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1. Introduction. In this paper we present and analyze a method of solution for an
interface problem in linear elasticity. We deal with the special situation of steady-state,
time-harmonic, two-dimensional anti-plane strain. The physical problem is this. Suppose
one has a half-space of homogeneous, isotropic, linearly elastic material (the earth)
bounded by a traction-free plane. In this material we have an elastic wave, incident plus
reflected, which is time-periodic with frequency w. Suppose now that a cylindrical obsta-
cle of different and possibly inhomogeneous material is inserted in the free surface. The
problem is to determine the time-periodic steady-state limit for the total fields inside and
outside the obstacle.

We refer to [1] for a general discussion of problems of the above type. For linearly
elastic, isotropic materials the fields are displacement U, strain € = 4(VU + (VU)") and the
stress 3,

I = 4 (div U)I + 246. (1.1)

In general A and u are functions of position; the material is homogeneous if A and u are
constant. The equation of motion is

pU, =div3I +b, (1.2)

where p is density and b is body force.

Consider the geometry of Fig. 1. The region Q', is to represent homogeneous elastic
material with A,, u,, p,. The region Q' represents a (possibly inhomogeneous) cylinder
with A_, u_, p_ depending on x; and x,. x, =0 is a traction-free surface. I'"" is the
boundary of Q.

The anti-plane strain (SH wave) situation for Fig. 1 occurs when the displacement has
the form

U = U(x,, x,, t)es. (1.3)

For such fields €3 = €3, = 1U,,, €3 =€, = W, Fi3=8s1 =#Us, 23 =82 =
pU,, and all other strain and stress components are zero. In the absence of body forces
Eq. (1.2) reduces to

LU = (uUy)s, + WU)s, = pUs- (1.4)
The fact that x, = 0 is traction-free yields
U,,(x;,0)=0. (1.5)

* Received May 24, 1982. This work was supported in part by the National Science Foundation under
Grant MCS-8001944.
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Across the interface I'" the displacement and the traction are continuous, that is,
ut=U", u_ U =p,U} on I. (1.6)

The plus and minus denote limits from ', and Q' respectively and n is the normal.
We assume that the displacements are time-periodic of the form

U(x, t) = Re (u(x)e™", 7
so that (1.4) becomes
Lu + w?pu=0. (1.8)

We let u°(x) correspond to the driving field. u® will consist of an incoming wave ©v°,
defined in all of R, and its reflection, that is

u%(xy, X3) = 0°(xy, X5) + 0%(xy, — X3). (1.9)

We nondimensionalize the problem. We choose a length scale L? = u./p , w?, replace
x by x/L and introduce the parameters

p=p_lp,0’L? B =p_/p,. (1.10)

Then (1.8) and (1.6) yield
L,u+ Bu=0 in Q, Au+u=0 in Q, (1.11)
u"=u*, uu, =u on I (1.12)

Weset w=uin Q and w = u — u® in Q, so that w represents the scattered wave in
.. We require that w satisfy the radiation condition

l/Ze—ir

w~r” as r=|x|—oo_ (1.13)

We have then the following.
Problem (P'). Find w satisfying (1.13) and such that

Lw+Bw=0 in @, Aw+w=0 in Q,,
wo=wt+u  ouw, =w] +ud (1.14)

There exists a number of procedures for solving problems like (1.14). In the elasticity

X
3
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setting we refer to [1, 2, 3]. A more general class of interface problems is discussed in [4]
with a model problem analyzed theoretically in [S]. Our analysis has three stages, as
outlined in Sec. 2. Our first step is to introduce two different equivalent problems (P,) and
(P,) in each of which we work only in Q' but have to introduce an auxiliary function ¢ on
I"'. Next we rephrase (P,) and (P,) as variational problems (VP,) and (VP,) in which all
boundary conditions are natural. Then we introduce finite-dimensional approximations
(AVPg) and (AVP,).

One has a choice of which of the problems (P,) or (P,) to solve. As indicated in Sec. 2,
(P,) is somewhat preferable if one is primarily interested in Q' and (P,) if the emphasis is
on ',. The main reason for introducing the two is that they are “adjoint” in the sense
that to analyze the procedure for either one must have information about the other.

Remark. We indicate in Sec. 2 that there is actually a whole family of auxiliary prob-
lems P,, 0 < a < 1 and that when & = 4 the resulting problem is “symmetric” in a sense
made precise there. For 0 < a < 1, however, we need two boundary functions.

Our methods are all in the spirit of [4] and [5], a combination of finite-element and
boundary integral methods. In particular, our (P,) is an extension to a more complicated
situation of the problem studied in [5].

In Sec. 3 we give an analysis of our auxiliary problems and in Sec. 4 we discuss
convergence of the finite-dimensional approximations. There is a complication here with
which we do not deal in this paper. The complication is the confluence of I'" with x, = 0.
This produces singularities in the fields and these affect the analysis. We will suppress this
difficulty here by a symmetrizing process as we describe now.

We make three simplifying assumptions. The first is that the curve I'" is perpendicular
to x, = 0. Then we can reflect I'", Q' and ', in x, = 0 to obtain the configuration in all of
R? indicated in Fig. 2. T is then a smooth closed curve bounding Q. Our second assump-
tion is that u and p satisfy

“xz(xb 0) = Oa P,z(xl, 0) =0.

Then we can extend u and p to all of Q as continuously differentiable functions which are
even in x,. Observe that u° is defined in all of R? and, by (1.9), is an even function of x,
The problem we actually analyze in Secs. 3 and 4

.




146 JACOBO BIELAK AND R. C. MACCAMY

Problem (P). Find w, satisfying (1.13) in Q_, such that
Lw+pw=0 in Q Aw+w=0 in Q,,
wo=w"+u®  pw, =w} +u® on T. (1.15)

Suppose we know that the solution of (P) is unique (to be proved shortly). Then it is
easy to verify that the solution of (P) is even in x, and that in ', Q’,, w will satisfy (P").

We remark that problem (P) also occurs in the theory of scattering of electromagnetic
waves by dielectric cylinders [6]. Other numerical procedures have been given for this
problem, for instance in [6] and [7]. The method in [7] is related to our problem (Py).

We present now the quite simple proof of uniqueness of solutions for (P). We denote
by K(Q) (K(Q™)) the spaces of functions which are twice continuously differentiable in Q
(Q*) and for which w and Vw have limits w~, Vw™ (w*, Vw™*) on I'. For K(Q*) we also
require (1.13). Then by a solution of (P) we mean w € K(Q) n K(Q") satisfying (1.15).

THEOREM 1.1 There exists at most one solution of (P).
Proof: It suffices to prove u® = 0 implies w = 0. Suppose w is a solution for u® = 0.
Then by Green’s theorem

—f (1| Vw22 — B2|w]|?) dx+f pw, W™ ds = 0. (1.16)
Q r

Let Q denote the region Q (| x| < R). Then Green’s theorem yields
—f (|Vw|2—|w|2)dx+J‘w,,+ﬁz+ ds+f w,wds =0. (1.17)
Qr r |x| =R
By (1.15); 4 the integrals over I" are the same and we obtain
Im J w,wds =0. (1.18)
|x}=R

Eq. (1.18) and a standard argument for exterior problems for the Helmholtz equation
(see [8]) imply that w=0in Q*. Thenw™ =w* =0 and w, =w,; =0 and unique con-
tinuation implies that w = 0 in Q.

Let us list the hypotheses under which we operate for the rest of the paper. To avoid
technical smoothness assumptions we suppose I' is a C® curve and u and p are (positive)
C= functions in Q. We need two hypotheses on I' (and w). These are:

(H.1) Av+v=0 in Q v"=0=>v=0 in Q
(H.2) Lv+pv=0 in Q puw, =0=0v=0 in Q.

Hypotheses like these are familiar in boundary-value problems. We observe that, for a
given T, there will be infinite sequences i, i =1,2, k=1, 2, 3, ..., for which H.i will fail.
We observe that our uniqueness theorem did not require either hypothesis. We believe

that they are not necessary for existence either but are simply results of our proof
methods.

2. Formulation of solution procedures. In this section we outline our procedures. We
present them for (P) with a statement of the modification for (P'). We begin with some
potential theory for the equation

Av+0v=0. 2.1)
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We define g by the formula
i
g(x, Y)=ZH§>2’(IX—,VI), 22)

where H{ is the Hankel function of second kind and order zero. Thus g is the Green’s
function for (2.1) with (1.13). We define the simple and double layers ¥[¢] and 2 [¢]
with density ¢ by

LLelx) = L o(y)g(x, y) ds,,

0
P[elx) = J o0) 5, g(x, y) ds, . 2.3)
r ny
To modify our procedure to (P’) it is necessary only to replace g by the function.
i
g%, y) =7 {H (1 x = y) + H(1 x — y*1)}

where y* = (y,;, — y,). Then & is the Neumann function in x, > 0. In all the formulas
below one need only replace I', Q and Q, by I'', Q', Q, .

For smooth functions ¢ the properties of & and 2 are well known. They both satisfy
(2.1)in Q and in Q*. We have the following limit relations on I'. Define integral operators
S,N,DonT by

~

Slel(x) = | PWIS(x, y) ds,, - S(x,y) = g(x, y) o
[ 0
N[oIX) = | oWNG D ds, Ny =3-(x )|
Jr x xel
i 0
DLe)) = | ¢IDx, ) ds,,  D(x, ) =27 (x, ) X))
Jr y xel

Then

SLe]* = Slel; (25%
(@2[e))* = Fio + Dlo]. (2.5)

The kernel S has a logarithmic singularity while, for smooth curves, the kernels N and D
are continuous. Moreover, one has

S(x, y) = 8(», x),  N(x, y) = D(y, x). (2.6)

We have the following analogues of the Helmholtz formulas. If v satisfies (2.1) in Q
then

t
) = t1¢ + N[o];

v=92[v ] —-%[v,] in Q 2.7)
If v satisfies (2.1) and (1.13) in Q* then
v=So}] - 2[v*] in Q. 238)

Combining (2.7), (2.8) with (2.5) yields the following results for a v which satisfies (2.1) in Q
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or (2.1) and (1.13)in Q*:
37 =Dl ]1-S[v;], 3" =S[v]- D] 2.9)

We are now ready to formulate our equivalent problems for (P).
Equivalent problems. Suppose w is a solution of (P). Then we can apply (2.8) and
(29),. By (1.15); , we have w;” = w, —u® and w* = w™ — u®. We obtain then

w=S[uw, —wl]l—2[w” —u°] in QF, (2.10)
Lw™ + D[w™] — S[uw, ] = 4u° — S[u°] + D[u®]. @.11)

Now u° is a solution of (2.1) in Q; hence, by (2.9),, —S[u] + D[u°] = 4u°, so the right of
(2.11) is just u°. Let us introduce ¢ = uw, as an auxiliary variable. Then (2.11) becomes

iw™ + D[w ] - S[e] =u° (2.12)
and (2.10) becomes
w=%[p—-ul]—-2[w —u°] in QF. (2.13)

We have thus been led to the following problem.
Problem P,. Find (w, @) such that

Lw+Bw=0 in Q uw, =¢, 3w +Dw]-Sle]l=u’ (214
Let us obtain a second auxiliary problem. Here we seek w in the form
w=[p] in Q. (2.15)

From (2.5) we obtain w* = S[¢] and w,; =4¢ + N[¢]. Inserting (1.15); , yields w™ =
S[e] + u® and puw, =4 + N[@] + u?. This suggests the second problem
Problem P,. Find (w, ¢) such that

L,w+p*w=0 in Q
w™ =S[e]+u°,  pw, =10+ Nle] +u). (2.16)

Both (P,) and (P,) are equivalent to (P). In order to establish this we need a result
about the operator S. This can be obtained from the work of [9].

LEMMA 2.1. Suppose f e C¥) (P). Then:

() There exists a unique y = S™'[f] € C(I') such that S[¥] = f;

(i) The (unique) solution of Av + v=0in Q, v=f on I' with conditions (1.12) is
v=S[x]

THEOREM 2.1 (i). Suppose w is a solution of (P). Then (w, uw,) is a solution of (Py).
(ii) Suppose (w, o) is a solution of (P,) with w € K(Q), ¢ € C(I'). Put

w=%lp—ul]—2[w —u°] in Q*. 217
Then w is a solution of (P).

THEOREM 2.2 (i). Suppose w is a solution of (P). Then (w, S~ }(w™ — 4%) is a solution of
(Py)
(i) Suppose (w, @) is a solution of (P,) with w € K(Q), ¢ € C(I'). Put

w=%[p] in Q. (2.18)

Then w is a solution of (P).
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Proof. The proof of (i) in both theorems follows from the calculations made to arrive
at (P,) and (P,) together with the observation that by the lemma w* = S[¢] implies
@ = S™'[w*]. To establish (ii) for Theorem 2.1 we observe that (2.17) and (2.5) yield

wt =S[e] = D[w ]+ 4w~ —u® — S[u®] + D[u?]. (2.19)

But we showed earlier that —S[ul]+ D[u?]=13%u® and (2.14); yields
S[¢] — D[w™] = 4w~ — u° Hence (2.19) gives w* = w~ — u°, which is (1.15); . We have
then by 2.17) w = L[ — u’] — 2[w*]in Q*. But by 2.8) w = £L[w,/] — 2[w™*]. Hence
Slo —ul—wl]l=Suw, —ul —wS]1=0 in Q*. Taking the limit on I' and using
Lemma 2.1 (i) yields uw, = w,\ + u?, which is (1.15), . The proof of (ii) for Theorem 2.2 is
similar.

We will see in the next section that, under appropriate hypotheses, both (P,) and (P,)
have solutions, and we have just seen that both are equivalent to (P). We will give vari-
ational formulations of both problems. One has a choice of which to use. We observe that
a virtue of (P,) is that the quantity ¢ has direct physical meaning; namely, it is uw, which
determines the traction at the boundary. On the other hand, if one is primarily interested
in the exterior field then (P,) is preferable since (2.18) is simpler than (2.17). Mathemat-
ically both are of interest in the convergence proofs as described in Sec. 4.

Variational problems. Suppose first that w is a solution of (Py). We multiply (2.14),

by a test function # and integrate over Q using the divergence theorem and (2.14),. The
result is

— J (uVw - Vi — B2wi) dx + J @ids = 0. (2.20),
Q T

Next we multiply (2.14); by a test function ¥ and integrate over I':

J Gw™ + D[w™] — S[e]Y ds = J u%y ds. (2.20),
.

r

We perform similar calculations for (P,) and obtain:

- J (uVw- Vi — B2wi) dx + J Go + N[ol)o~ ds = —J uls ™ ds
Q T T

j(w‘ —S[oY ds = Ju‘ﬁ/? ds. (2.21)
r r

Egs. (2.20) and (2.21) give our variational problems. Let us introduce some notation. We
write U, V for pairs U = {w, ¢} and V = {v, y}. For functions a, B defined on " put
<o, BY = [ ap ds. Now define the bilinear forms, «/(U, V), (U, V) by

LU, V)= A;1(w, v) + Ay5(0, v) + A (W, ) + A0, V), (2.22)
where
Ay, v) = —L (Vw- V5 — BPwd) dx,  Ayy(e, v) = {o, O),
Ay, ) = <P 3w DIw™DD,  Anle, ¥) = — <, S[eD), (2.23)
BU, V) = Byy(w, v) + By2(@, v) + Byy(W, ¥) + By2(0, ¥), (2.24)
where

Byi(w, v) = Ay (w, v), Bi,(@, v) = <3¢ + N[¢], 77 ),
BZI(W’ lﬁ) = <./;7 W_>’ 322((/)9 lﬁ) = _<'l;’ S[(p]> (2'25)
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We also introduce the functionals,

F{o d) = u®, 9o, ¥}) =, 07> + <P, u°). (2.26)

Problem (VP,). Find U = {w, ¢} such that for all V = {v, ¥}, #(U, V) = F(V).

Problem (VP,). Find U = {w, ¢} such that for all V = {v, ¢}, B(U, V) = 4(V).

These problems will be analyzed in the subsequent sections. To anticipate, it will turn
out the appropriate space on which to study them is the Hilbert space ¢ = H,(Q) x
H _,,(I'). Two observations are important. First, boundary conditions are natural.** This
means that when we approximate, as below, with finite elements there are no boundary
restrictions on those elements. Second, the problems are “adjoint” in the following sense:

AU, V)=V, ). (2.27)

Let us verify this fact. We have by (2.3) and (2.26) B, (w, v) = A,,(w, v) = A,(0, W), B,;(w,
Y)=<Y, w ) =A4,,(y, w). From (2.6), we have B,,(¢, ¥) = —<¥, S[o]> = —<o,
S[¥1> = A,,(4, ¢). Finally from (2.6), we have <o, N[y1> = <y, D[¢]). Hence B, (o,
v) = (3¢ + N[@l, 57> =<, 45 +D[571> = A2, (5, §).

We consider now approximate solutions of (VPy) and (VP,). We choose finite-
dimensional subspaces S" and I'* of the spaces H,(Q) and H _, ("), put #" = S*xI"" and
consider the approximate problems:

Problem (AVP,): Find U" € #" such that for all V* e #™*,

AU, V) = F(V). (2.28),
Problem (AVP,): Find U* € #" such that for all V* ¢ »#*
BU", V*) = GV, (2.28),

Each of the approximate problems is equivalent to a set of algebraic equations. Sup-
pose Vi, ... vk, is a (real) basis for #*. If we seek U* =YY" UM and define U* =
(U", ... U") e R™ then (2.25) are equivalent to

AU = Fh BU" = ©* (2.29)
where

)y =0, V), B=oA', (FN=F0), (E"=90) (2.30)

j» Vi
Let us study the structure of Egs. (2.29). Let us suppose that our basis for S* has the

form of, ... @l ¥, ... Vi With @f =0 on I and let ¢}, ... o}, be a basis for I'". Then
U" has a corresponding decomposition into w, w, ¢* and (2.29) assumes the form

Ay Al 0O wh 0

Ata Afr Afe wt | = #}

0 Air A% ¢ Zo

Bho Bh 0 /wo 0 @3h
Bl, Bir Bl w |=[ %

0 By B/ \ ¢ %5

** The variational principles here are similar in this respect to those of [10] for boundary-value problems.
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Here we have
(A?).Q)ij = (B's'm)ij = All(wj» ), Lj=1,... N?),

(A?H‘)ij=(Bhl")ij=All(yjawi)’ i= 1,---N'r'z, j=1’--~Nh
(A} r)u—(B rij = Ay, v i,j=1,... Nt,
(AFO)U_AIZ(aj’yi)s i=1,...NT, j=1...M; Bor = (ATo),
(A(Dl")ij = A1y}, ), i=1..M, j=1,... Nt Bio = (Agr),
(Ago)ij = (Boo)ij = 42,(0}, 0), ihj=1,... M.

We point out that the form of Eqs. (2.31) permits condensation. Suppose we are solv-
ing VP, (that is Py) and we are primarily concerned with the exterior region. Then we
may eliminate w{, and consider the system:

Ah Ah h h
Afr Ato) (wr) _ (#1 (233)
AOF A0® ¢ ?0
where Al = Al — Al(Aho) "'Ab. Other combinations are clearly possible, also for
(VP)).

Remark: We observe that other auxiliary problems are possible. Let us keep ¢ as in
(2.15) but now let 4 = uw, so that we have two boundary functions. We multiply (VP,)
by (1 — «) and (VP,) by « and add the results. If we put Z = (w, 4, ¢) and ¥ = (v, , ¥)
and define o (U, V'), F (¥ by

da(uzl, V) = (1 - a)All(W’ U) + (1 - a)AIZ(A” U) + a312(¢’ v)
+ aBy(w, v) + aB, (W, X) + aB,, (), X)
(1= 00y, (w, ) + (1 — )z (h W), (234

FV) = ou, 57 + alE, u°> + (1 — a) <y, u®) (2.35)

(2.32)

then we obtain:

Problem (VP,). Find % = {w, A, ¢} such that for all ¥~ = {v, x, Y/},

AU, V) = F (v).
Observe that for « = 0 (VP,) becomes (VP,) and for « = 1 it becomes (VP,). Further,
when o = 1 we have, by (2.27),
3B21(w, 1) = 3A41,(X, W), 345w, ¥) = 1B,,(, W),
%Azz()w '//) = LBzz('/;, Z),

so that o/ (%, ¥) = o/ (¥, %). In the finite-dimensional approximation this means that
the matrices will be symmetric if we use real basis elements. The price we pay for this

symmetry is that the system (2.31) will be replaced by a set of N% + N + 2M equations
instead of N, + N + M. The form will be, for « = 1,

Ay Al 0 0 wh 0
(Ah  Ab At Ak | [ w b7 )
0 Ak 0 A% Moo=\ 17
0 M b 0 ¢ L7

where the A"s and #"’s are as in (2.31),.
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The variational problem (VP,) is equivalent to the boundary problem:
Problem (P,): Find w, 4, ¢ such that

Lw+Bw=0 in Q —uw, +(1 —a)A + ad ¢ + N[¢] = —aus?,
aw~aS[¢] = au®, (1—aiw™ +(1 —a)D[w™ ] —(1 — )S[A] = (1 — a)u®.

This problem can be analyzed in the same way as the special cases (P,) and (P,).

3. Existence theorems. We will seek generalized solutions of our problems. For
these we need the Sobolev spaces H/(Q), r > —1 and H(I'), s > — 4 for complex-valued
functions. We put

H*Q*)={w: we H(Qg)forany R >0,Qz =Q* n (|x| <R)}. (3.1)
For any ¢ > 0 we put
He=H, . Q) x H_y. (),
WUMZ = {w, &} = Iwl}+ Q) + 112 1/24{Q) for UeHfe) (32

We write (¢, x) for the pairing of ¢ € H_(I') with y e H(T').

We recall the trace theorems. If w e H/(Q) (H*® (Q*)) then if r > 1 w has a trace
w (w*) in H,_,,,() and if r >3 then w has a (trace) normal derivative w, (w,) €
H,_3,,(T). If w in addition satisfies a homogeneous second-order elliptic equation in Q
(Q*) then w, (w,)isin H,_;,,(I') for any r > 1.

The operators & and 2 of Sec. 2 extend to ¢’s in H(T') fors > —4. One has only to
replace the integrals by brackets, for instance #[¢](x) = (@, g(x, -)). These extended op-
erators will still satisfy (2.1) in Q and Q* as well as (1.13). The operators S, N, and D also
extend and all the boundary limit results of Sec. 2 hold when translated in trace state-
ments. These ideas are discussed in [8]. We summarize the results.

LEMMA 3.1. For any s > —4, S is a bounded map H(I')— H,, ,(I'). N and D are bound-
ed maps H(I')— H, . ,(I).

LemMMA 32 (). If ¢ € H(), s> —4, L[¢] € H,13,5(Q) N H3,5(Q%) and L[9]* =
S[¢). [0 /on]* = +4¢ + N[4].

(). If ¢ € H(T), s=4 D[¢] € Hyi1o(Q N H%,p(Q) and (2[8])* = F16 +
D[¢] and (02[¢]/dn)* € H,_(T).

There is another result which generalizes Lemma 2.1 (ii) and can be obtained from the
ideas in [8].

LEmMA 3.3. Forany s > —4 the map S: H(I')— H,, (') is surjective.

We can use the above ideas to give generalized versions of the problems in Sec. 2. At
the same time we will introduce some further inhomogeneities for use in the next section.
We introduce a little more notation. The data in our generalized problems will be in the
space W, =H_,,(Q) x H_,,;,,I") x Hy;,,/(I') and for (F, p, q) € #", we set

I F, p, @) HIZ = NIF 121+ + 12112 1/24) + 1 q 13241 (3.3)
Problem (P,). Given (F, p, q) € %', find (w, ¢) € #, such that
Lw+p*w=F in Q uw, —¢=p, 4w +Dw]1-S[¢]l=4q (34
Problem (P,). Given (F, p, q) € %, find (w, ¢) € #, such that
Lw+pw=F in Q uw, —%¢ — N[¢] =p, w —S[¢]l=q. (3.9
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The equation in Q is to be interpreted in the distribution sense. w is to have a trace
normal derivative in H_,,,, (I') and the boundary equations are to be interpreted as in
the lemmas.

We will establish the following results.

THEOREM 3.1. Problems (P,) and (P,) have unique solutions (w, ¢). Moreover, there
exists a constant M > 0 such that for both solutions

Il (w, o)l < MII| (F, p, @) Ill,- (3.6)

COROLLARY 3.1. Ifu® € H\(x, > 0) for k > 3 then (P) has a solution.

Proof of Corollary. Let F=0, p=u?, g=u° on I. u® € H,(x, > 0) implies p €
H_y5 w1 and g€ Hy;;_4_1(T). Then (By) has a solution (w, ¢) € #,_,, which
means w € J#(Q), ¢ € K, _;,,(I'). Since k > 3 this means w € K(Q) and ¢ € C(I'). It fol-
lows that (w, ¢) is a solution of (2.14) pointwise and by Theorem 2.1(ii) we obtain a
solution of (P). A similar proof can be given using (B,).

Let us discuss the variational problems. The weakest solutions (w, ¢) will be in 3¢ (=
H,(Q) x H_,5(I') and these will correspond to (F, p, q) € #°,. If we consider the bilinear
forms (U, V) and #(U, V) of Sec. 2 we see that they are meaningful for (U, V) € 5,
x 3, provided that we interpret the brackets as pairings. One checks that indeed 4 and
% are bounded forms on ', x H#,,

LU, V)| < AUV Mo, 1BWU, V)< BIIUIllo Il Vlllo» 3.7
for some constants 4 and B. We can extend the functionals # and % to
FV)=F({o, ¥ =9V)=9({v, ¥}) = (F, 5) +<{p, 57> + <Y, ¢). (3.8
The right side of (3.8) is meaningful for (F, p, q) € #', if (F, ©) is interpreted as the
pairing of F € H_(Q) and ¢ € H,(Q). Moreover, they are bounded functionals:
[ ZFW) =19 < FlIV ol (F, p, @)lllo- (3.9

We have then the generalized variational problems:
Problem (VBoX(VP,)). Find U € 5, such that for all V € #,,

LU, V)=FV) (BWU, V)=91V). (3.10)

One checks that (VPo)(VP,)) have unique solutions if and only if (B,), (P,) have unique
solutions U € #,. Hence Theorem 3.1 will guarantee that (VP,) and (VP,) have unique
solutions.

We turn now to the proof of Theorem 3.1. The idea is to reduce the problems to
Riesz-Schauder equations on H(I'). To do this we first study the boundary-value prob-
lem: given G and P, find v such that

Lv+pv=G in Q uw, =P on T. (3.11)

Under hypothesis (H,) it is known that this problem has a unique solution of the follow-
ing form (see [11]):

v=S,[G] + £,[P], v- =S[G] + #5[P] (3.12)

where
S H o Q= H Q. I Ho 5 (Q)— H L Q) (3-13),
SFriH_ 4 (Q)— Hypy () I H y34{0)—> Hypp o T (3.13)

are all bounded maps.
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We need the following refinement of this result.

LemMma 34. #,[P] = —2%[P/u] + R[P], #5[P] = —2S[P/u] + R™[P], where R[P]:
H_y1p0 1) Hyu @), R[P] t H_yppy (1) Hayyy . (T) are bounded.
Proof. Letus put .#,[P] = —2%[P/u] + w. By (2.5) and (3.8) we have

uw, = 2;1N[§] = n[P]. (3.14)
Also
2 P 2 P
L,w+ p*w=2Vu- Vy[;:l +(B* — 2;4)9’[;] = J[P]. (3.15)

Hence w = 4 [J[P]] + #,[n[P]].

Now by Lemma (3.2) P € H_,,, (') implies #[P/u] € H, , ,(Q) so that J[P] € H,(Q).
Also Lemma (3.1) implies n € H;,,(I'). Thus .#,[J[P]] € H,,(Q), #,[n[P]] € H;, ,(e).
This and the trace theorem yield the conclusion.

We now prove Theorem 3.1 for (P,). We seek the solution of (3.4) in the form

w=J,(F)+ 4,[P] (3.16)

where P is the (unknown) value of uw, . (3.4), yields ¢ = P — p. We substitute this result
and the result of Lemma (3.4) into (3.4); to obtain:

) [§:| +R7[P]+ D{—ZS[E} + R‘[P]} — S[P] + S[p]

=q—3#{[F1-DS[F]. (3.17)
Applying S™! to this equation we obtain
P+ #[P] =P, (3.18)

where
MP] = (Ill - 1>_ls-‘{%R‘[P] - 205[51 + DR'[P]} ’
p0=</11+ 1>_ (p— 57" [q — $7TF] — DA TFTI}. (3.19)

If we take account of the mapping properties developed we find that .# maps H(I)
into Hy, ([') and hence is compact as a map on H(I'). We have pe H_,,,(I') and
geH,;, (') so that Poe H_,,,(I"). Thus (3.19) is a Riesz-Schauder equation on
H_,,.(I). If we can establish that the only solution of the homogeneous equation

P+ #[P]1=0 (3:20)

is P=0 it will follow that (3.18) has a unique solution P € H_,,,,(I') for any P, €
H_ ;. I). Reversing the steps it is then easy to verify that (3.16) yields a solution of (P,).

Suppose P e H_,,;.,(I') is a solution of (3.20). Then since .# maps H,(I') into
Hg . (I) it follows that P € H,(I') for any s. Forming (3.16) with F = 0 we then obtain a
solution of (P,) in #,Q) for any ¢. By Theorem 2.1 this yields a solution of (P) with
u® = 0, which is identically zero by Theorem 1.1. But then P = uw, = 0. We conclude
that (3.18) always has a solution. This completes the existence portion of Theorem 3.1 and
the argument just given also establishes the uniqueness.
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The proof for (P,) is almost the same. We again seek w in the form (3.16) with P
unknown. Then (3.5); and Lemma 3.4 yield

—2S[£] + R”[B] —Sle]l =¢
K u

2P P
= -—-5! +S"R‘[—].
[0 p [4] p

We substitute into (3.5), and obtain another equation of the form (3.18) which can be
analyzed in the same way.

or

4. Convergence of the approximate problems. In this section we describe a situation
in which we can guarantee that the finite-dimensional problems (AVP,) and (AVP,) have
unique solutions U" € #* for each value of the parameter h and that U* tends to the
solutions of (P,) and (P,) as h— 0. The setting is a familiar one from [5] and [10] and
other similar work. We assume that $*? is a finite-element approximation space for H,(Q);
that is, hg is a mesh parameter and the functions in $*® are piecewise polynomials. Simi-
larly, I'*" will be a finite element approximation space for H _, ;2(). We need the following
properties.

Approximation properties:

(A.1) There exists a constant y, > 0 and an integer k > 1 such that for any w € H(Q),
1 <1< k there is a w € S* with

lw— w2 Q) < yi(h) "I, O0<r<l

(A.2) There exists a constant y, > 0 and an integer k' > —3% such that for any ¢ € H,,
(N, =4 < I' < K there is a ¢" € $" with

¢ — ™ ID) < yalhr) N IT), —3<s<lL

For examples of spaces satisfying (A.1) and (A.2) we refer to [5] and [10]. We will
define h as

h=hg+ hr. 4.1)
We assume (A.1) and (A.2) hold and we prove the following.

THEOREM 4.1. There exists a constant & > 0 such that if hr < h then:

(i) (AVP,)and (AVP,) have unique solutions U*.

(i) If U is the solution of (VP,), (VP,)) and hence of (P,) (B,)), and U = {w, ¢} €
H# (Q), ¢ < min (k, k'), then for any ¢ < ¢ there is a constant C such that

WU - U, < C b= “.2)

The key to proving Theorem 4.1 is to establish a coercivity inequality of the following
form. We want to know that there is a constant m > 0 such that for any U* € #* we have

sup | LU V] 2 m|l| U*lllo Il V*llo»

Vhe #h

Vh#0

sup [ @(U, V9| 2 mill Ul I V¥l 43)

Vhe H#h
Vh#£0
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These inequalities will be proved later, but let us first show that they yield the proofs of
Theorem 4.1.

Suppose that Eq. (2.29) for #" = 0 has a solution U". Form U" = U% V). Then we
have o/(U" V") = 0 for all V* € #*. But then (4.3), implies that U* = 0; hence U" = 0. It
follows that (2.29), has a unique solution for any &*. Similarly (2.29), has a unique
solution.

To establish the convergence let U and U" be solutions of (VP,) and (AVP,) and put
E=U—W" &=U"— W" where W" is an arbitrary element of #". Then we have
AE - &, V=AU, VY- LU", V) =F V" - F(V")=0 for all V" e #" Hence
(&, V") = A(E, V*). If we apply (4.3), and (3.7) we obtain

mlll & Wolll V*llo < sup | (&, V¥ < sup |(E, V< AElolll V*Illo

Vhe xh Vhe xh
or ||| &illo < k|l Elllp for some k and
MU —Ulllo <NE—¢&llo <1+ R Elllo <{1 +k) sup U —Willp (4.4)
Whe ¢h
Inequality (4.4) is an optimality result. It states that U* approximates U in 5#" as well
as the best approximator. In particular, we can pick W* = {w"?, ¢*r} as in (A.1) and (A.3).

Suppose U € #,, that is, we H,, (@), ¢ € H_,,;,(). Then we can take [ =1 +¢,
r=1+¢in(Al)and = -4 +¢er= —%+ ¢ in(A.2) and obtain

lw = w'lly 4 o (Q) < yi(haf "l Wil 4+ (L),
¢ = @" - 1240 < V2lbr) "N PI - 124D

Insertion into (4.4) then yields the result (4.2).

Remark. 1If one chooses §" to be piecewise linear functions and S™ to be piecewise
constant then k = k' = 2. Taking ¢ = 1 and ¢ = 0 in (4.2) then yields O(h) convergence for
w"in H(Q) and ¢" in H_ (D).

We turn now to the proof of {4.3), first for /. As a first step we make a decomposition
of «/. For the Green’s function g of (2.6) we write

o, 9) = ¢ kollx = 1) + s, ) 6)

where K, is the Bessel function of second kind with imaginary argument. This gives a
corresponding decomposition of & and S:

S9] = Fol¢] + F1[9),  S[¢] = So[¢] + Si[¢] .7

in obvious notation. K, has the same singularity as H{?’; hence the mapping properties of
S, are the same as those for S. The kernel of S, is differentiable and hence S, maps H(I')
into H,, ,(I'). The crucial fact, an idea from [9], is the following.

LemMa 4.1.  There exists a constant y > 0 such that <¢, So [¢]> = 7l ¢ 112 ,,2(D).

Proof: Consider v = [ ¢]. This satisfies Av — v = 0 in Q and Q" and tends to zero
exponentially as | x| — 00. We have ¢ = v, — v, andv™ = v~ = S,[¢]. Applying Green’s
theorem to Q and Q' (with a limiting argument) yields

R
—J (IVv|2+vz)dx+Jv,,‘vds=0=—j (lelz+vz)dx—Jv,,+va's.
o r o+

r
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Hence

J #Sol¢] ds = J (s — vy ), ds < —f (Vol? +v?)dx = —|lvI}@.  @438)
r r Q

Now v is a solution of Av — v = 0 in Q with v~ = So[¢] on I'. Hence ¢ = S5 '[v™] (S5!
is surjective as before). But regularity for the Dirichlet problem implies 4|[v™ ||;/»(T) <
”0”1(%) < A]]v7|ly2(T) for some 4, 4. Hence ||v[13(€Q) = Allv™|I}2(T) = 411 S5 ' 913 2(0) =
YISz

We now write, using (2.23),
AU, V)=°U, V) + LU, V), 49)

where
A (w, v) = —f (uVYw- Vi + wd) dx,  Al(w,v) = J (B? + Nwi dx,
o o

A?2(¢7 U) = A12(¢$ U), Agl(w’ w) = <'pa %W_>, Aél(wa .p) = <¢-9 D[W_]>,
A%(d, ¥) = =<, Sol91),  A32(d, ¥) = — <, S, [4D). (4.10)
We will now establish a weaker version of (4.3).

LEMMA 4.2.  There exists a constant m’ > 0 such that for any U = {w, ¢} € #,,

sup (U, V)| Zm'[|Ullol| V llo- (4.11)
VeXo
V+0

Proof. Put U = (w, —2¢). Then we seek a V satisfying (4.11) in the form V =
U+ M, M = {m, y}. We have

#(U, V)= o°U, U) + 24U, M) + & (U, D). 4.12)
By (4.10) and Lemma (4.1),
Re/%U, U) = Re A},(w, w) + Re {d,,(¢, w) — 243,(w, $)} — 2 Re A,(¢, ¢)

—L (1IVw]* + [w|?) dx + 2@, So[¢1> + Re {<§, W) — <&, w)}

< =killwil (@) — kll 11 24,5(T) + Re {2i Im <¢, W)}
< —kllUJIG 4.13)
We assert that we can choose M so that
LU, M) =—-2'U, 0), IMIlllo<KIIUIllo. 4.14)

If so, then we will have ||| V|llo < | Ulllo + K|l Ullo,
k
U, V)| = kIIUII5 = 17K MU lo NV o

which is (4.11).
We verify assertion (4.14). Define a functional #(Z) on #, by

F(2Z)= -AY2Z, 0) 4.15)
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and let M be the solution of (VP,) for this # :
BM,Z)=F(2Z)= —ANZ,U) forall Ze #,. (4.16)
We put Z = U in (4.16) and use (2.27) to obtain
(U, M)=BM, U)= - (U, U)

and we have the solution of (4.14).
Let.ps study (4.16) more closely. Put Z = {z, x}. Then by (4.10)

F(2) = —'(Z, 0) = — AL1(E, w) — 243,(Z, ¢) — 245:(F, ¢)

—J (B + D)zw dx — 2 <, D[z 1) + 24, $,[XD
Q

=<(F, 2> +<{p, 27> + i @, 4.17)
where
F=—(8*+ w, = —=2N[¢], q=S¢] (4.18)

If we compare (4.17) with (3.8) we see that the solution M of (4.16) is a solution of (P,)
with (F, p, q) as in (4.18). Recall that our original assumption was (w, ¢) € #,; hence
weH Q) =H_,,,(Q). Also, ¢ e H_ 15(I) so p, qge H3,([)=H_,,;,,(I'). Thus
Theoem 3.1 tells us that M € s, and

Il Millz < K(Iwlli(€Q) + [ @1l - 1,2(0) = K| U llo- (4.19)

The estimate (4.19) gives us the inequality in (4.14) but it also does more. It enables us
to extend from Lemma 4.2 to the inequality (4.3) by approximation. Suppose we are given
U" e #,. We choose V = U* + M as above so that /(U* V) > m'||U"||3. The problem
is that M is not in #* so we approximate it.

Let us assume that k and k' in (A.1) and (A.2) are both greater than or equal to two.
Then, since (4.19) implies ||w]|,(Q) < K|||Ullo and || ¢|l,,2(T’) < K[| Ullly, we can find
m"® e $h and Y"r € S" such that

llm — m*|1,(Q) < y,Khqglll Ulllo;

ly — "l _ (D) <y, Khe I U |llo - (4.20)
If we set M* = {m"?, y/*r} then we have
IM — M"|ly < cthg + h) U Il - 4.21)

Now we have

| (U, U+ M"| =|2U, U+ M)+ U, M'—M)|
_ m
>m UG —mcAlhg + RONUNZ == IIUIR. (422

if hg and hy- are sufficiently small. Moreover, we have
T + M"lllo < 1T lllo + I M1llo + Il M — M*|llo < C'[Il U llo;

hence (4.22) yields (4.3)
The proof of (4.3) for the other problem is symmetric to the one just given and we
omit it.
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