consider Problem (P.l) in the case I\, = 3S2, VD = 0, i.e. in

the case of Neumann boundary conditions. As we did for the Dirichlet problem, first we

shall find a rate of displacement u that minimizes a suitable energy functional E2(u), then

we shall obtain from u a weak solution to Problem (P.l).

We assume that

/GL3(S2), Fer(fi);

we assume also that a E 2(S2), with aD e C°(fl), is a given stress state satisfying the safe

load condition (H.4.1), and we set

E2(u) — f (div m)2 dx + ju f I eD(u) 12 dx — f fu dx — f Fu d%2
2 Jq Ja Ja

Define a linear functional T0: BD(12) -> 5 = {a A x + b \ a, b £ R3} as follows [5]:

take a fixed point x0 E £2 and a positive number R < dist(x0, 3fl), then set

j 3
[(7»(x)], = -r 2 {pij(u) ~ Pji(u))(x - *0)/ + Vj(u)

2,=,

where

= ui(y)dy.
4ttR> jBr(xo)

4 f
Pu(u)=~^ My)-Vi(u))dy

VR J{y&BR(xa)\(y-x0)ej>0)

and {0,, d2, S3} is an orthonormal basis of IR3.

Notice that lirowll^xRj < C||m||li(B).

Now consider the following

Problem (P.3). Minimize the functional E2(u) among the functions u G Pa( S) such that

T0(u) = 0.

In order to find a solution to Problem (P.3), we have to prove the coerciveness and the

semicontinuity of E2(u) and, to do that, we have to impose some requirements on /, F. We

shall give a sufficient and almost necessary condition on /, F in order for Problem (P.3) to

have a solution.

Let us begin with a few definitions.
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9Definition 6.1. We shall say that a Borel function a: 12 -> R , a = {a,- ■} belongs to the

space 2a(fi) if

ctij(x) = <Xjj(x) f°r all x e.

f I d(x) 11 dx < +oo,

aD(x)- oD(x) < 0 for all * G £2 such that | oD(x) |= JlK.

Definition 6.2. We define a function

X ->[ — oo, + oo)

as

where

(a, <p )q = -r f trace adiv<p dx + f a • eD(<p) dx
3 Jsi Ja

+ J otD-[oD-eD(<p)] +oD (6.1)
Ja

/^•[aD-e0((p)] + aD= /H(«B.aD)[afl-e°(<p)]+ (6.2)

is defined as the integral with respect to the positive Radon measure [aD ■ eD(<p)]+ of the

Borel function (a° ■ oD), which is non-positive on the support of [a° • eD(<j>)]+ .

Definition 6.3. We shall say that a G 2„(fi) is (/, F)-admissible if

(d,«p)a= f fo + f Ftp for all <j> e P„(&). (6.3)
•'8 JdQ

Notice that (6.3) is just a weak formulation of

&ijj+fi = ° infi.

«,7 «, — Ft on 8J2.

If there exists a (/, / )-admissible stress rate a, then we can estimate the force terms in

the functional E2(u).

Lemma 6.1. If a G 2a(£2) is (/, F)-admissible, we have, for all u G PJtt),

Htrace a|| Li ||div tiII Li + ||aD|| Li|| eD(u)\\ Li   ((aD • a£,)[a£> • e°(«)] +
^ 2K

> — ffu — f Fu> — || trace all Li lldiv u\\ — II aD || Li ||eD(w)|| L2.
Ja 3

Proof. Obvious.

Now we have a coercivity result for E2{u).

Theorem 6.1. If there exists a (/, F)-admissible stress rate field a then the functional

E2(u) is coercive on Pa(S2) fl {T0u = 0}. More precisely, there exist two positive numbers
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c0, M (depending on ju, K, K0, a, a, but not on u) such that

E2(u) > — M for all u G Pa(S2) with r0M = 0. (6.4)

Proof. By Theorem 3.3 we have

— (a,ii)j2+ f aD ■ eD(u) + ^ trace a div it = 0. (6.5)

Adding (6.5) to E2(u), arguing as in the proof of Theorem 4.1, and taking into account

Lemma 6.1 we get

E2(u) > CqIJ (div w)2 dx + J \ eD(u) |2 dx + y | c(li) |1 — Mx
12 12 12 J

and, recalling Theorem 1.1, as T0u — 0, we get (6.4). Q.E.D.

Remark 6.1. Notice that we didn't have to assume that a is defined in an open set

a, D D 12.

Remark 6.2. It is also possible to prove (6.4) under the condition that || f\\Li, l|F||L»

are sufficiently small.

We have already proved (see Theorem 4.4) the lower-semicontinuity of the first two

terms of the functional E2{u) and we only need to see what happens for the force terms.

Theorem 6.2. If there exists a (/, F)-admissible stress rate field a such that

aD(x)-oD(x) = 0 for all x £ £2 with | oD(x) \ = \jl K (6-6)

then the functional E2(u) is sequentially lower semicontinuous with respect to the

P„(fi)-weak convergence.

Proof. Take uh, it G Pa(tt) such that uh -> it ^(fi^weakly. By (6.1), (6.3) and (6.6) we

have, for all h E N,

f Fuh = - \ f traced div uh - (dD-eD(uh)±
JQ. J?\Q. J JD, J

J o
+.1

IK2-

where the last term is zero because aD oD is zero in the support of [aD■ eD{uh)\. Now,

taking the limit for h -> oo, we get

lim J — f fuh — f Fuh [ > f trace a div it — f aD ■ eD(u)±
oo I Jn Jo. I 3 Jq Jn

(a, u) q = — f fu — f
Jo. Jx

Fu

and, taking into account also Theorem 4.4, our theorem is proved. Q.E.D.

Here is the existence theorem for Problem (P.3).

Theorem 6.3. If there exists a (/, F)-admissible stress rate ri such that (6.6) holds (and

under the hypotheses made on /, F, a at the beginning of this section), then there exists a
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minimum point for the functional E2{u) among the functions « E F„(Q) such that

T0u = 0.

Proof. Notice that the functional E2 is not identically +00. Let uh be a minimizing

sequence. Then: uh is bounded in Pa(&) by Theorem 6.1; there is a subsequence uh that

converges Pa(Q)-weakly to some it G PJtt) by Theorem 4.2; as T0uh = 0 for all h we also

have T0u = 0, and u is a minimum point for E2 by Theorem 6.2. Q.E.D.

For any solution u to Problem (P.3), define d and X as in (5.1). Again, we have that the

constitutive laws for the rates are satisfied by definition, and we have to see what happens

for the equilibrium conditions. In this case, we have that the Euler equation (see Sec. 5) is

f (#0div ul + 2neD(u))e((p) — f f<p — f F<p = 0 (6.7)
Ja Jaa

for all ij) G P„(S!) such that T0<p = 0; hence we have

f de(<p) - f f[<p - T0<p ] - / F\y - T0<p ] = 0
Ja Ju •'an

for all (jp G Pa{tt), where by (6.3) and (6.1)

f/• T0<p + f F-Ttf>=(a,Ttf>ya = 0

as e(T0<p) = 0. In conclusion, we have that (6.7) holds for all <p E Pa(Q) and, taking

<p e Co°(S2 ), we have that

Oijj+fi = 0 (6-8)

in 12 in the sense of distributions, while formula (6.7) for <p G C°°(fl) is a weak

formulation of

djjrij = Ft on 3fl.

Remark 6.3. Obviously, d is a (/, Fj-admissible stress rate field; hence a necessary

condition to have a solution to Problem (P.3) is that there exist a (/, F)-admissible stress

rate field. We have seen that this condition is also sufficient, if we also assume (6.6). It

would be nicer if one could prove the existence theorem without using (6.6). It should be

noted, however, that condition (6.6) also is a natural one, in fact, this condition is

necessary on (df/dt)(t), (dF/dt)(t) at each instant of time, if one wants to have a solution

{1/(0,0(0} to ^e quasi-static problem such that a(t) is a differentiable function of t.

We end this section by showing that the stress rate field d minimizes a suitable

complementary energy functional, among the (/, /^-admissible stress rate fields.

Theorem 6.4. Let u be a solution to problem (P.3), let d be defined as in (5.1) and set

= 9^(traCed)2 + 2^ '""I2'
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then we have

( *(*)< f *(«)Ja

for all (/, F)-admissible stress rate fields a.

Proof. By the convexity of the function ¥ and by (5.1), we get

f'i'(d) — f ^(a) > 2 f (e(u) — XaD)(a — a)
Ja Ja Jsi

and the theorem follows by recalling that we have

/ e(u)a = I e(u)a

because both a and d are (/, F)-admissible; we have

jf(d a°)[aD-ec(ti)] + = 0

because a ■ aD = 0 where [aD ■ eD(«)]+ is non-zero, and we have

-j (d -0D)[gD ■£D{il)Y >0

because aD ■ a < 0 where | aD(x) | = yJlK. Q.E.D.
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