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I. Introduction. A slender column is subject to an axial compressive load P which may

cause it to buckle. We assume the column is not twisted so that in the buckled state it will

lie in a plane. The governing differential equations for the displacement w(x) from its

straight equilibrium position is [13, 16]

+ [El(x)w"(x)\" + Pw"(x) = 0. (1)

Here s is distance measrued from one end of the column, E is the modulus of elasticity

and I(x) is the moment of inertia of the cross section of the column about a line passing

through its centroid but perpendicular to the plane of buckling. We assume that E is

constant but that / is a function of x. We will however assume that all cross sections are

similar. This implies that

l(x) = KA2(x) (2)

where A(x) is the area of the cross section and K is a constant which depends only on the

particular shape of the cross section. The volume v of the column is given by

v = f A(x) dx. (3)
Jo

An interesting problem with a long history [10, 3, 16, 9, 15, 13, 14] is to determine the

shape of a column having given volume v and a buckling load as large as possible. The

major purpose of this work is to apply the theory of rearrangements as given by Duff [5],

Schwarz [12], Polya and Szego [11] and Barnes [1] to the column problem. In particular we

will show how to " rearrange" a given column to obtain a larger or smaller buckling load.

These results are summarized in Theorem II below and an example is sketched in Figs. 5

and 6.

II. Boundary conditions and differential equations. The boundary conditions we will

consider are of the form (see [13, 16])

clamped at x = 0 and at x = L

w(0) = w'(0) = w(L) = w'{L) = 0, ™
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clamped at x = 0 and pinned at x — L

w(0) = >^'(0) = w(L) = w"(L) — 0,

pinned atx = 0 and aXx = L

w(0) = w"(0) = w(L) = w"(L) = 0, ' '

clamped at x = 0 and free at x = L

w(0) = w'(0) = EI(L)w"(L) = Pw'(L) -[EI(L)w"(L)]' = 0.

Following Tadjbakhsh and Keller [15] we introduce the bending moment y(x) defined by

jy(x) = -El(x)w"(x). (8)

Equation (1) becomes

Using (8) we obtain

where

y" = Pw" (9)

+ XA'2(x)y = 0 (10)

P = XEK. (11)

Integrating (9) twice from 0 to x we find, after setting x — L, that

y'(L) - y'(0) = P[w'(L) - w'(0)] (12)

and

y(L)-y(0) - Ly'(0) = P[w(L) - w(0) - Lw'(0)]. (13)

Combining (12) and (13) with (4)-(8) we find equivalent boundary conditions on y in each

of the four cases:

clamped at x = 0 and at x = L :

/(0) =y'(L),y(L) - y(0) = Ly'(L), (14)

clamped at x = 0 and pinned at x — L

>>(0) + L/(0) =y(L) =0, (15)

pinned at x = 0 and at x — L

y(0)=y(L) = 0, (16)

clamped at x = 0 and free at x = L
y'(0)=y(L)=0. (1?)

The differential equation (10) together with one set of boundary conditions (14), (15),

(16) or (17) forms a self adjoint eigenvalue problem for the determination of X which then

determines P by (11). Although there will be an infinite sequence of eigenvalues Xn > 0,

the critical buckling load P will be determined using the smallest positive eigenvalue. One

must note, however, that sometimes the problem of finding y and X is not equivalent to the

problem of finding w and P. In fact X = 0 is an eigenvalue of the system (10), (15) but

P = 0 is not an eigenvalue of the system (1), (5). The eigenfunction of (10), (15)

corresponding to X = 0 is y{x) = L — x. In this case the critical buckling load must be
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determined using (11) and the second eigenvalue, say A2, of system (10), (15).

In a similar way A — 0 is an eigenvalue of multiplicity 2 of system (10), (14). The two

eigenfunctions are of the form y = mx + b. The critical buckling load must be determined

using (11) and the third eigenvalue, say \3, of system (10), (14). It is also possible for the

higher eigenvalues, A3, A4, etc., to be of multiplicity 2 in this case.

We summarize these observations in the following theorem:

Theorem I. A = 0 is an eigenvalue of multiplicity 2 for (10), (14).

A = 0 is an eigenvalue of multiplicity 1 for (10), (15).

A = 0 is not an eigenvalue of (10) subject to either (16) or (17).

P — 0 is never an eigenvalue of (1) subject to any of the boundary conditions (4), (5),

(6) or (7).

A nonzero number A is an eigenvalue of (10) subject to any of the boundary conditions

(14), (15), (16) or (17) if and only if P = XEK is an eigenvalue of (1) subject to the

corresponding boundary conditions (4), (5), (6) or (7). In any case the eigenfunctionsy(x)

and w(x) are related by

y(x) — j(0) — .xy'(O) = P[w(x) — w(0) — xw'( 0)].

Most of this theorem has already been proved. We just remark that the last equation is

obtained by integrating (9) twice from 0 to x. Then if P ^ 0 we can solve for w( x) terms

of^(x) which provides the equivalence of A and P in the nonzero case.

III. Rearrangements of columns. Two columns having similar cross sectional shapes will

be called equimeasurable if the corresponding area functions, say At(x) and A2(x), are

equimeasurable. That is, for all / > 0

measure of {x | Ax(x) > t) = measure of {x \ A2(x) > t}.

In this connection see [7, p. 276]. If two columns are equimeasurable then both will have

the same amount of mass located within any given distance from the axis of the column,

but they may have quite different overall shapes. In fact equimeasurability will be

maintained if mass is moved parallel to the axis of the column in any manner which yields

a similar cross sectional shape.

The problem which we consider in this work can now be stated in terms of equimea-

surability as follows:

Given a column having area function A(x), find an equimeasurable column having similar

cross sectional shape for which the critical buckling load is as large as possible and find

also an equimeasurable column for which the critical buckling load is as small as possible.

For some types of boundary conditions this problem has been solved by Schwarz [12]

using certain rearrangements of functions which we now recall (see also [1, 5]).

Given a function f(x) defined on an interval / = [0, L], we define some rearrangements

of f(x) which we denote by f+ (x),f_(x),f±n(x),f_n(x) and f_„(x) as follows:

(I) The functions f,f+ ,/_,/+„ and f_n are all equimeasurable on J,
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(II)/+ is increasing and /_ is decreasing on J,

(III)/± n and/_„ are periodic on J with period L/n,

(IV)/±„ andf_n are symmetric on 0 x L/n,

f*„[L(2nrl-x]=f±n[L(2n)-i+x]

for all x with 0 < x < L/2n.

(V) f±n(x) is decreasing for 0 < x < L/2n,

(VI) f_„(x) and /_„(*) are increasing for 0 =£ x < L/2n,

(VII) f_„(x) is only defined if df/dx is piecewise continuous and in this case | df/dx |

and | df_n/dx | are equimeasurable.

(VIII) f_„(x) is concave on 0 < x < L/n,

(IX)/_„(0) = L„(L/n) — 0.
Basic properties of rearrangements are well known and may be collected from several

sources (in particular [1, 5, 11, 12]). We will expound a few of the more important

properties necessary for understanding the application to columns.

Give f{x) defined on 0 < x < L then,/_(x) its rearrangement into decreasing order, is a

decreasing function for which f(x) and f_(x) are equimeasurable, that is for all t 5® 0,

measure (x |/(x) > t) = measure {x |/_(x) > f}.

The rearrangement into increasing order f+(x) can be defined by

/+(*) ~fSL ~ ■*)•

We will illustrate the various rearrangements of f(x) using an example consisting of a

piecewise linear function having four segments whose graph is in Fig. 1. This function f(x)

is defined for 0 « x < 10 by

8/10(13-2*), 4 <*=£13/2,
(18)/(*) =

We see that f(x) is continuous since/(4 ± 0) = /(9 ± 0) = 4 and /(13/2 ± 0) = 0. It is

8/10 (2*-13), 13/2 9,

4(10 -x), 9<x<10.
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easy to see that the measure of the set {x | f(x) > t} is a linear function of t. It follows

that f+ (x) = (4/\0)x and f_(x) — (4/10)(10 — x). Graphs of /+ (x) and f_(x) are drawn

as dotted lines in Fig. 2 and 3. From the definition of f±„(x) it follows that

f±n(x)=fm(2nx) for 0 < * *£ L/2n. (19)

Indeed (19) holds for any function /( jc) not only for our example. Using (19) and the

symmetry and periodicity properties III and IV it is easy to draw the graphs of f±i(x) and

these are given in Figs. 2 and 3.

Fig. 3.

In a similar fashion the uniformly tapered column is rearranged and graphed in Figs. 5

and 6.

The functions /_2(x) involve more difficult manipulation but the basic idea is quite

simple. Starting with a function f(x) on 0 < x < L which satisfies/(0) = /(jc,) = f{L) = 0

and f(ax) = /(a2) where 0 < a, < jc, < a2 < L we first compute | df/dx \ . We next

rearrange this function and then integrate it to obtain a function which we compare to the

original f(x). It turns out that a useful way to do this is to define f_2(x) by

fX
f-i(x) = / | df/dx |+2 dx.

J(\
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As Theorem 1 below shows it follows that f_2(x) > f_2(x). Now | df/dx \+2 has its largest

values located at x = 0, L/2 and L. Thus the geometrical meaning of Theorem 1 is that to

make a function grow most rapidly we put the large values of its derivative first. In terms

of our example we see

f 1,
| df/dx |= j 8/5, 4<x<9,

[4, 9<x<10.

Thus we see, for 0 < x < 10/4, that

\ df/dx \+2 --

4, 0<x<l/4,

8/5, 1/4<jc<6/4,

1, 6/4 10/4.

Integrating this defines f_2(x) for 0 < x < 10/4. Periodicity and symmetry are used to

define f_2(x) for x 3s 10/4. Its graph is drawn in Fig. 4 as a solid line and compared with

f_2(x) which is the dotted line. In general it follows that,

Theorem II. Suppose f(x) has a piecewise continuous derivative on J and has n + 1 zeros

Xj; G J, 0 = x0 < xx < x2 < • ■ • < x„ = L. Further suppose that in each interval *,]

that f{x) increases to its maximum value at x = «, and decreases in [a,, x(] and that f(x)

has the same maximum value in each interval so that

/(«,)=/(«/) v'. j-

Then

/.„(*) >/_„(*)■

For a proof of this result see [1],

Fig. 4.

There are many integral inequalities dealing with rearrangements. One of the most

important (given in [7, p. 278]) is

/ fgdx< J f+g+ dx.
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Fig. 5. The shape of a weaker column.

Fig. 6. The shape of a stronger column.

An example of Theorem II. A uniformly tapered column, clamped at both ends (indicated by the dotted

lines ) can be arranged to give either a stronger or weaker column.

Now /, f+ and /_„ are all equimeasurable but /_„ is periodic. Similarly g_„ is periodic and

the product matches the large values of / with the large values of g, just like f+ g+

does. It follows that

jjgdx <Jjf+g+ dx= jj-ng-ndx. (20)

A formal proof of this can be given based on (19).

Using the definition of equimeasurability and rearrangement it is not difficult to show

that

if Q{x) =[^(*)]~2 then Q±„(x) — [-^*n(x)]2. (21)

There are a number of other interesting facts involving rearrangements but these will be

sufficient for our purposes. We now return to the column problem.

If we consider a column which is pinned at both ends then the buckling load is

determined by (10), (16). It follows from the results of Schwarz [12] and (21) that the

buckling load of a pinned column having area function A(x) is bounded above by the

buckling load of an equimeasurable column having area function A_^x) and it is bounded

below by the buckling load of an equimeasurable column having area function A + ,(x).

In the same way it follows that the buckling load of a column having area function A(x)

which is clamped at x — 0 and free at x = L is bounded above by that of an equimeasura-

ble column having area function A_(x) and below by one having area function A + (x).

We now give a corresponding result in case the column is clamped at both ends.
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Theorem III. The buckling load of a column clamped at both ends and having area

function A(x) is bounded above by the buckling load of an equimeasurable column

having area function A+2(x).

It is bounded below by the buckling load of an equimeasurable column having area

function A_2(x).

We postpone the proof of Theorem III until Sec. V.

Other boundary conditions may also be considered. In particular the case of a column

clamped at x = 0 and pinned at x = L is of interest. However the results [15] indicate that

the extremal functions for the second eigenvalue will not have the symmetry properties

which might be expected. It appears however that one might be able to show that a point

x = £ and a function, call it A^(x), exist which is an extremal of the second eigenvalue and

which is symmetric about x = £ and x = (L + £)/2. In [15] the value of £ used was

£ = 0.22617L. However in our case we must expect that even if such a function A^(x)

exists that £ will depend on the form of the function A(x).

All of our results may be easily generalized to the equation

y" + A A~a(x)y = 0.

Various values of a other than 2 are of interest [13, p. 136]. In particular Theorem III is

valid for any a > 0.

Tadjbakhsh and Keller [15, p. 163] give a proof that the stationary value is a maximum.

That proof however fails in case the column is clamped at both ends or in case it is

clamped at one end and pinned at the other end. In these cases A = 0 is the smallest

eigenvalue and the variational methods used in the proof are invalid. It may be possible to

adapt their method to deal with the higher eigenvalues but it is not at all clear how such a

task might proceed.

On the other hand Theorem III provides (at least in the clamped clamped cased) an

alternative proof since it allows us to restrict our search for the maximum buckling load to

columns which are symmetric about x = L/2 and also about x — L/4 and jc = 3L/4.

The corresponding eigenfunction (even if the eigenvalue has multiplicity 2) may be taken

to satisfy the boundary conditions

U'( 0) = U(L/4) = U'(L/2) = U(3L/4) = U'{L) = 0.

This allows us to consider the clamped symmetric column as being composed of 4 distinct

congruent columns each of which is clamped at one end and free at the other end. The

methods used in [15] are valid for such columns and the proof is complete.

In addition the work by Earl R. Barnes [2] gives a general method for finding the

maximum of the first eigenvalue X, of equation 10 subject to various kinds of constraints

on A(x). It seems to be difficult to generalize his method to treat the higher eigenvalues

A2, A3, etc. Now A, = 0 for the column which is clamped at one end and either clamped

or pinned at the other end. Thus the methods [2] do not apply to the buckling problem in

these cases. However a combination of our Theorem II with his work [2, Thm. 4.2] shows

that the shape of the strongest column clamped at both ends and satisfying a < A(x) < b

is symmetric about x = L/4, L/2 and 3L/4. In each of the four intervals [0, L/4],

[L/4, L/2], [L/2,3L/4], [3L/4, L] it has the shape of the strongest clamped free column
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as determined in [2], The determination of the strongest column clamped at one end and

pinned at the other end satisfying a < A(x) < b must still be regarded as an unsolved

problem.

V. Proof of Theorem III. In order to indicate their dependence on the area function

A(x) we denote the «th eigenvalue A„ of (10), (14) by Xn(A). Using this notation, Theorem

III will follow (by letting n = 2) from the more general theorem:

Theorem IV. Let A„(t4) be the nth eigenvalue of (10), (14). Then

We will give a proof of the upper bound on A„+1(yl) for all n = 1,2,3, In the case

of the lower bound Atl+1(/() > An+1(/1_„) we will give a proof only in the case n = 2. I

have constructed a proof valid for all n but it is much more difficult than the one given

here for n = 2 and will not be included since the higher eigenvalues have no physical

significance in this context.

We will first prove Xn+x{A+n) 3= A„f,(/!). In addition to the results [12] we will need

the following interlacing theorem due to Ettlinger [6], See also Ince [8, pp. 252-253], Let

Hn(A)be the «th eigenvalue of the system

U" + iu.A-2(x)U = 0, U'( 0) = U'(L) = 0.

Then there are exactly 4 possible ways of interlacing the eigenvalues Xn(A) of (10), (14)

and H„(A):

(la) < n2 < \2 < n3 < \3 < n4 < \4 < • • •,

(ib)\l<nl<\2<n2<X3<fi3^X4<n4< ■■■,

(Ha) A, < /x, < A2 < /i2 < X3 < ij.3 <\4 < n4 ^

(lib) /x, < X, *£ /x2 < X2 < /x3 < X3 < ix4 < A4 <

However A, = A2 = 0 and also /i, = 0. Furthermore A3 > 0 and jn2 > 0. These condi-

tions rule out cases la, Ila and lib above. The only possible case is then lb and we have

An(A) < n„(A) for n = 1,2,3, We now appeal to the result of Schwarz [12, p. 417]

which shows /ji„+i(A) ^ fin+l(A+n). Now the function A+n has symmetry properties

which imply that if fV(x) is the eigenvalue corresponding toju„+](/l+„) then

W'( 0) = W(L) = 0, W(0) = W(L).

Therefore W will satisfy the boundary conditions (14) for a clamped column. Thus the

symmetry of A+n implies

^n+l(^+n) ~ Pn+li^+n)- (22)

This yields Xn+ ̂ A) ^ Xn+ ,(^_„).

We now prove that A3(^4) > A3(yl_2). Let yn be the «th eigenfunction of system (10),

(14). In particular we will take

Ji(x) = l, y2(x) = B-x.

The constant B is chosen so that yt and y2 are orthogonal with respect to the function
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A'2(x). Now the functionsyn are all orthogonal,

fLy„(x)ym(x)A~2(x) dx = 0 if n^m. (23)
Jo

Define a new function z(x) by

z = ay i + by2 + y3 (24)

where a and b are constants to be determined later. The function y3(x) will have two zeros

in [0, L] say x, and x2. Let a be the point in the interval [x,, x2] at which | _y3(x) | has its

maximum value. Select the constants a and b so that

z(0) = z(L) and z(a) = -z(0). (25)

The function z(x) will satisfy (14) since all y„(x) do. It follows that

z'(0) = z'(L) = 0. (26)

Since j3(;c) satisfies (10) with X = A 3 we see that (24) implies

z" + X3A'2z = X3A~2[ay, + by2\.

We now multiply this equation by z and integrate the result from 0 to L\

f zz"dx + \3( z2A~2dx = \3[ [ayx + fcy2][aj'1 + by2 + y3]A'2 dx. (27)
Jo Jo Jo

The orthogonality (23) implies that the right hand side of (27) simplifies to

^3 fL[ayt + by2]2A~2 dx.
Jo

This is a nonnegative quantity so (27) implies that

\3 f z2A'2 dx > - f zz" dx.
Jo Jo

Integrating the right hand side of this relationship by parts and using (26) we find that,

PS)
/0 z A 2 dx

Now (25) implies that the function z2(x) has two zeros in [0, L], say /3, y and that

z2(0) — z2(a) — z2(L). (29)

We now cut off the right hand end of the column and weld it back on the left hand end.

More precisely if we have a function f(x) defined for 0 < x < L we define a new function

/*(*) by

[/(* + y), 0<x<L-y,

l/(x + Y — L), L — y^x^L.
/•(*) =

Now f{x) and ft(x) are equimeasurable. Applying the „ operation to both z(x) and A(x)

and using (28) yields

. x IoL(z*fdx . ,

HA)> / ,2 • (30)
foLzl(A*) dx
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Now the function zt satisfies the hypothesis of Theorem I with n = 2. Thus

(*•) , ^ (z)-2> fL(2*)'2 dx = fL(z*)'2 dx-
-l Jq Jq

In addition (20) yields

Thus (30) implies

/oL(^)'2 dx
\3(A)> —- —. (31)

Since is continuous with a piecewise continuous derivative and vanishes at L/2, it

follows that [4, p. 463] the right hand side of (31) is not less than the second eigenvalue say

v2(A) of the system

V" + v2Q(x)V= 0, F(0)=F(L) = 0, (32)

where to simplify notation we have taken Q(x) = [(AJ+2]~2.

We now cut off the left hand end of the column and weld it back onto the right hand

end. That is given a function f(x) defined for 0 < x < L we define a new function f*(x)

by

[/(jc + L/4), 0<x<3L/4,

I f(x — 3L/4), 3L/4 =£ * < L.
f*(x)

Applying this operation to (32) yields

(V*)" + v2Q*(x)V* = 0

and the symmetry of Vimplies that V* satisfies (14). Therefore v2(Q) = A3(()*). Thus (31)

implies A3(^) v2{Q) = A3(Q*). The symmetry of Q implies that A_2 = Q*. Therefore

\3(A) > X3(A_2) which finishes the proof.
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