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Theorem. Let F : Lin—> Lin be linear and isotropic. Then there are scalars X, n, and a

such that

F : T = 2(tr T)I + Qi + oc)T + (p - a)T* (VT e Lin). (1)

Conversely, any such function is linear and isotropic.

This statement, proved in [1], provides a general representation for linear isotropic

tensor-valued functions of tensors. The statement (1) was given in coordinate form and

proved in a different way earlier in [2], Along lines of reasoning exploited in [3, 4], we

offer in this brief note an alternative proof of the following.

Representation Theroem. For some set Set of Lin, the following statements are equiv-

alent:

(i) Set = list.

(ii) The subspaces Sph, Dev, and Skw of Lin are invariant characteristic spaces of Set.

(iii) There are scalars 1(F), n(¥), and a(F) such that

F : T = A(tr T)I + (ji + a)T + (/x — a)T* (VF e Set, T e Lin). (2)

The notations used above and later on are as follows.

Let M be the space of scalars and V a 3-dimensional Euclidean space with scalar

product uv and vector product uAv. Lin is the space of all linear transformations (or

simply tensors) on V, with identity I. Given a tensor T, T* denotes its transpose and tr T

its trace. The transpose of the tensor product u (g> v is (u ® v)* = v ® u. Given an ortho-

normal basis {e,} or V, any uef and T e Lin may be expressed in dyadic form:

u = u,ei, T = Tijei®ej, (3)

and all the following operations may be interpreted in the language of scalar products of

the corresponding basis vectors of the elements concerned, e. g.

uv = (u; e^vj ej) = ut Vj (e,- e,) = uiVj 5U = uivi, (4)

Tu = (Tu e; ® Cj}(uk ek) = TtJ uk(ey et)e; = T^u^, (5)
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uT = (uk etX7}j tj 0 e,) = uk Tjt (ek = Uj Tne,, (6)

A : B = {Aijei 0 e,) : (Bmnem 0 e„) = AljBmn(eiem)(tje„) = AtjBtj, (7)

I; T = 7J, = tr T, (8)

where u,Y6f and A, B, T e Lin. Every T possesses at least one right proper direction r

( * 0),

Tr = Ar, (9)

and one left proper direction 1 ( / 0),

IT = Al, (10)

A being the associated proper value. If r = I, we call r simply a proper direction. Further,

let Sym, Skw, Orth, Sph, and Dev denote, respectively, the sets of symmetric, skew, or-

thogonal, spherical (scalar multiples of I), and deviatoric (traceless symmetric) tensors.

Given noncoplanar u, v, w e V, every A e Skw may be expressed as (with ^,(£^):

A = £(u 0 v — v 0 u) + >;(v 0 w — w 0 v) + £(w 0 u — u 0 w). (11)

The space Lin may be viewed as the direct sum of subspaces Sph, Dev, and Skw:

Lin = Sph © Dev © Skw. (12)

It means that every T 6 Lin has a unique additive decomposition in the form

T = S + D + A, (13)

where

S[ = i(tr T)I] e Sph, (14)

D[=i(T + T*) - i(tr T)I] e Dev, (15)

A[=i(T — T*)] e Skw. (16)

Now let Lin be the space of all linear transformations on Lin. We shall call them simply

mappings, omitting the adjective "linear". The dyadic form of F e Lin is

F = FiJkl ef 0 e, 0 ek 0 e,, (17)

and the action of F upon T e Lin is effectuated by means of a double dot (7) as follows:

F : T = (Fijkl e, 0 e, 0ek0e,):( Tmn em 0 e„) = FiJkl Tkl ef 0 e;-. (18)

For the proof of the stated representation theorem, some definitions and lemmata are

needed. Those lemmata already proved by other authors are indicated in every case.

Definition 1: A mapping F is isotropic if and only if

Q(F : T)Q* = F : (QTQ*) (VT g Lin, Q e Orth). (19)

The set of all isotropic mappings is denoted by Dst.

Definition 2: A scalar X is called a proper value of a mapping F if there is a tensor R

such that

F : R = XR. (20)

We call R a proper direction corresponding to A. The characteristic space for F corre-

sponding to X is the subspace of Lin consisting of all tensors satisfying (20). Generally, the
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characteristic spaces of different mappings are different. If every mapping from some set of

Lin has the same characteristic space (the corresponding proper values may be distinct),

we say that this characteristic space is invariant for this set of mappings.

Lemma 1 (Rivlin-Ericksen, Serrin, Noll). Every proper direction of the symmetric or

skew argument T e Lin of an F e 1st is also a proper direction of the value F : T.

This lemma holds also for non-linear mappings. For the proof the reader is referred to

to [5, p. 167],

Lemma 2 (Lew). Let D e Dev. Then there is an orthonormal basis {u, v, w} such that

D = £(u ® v + v ® u) + t](\ ® w + w ® v) + C(w ® u + u ® w) (21)

with r\, C 6 J?.

The proof of this lemma was furnished by J. Lew to M. E. Gurtin in a private com-

munication in 1968 (cf. [3, pp. 36-37]).

Lemma 3. Sph is an invariant characteristic space for Dst.

Proof. Taking into account that every S e Sph is a scalar multiple of I, and the

mapping is linear, it suffices at first to use the isotropy definition (19) for unity argument

to get

Q(F : I) = (F : I)Q (VF e Dst, Q e Orth). (22)

Assume that r is a proper direction of the value F : I:

(F : I)r = pr. (23)

Then, from (22),

(F:I)Qr = Q(F:I)r = /?Qr. (24)

Because Q is arbitrary, (24) leads to the conclusion that every direction is a proper direc-

tion for F : I with the same proper value /?(F); in other words,

F : I = p I, (25)

or, by virtue of the linearity of F,

F : S = 0(F)S (VF e Dst, S e Sph). (26)

Lemma 4. Let F e Ost. Then there are scalars <p±(in general cp+ <p_) such that

F : (u ® v + v ® u) = 2cp ±(u ® v + v ® u) (V non-collinear u, v e Y). (27)

Proof. The argument u ® v ± v ® u has a proper direction

w : = u A v. (28)

By virtue of Lemma 1, we have

[F : (u ® v + v ® u)]w = wF : (u ® v + v ® u) = w. (29)

Referred to the basis {u, v, w}, the value F : (u ® v + v ® u) may be expressed in the

dyadic form:

F:(u®v + v®u) = /?11u®u + /?i2U®v + /?13u®w + j?21v®u

+ P22 v ® v + P23 v ® w + /?3lW®II + f}32 w ® V + P33 W ® W. (30)
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Generally, the Pu (i, j = 1, 2, 3) depend on u and v, and of course on the sign " +

Inserting (30) into (29), we obtain

i?i3" + ^23v + (i?33 - = 0, (31)

^3l" + /?32 V + (033 - £±)W = 0- (32)

The linear independence of u, v, w, leads to

013 = 031 = P23 = P32 " 0, (33)

033 = 0±(u, v) = y^±/| W I2. (34)

Taking these results and

Q(u ® v + v ® u)Q* = (Qu) ® (Qv) ± (Qv) ® (Qu), (35)

(Qu) A (Qv) = Q(u A v) = Qw (36)

into account, and applying the isotropy definition (19) to the expression (30), we have,

VQ e Orth,

(Pn - PiiXQu) ® (Qu) + (Pi2 - PUQu) ® (Qv)

+ (Pn - 0?iXQv) ® (Qu) + (fi22 - p°2XQv) ® (Qv)

+ \P±(u,v) - /?±(Qu,Qv)](Qw) ® (Qw) = 0, (37)

where = 0i;(Qu, Qv). By virtue of the linear independence of the dyadic basis above,

we get from (37)

01>,v) = 0,,.(Qu,Qv) (i,j = 1, 2), (38)

/?±(u,v) = /UQu,Qv). (39)

Since Q is arbitrary, these coefficients depend on the sign " ± " only. Thus, (30) reduces to

F:(u®v + v®u) = /?11u®u + /?12u®v + /?21v®u + /?22v®v

+ 0±(uAv)®(uAv). (40)

The assumed linearity of F makes it also linear relative to u and v; therefore

Pi i — P22 = P ± = 0, (41)

and, consequently,

F : (u®v ± v® u) = 012u®v + 021v® u. (42)

Using the linearity again with (42), we have

F:(u®v + v®u)= + F:(v®u±u®v)= ±(P2 iV ® u + p2lu ® v). (43)

A comparison of (42) and (43), by virtue of the linear independence of u ® v and v ® u,

gives

P12 — i P21 = 2<p± (44)

and, finally, from (42) the representation (27).

Introducting the notation

H(¥ ) = (/>+, a(F) = <jo_, (45)
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we apply (27) in sequence to the expressions (21) and (11); because F is linear, we get the

following

Corollary. Dev and Skw are invariant characteristic spaces for 1st, i.e., V F e Ost,

F : D = 2/i(F)D (VD e Dev), (46)

F : A = 2a(F)A (VA e Skw), (47)

At this point we are already able to prove the representation theorem. On the basis of

Lemma 3 and corollary, (i) implies (ii) directly. In order to show the implication (iii) by (ii),

we assume that for F e Set, 3k(F), 2/i(F) and 2a(F) are the proper values corresponding to

the characteristic spaces Sph, Dev and Skw, respectively. Introducing the scalar A(F):

3k(F) = 2/i(F) + 3A(F), (48)

and taking the linearity of F and (14-16) into account, we use Lemma 3 and the Corollary

to T e Lin expressed in (13) and obtain

F : T = $(tr T)(2/t + 3/1)1 + /i(T + T*) - ^ (tr T)I + oc(T - T*)

= A(tr T)I + n(T + T*) + <x(T - T*). (49)

This is just the expression (2) in (iii). Finally, to verify the implication (iii) => (i) means to

check whether every F of the form (2) satisfies the isotropy condition (19). To this end,

taking tr (QTQ*) = tr T V Q e Orth into account, from (2) we have

F : (QTQ*) = A(tr T)I + (n + a) QTQ* + (n - a)QT*Q*

= Q[A(tr T)I + {n + a)T + (n - a)T*]Q* = Q(F : T)Q*, (50)

which shows that (iii) => (i).
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