AN ALTERNATIVE PROOF OF THE REPRESENTATION THEOREM FOR ISOTROPIC, LINEAR ASYMMETRIC STRESS-STRAIN RELATIONS*

By
GUO ZHONG-HENG

The Johns Hopkins University

Theorem. Let $\mathbb{F}: \operatorname{Lin} \rightarrow \operatorname{Lin}$ be linear and isotropic. Then there are scalars λ, μ, and α such that

$$
\begin{equation*}
\mathbb{F}: \mathbf{T}=\lambda(\operatorname{tr} \mathbf{T}) \mathbf{I}+(\mu+\alpha) \mathbf{T}+(\mu-\alpha) \mathbf{T}^{*} \quad(\forall \mathbf{T} \in \operatorname{Lin}) . \tag{1}
\end{equation*}
$$

Conversely, any such function is linear and isotropic.
This statement, proved in [1], provides a general representation for linear isotropic tensor-valued functions of tensors. The statement (1) was given in coordinate form and proved in a different way earlier in [2]. Along lines of reasoning exploited in [3, 4], we offer in this brief note an alternative proof of the following.

Representation Theroem. For some set Set of Lin, the following statements are equivalent:
(i) $\mathrm{Set}=1 \mathrm{st}$.
(ii) The subspaces Sph, Dev, and Skw of Lin are invariant characteristic spaces of Set.
(iii) There are scalars $\lambda(\mathbb{F}), \mu(\mathbb{F})$, and $\alpha(\mathbb{F})$ such that

$$
\begin{equation*}
\mathbb{F}: \mathbf{T}=\lambda(\operatorname{tr} \mathbf{T}) \mathbf{I}+(\mu+\alpha) \mathbf{T}+(\mu-\alpha) \mathbf{T}^{*} \quad(\forall \mathbb{F} \in \operatorname{Set}, \mathbf{T} \in \operatorname{Lin}) . \tag{2}
\end{equation*}
$$

The notations used above and later on are as follows.
Let \mathscr{R} be the space of scalars and \mathscr{V} a 3-dimensional Euclidean space with scalar product uv and vector product $\mathbf{u} \wedge \mathbf{v}$. Lin is the space of all linear transformations (or simply tensors) on \mathscr{V}, with identity I. Given a tensor $\mathbf{T}, \mathbf{T}^{*}$ denotes its transpose and $\operatorname{tr} \mathbf{T}$ its trace. The transpose of the tensor product $\mathbf{u} \otimes \mathbf{v}$ is $(\mathbf{u} \otimes \mathbf{v})^{*}=\mathbf{v} \otimes \mathbf{u}$. Given an orthonormal basis $\left\{\mathbf{e}_{i}\right\}$ or \mathscr{V}, any $\mathbf{u} \in \mathscr{V}$ and $\mathbf{T} \in \operatorname{Lin}$ may be expressed in dyadic form:

$$
\begin{equation*}
\mathbf{u}=u_{i} \mathbf{e}_{i}, \quad \mathbf{T}=T_{i j} \mathbf{e}_{i} \otimes \mathbf{e}_{j}, \tag{3}
\end{equation*}
$$

and all the following operations may be interpreted in the language of scalar products of the corresponding basis vectors of the elements concerned, e. g.

$$
\begin{gather*}
\mathbf{u v}=\left(u_{i} \mathbf{e}_{i}\right)\left(v_{j} \mathbf{e}_{j}\right)=u_{i} v_{j}\left(\mathbf{e}_{i} \mathbf{e}_{j}\right)=u_{i} v_{j} \delta_{i j}=u_{i} v_{i}, \tag{4}\\
\mathbf{T u}=\left(T_{i j} \mathbf{e}_{i} \otimes \mathbf{e}_{j}\right)\left(u_{k} \mathbf{e}_{k}\right)=T_{i j} u_{k}\left(\mathbf{e}_{j} \mathbf{e}_{k}\right) \mathbf{e}_{i}=T_{i j} u_{j} \mathbf{e}_{i}, \tag{5}
\end{gather*}
$$

[^0]\[

$$
\begin{gather*}
\mathbf{u T}=\left(u_{k} \mathbf{e}_{k}\right)\left(T_{j i} \mathbf{e}_{j} \otimes \mathbf{e}_{i}\right)=u_{k} T_{j i}\left(\mathbf{e}_{k} \mathbf{e}_{j}\right) \mathbf{e}_{i}=u_{j} T_{j i} \mathbf{e}_{i}, \tag{6}\\
\mathbf{A}: \mathbf{B}=\left(A_{i j} e_{i} \otimes \mathbf{e}_{j}\right):\left(B_{m n} \mathbf{e}_{m} \otimes \mathbf{e}_{n}\right)=A_{i j} B_{m n}\left(\mathbf{e}_{i} \mathbf{e}_{m}\right)\left(\mathbf{e}_{j} \mathbf{e}_{n}\right)=A_{i j} B_{i j}, \tag{7}\\
\mathbf{I}: \mathbf{T}=T_{i i}=\operatorname{tr} \mathbf{T}, \tag{8}
\end{gather*}
$$
\]

where $\mathbf{u}, \mathbf{v} \in \mathscr{V}$ and $\mathbf{A}, \mathbf{B}, \mathbf{T} \in \operatorname{Lin}$. Every \mathbf{T} possesses at least one right proper direction \mathbf{r} $(\neq 0)$,

$$
\begin{equation*}
\mathbf{T r}=\lambda \mathbf{r} \tag{9}
\end{equation*}
$$

and one left proper direction $\mathbf{l}(\neq 0)$,

$$
\begin{equation*}
\mathrm{IT}=\lambda \mathbf{I}, \tag{10}
\end{equation*}
$$

λ being the associated proper value. If $\mathbf{r}=I$, we call \mathbf{r} simply a proper direction. Further, let Sym, Skw, Orth, Sph, and Dev denote, respectively, the sets of symmetric, skew, orthogonal, spherical (scalar multiples of \mathbf{I}), and deviatoric (traceless symmetric) tensors. Given noncoplanar $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathscr{V}$, every $\mathbf{A} \in$ Skw may be expressed as (with $\xi, \eta, \zeta \in \mathscr{R}$):

$$
\begin{equation*}
\mathbf{A}=\xi(\mathbf{u} \otimes \mathbf{v}-\mathbf{v} \otimes \mathbf{u})+\eta(\mathbf{v} \otimes \mathbf{w}-\mathbf{w} \otimes \mathbf{v})+\zeta(\mathbf{w} \otimes \mathbf{u}-\mathbf{u} \otimes \mathbf{w}) . \tag{11}
\end{equation*}
$$

The space Lin may be viewed as the direct sum of subspaces Sph, Dev, and Skw:

$$
\begin{equation*}
\mathbf{L i n}=\mathbf{S p h} \oplus \operatorname{Dev} \oplus \operatorname{Skw} \tag{12}
\end{equation*}
$$

It means that every $\mathbf{T} \in \operatorname{Lin}$ has a unique additive decomposition in the form

$$
\begin{equation*}
\mathbf{T}=\mathbf{S}+\mathbf{D}+\mathbf{A} \tag{13}
\end{equation*}
$$

where

$$
\begin{gather*}
\mathbf{S}\left[=\frac{1}{3}(\operatorname{tr} \mathbf{T}) \mathbf{I}\right] \in \mathbf{S p h}, \tag{14}\\
\mathbf{D}\left[=\frac{1}{2}\left(\mathbf{T}+\mathbf{T}^{*}\right)-\frac{1}{3}(\operatorname{tr} \mathbf{T}) \mathbf{I}\right] \in \operatorname{Dev}, \tag{15}\\
\mathbf{A}\left[=\frac{1}{2}\left(\mathbf{T}-\mathbf{T}^{*}\right)\right] \in \mathbf{S k w} . \tag{16}
\end{gather*}
$$

Now let \mathbb{L} in be the space of all linear transformations on Lin. We shall call them simply mappings, omitting the adjective "linear". The dyadic form of $\mathbb{F} \in \mathbb{L}$ in is

$$
\begin{equation*}
\mathbb{F}=F_{i j k l} \mathbf{e}_{i} \otimes \mathbf{e}_{j} \otimes \mathbf{e}_{k} \otimes \mathbf{e}_{l} \tag{17}
\end{equation*}
$$

and the action of \mathbb{F} upon $T \in \operatorname{Lin}$ is effectuated by means of a double $\operatorname{dot}(7)$ as follows:

$$
\begin{equation*}
\mathbb{F}: \mathbf{T}=\left(F_{i j k l} \mathbf{e}_{i} \otimes \mathbf{e}_{j} \otimes \mathbf{e}_{k} \otimes \mathbf{e}_{l}\right):\left(T_{m n} \mathbf{e}_{m} \otimes \mathbf{e}_{n}\right)=F_{i j k l} T_{k l} \mathbf{e}_{i} \otimes \mathbf{e}_{j} \tag{18}
\end{equation*}
$$

For the proof of the stated representation theorem, some definitions and lemmata are needed. Those lemmata already proved by other authors are indicated in every case.

Definition 1: A mapping \mathbb{F} is isotropic if and only if

$$
\begin{equation*}
\mathbf{Q}(\mathbb{F}: \mathbf{T}) \mathbf{Q}^{*}=\mathbb{F}:\left(\mathbf{Q T Q}^{*}\right) \quad(\forall \mathbf{T} \in \operatorname{Lin}, \mathbf{Q} \in \text { Orth }) . \tag{19}
\end{equation*}
$$

The set of all isotropic mappings is denoted by $\| s t$.
Definition 2: A scalar λ is called a proper value of a mapping \mathbb{F} if there is a tensor \mathbf{R} such that

$$
\begin{equation*}
\mathbb{F}: \mathbf{R}=\lambda \mathbf{R} . \tag{20}
\end{equation*}
$$

We call \mathbf{R} a proper direction corresponding to λ. The characteristic space for \mathbb{F} corresponding to λ is the subspace of Lin consisting of all tensors satisfying (20). Generally, the
characteristic spaces of different mappings are different. If every mapping from some set of Lin has the same characteristic space (the corresponding proper values may be distinct), we say that this characteristic space is invariant for this set of mappings.

Lemma 1 (Rivlin-Ericksen, Serrin, Noll). Every proper direction of the symmetric or skew argument $\mathbf{T} \in \operatorname{Lin}$ of an $\mathbb{F} \in \|$ st is also a proper direction of the value $\mathbb{F}: \mathbf{T}$.

This lemma holds also for non-linear mappings. For the proof the reader is referred to to [5, p. 167].

Lemma 2 (Lew). Let $\mathbf{D} \in \operatorname{Dev}$. Then there is an orthonormal basis $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ such that

$$
\begin{equation*}
\mathbf{D}=\xi(\mathbf{u} \otimes \mathbf{v}+\mathbf{v} \otimes \mathbf{u})+\eta(\mathbf{v} \otimes \mathbf{w}+\mathbf{w} \otimes \mathbf{v})+\zeta(\mathbf{w} \otimes \mathbf{u}+\mathbf{u} \otimes \mathbf{w}) \tag{21}
\end{equation*}
$$

with $\xi, \eta, \zeta \in \mathscr{R}$.
The proof of this lemma was furnished by J. Lew to M. E. Gurtin in a private communication in 1968 (cf. [3, pp. 36-37]).
Lemma 3. Sph is an invariant characteristic space for Dst.
Proof. Taking into account that every $\mathbf{S} \in \operatorname{Sph}$ is a scalar multiple of \mathbf{I}, and the mapping is linear, it suffices at first to use the isotropy definition (19) for unity argument to get

$$
\begin{equation*}
\mathbf{Q}(\mathbb{F}: \mathbf{I})=(\mathbb{F}: \mathbf{I}) \mathbf{Q} \quad(\forall \mathbb{F} \in \text { Ost, } \mathbf{Q} \in \text { Orth }) . \tag{22}
\end{equation*}
$$

Assume that \mathbf{r} is a proper direction of the value $\mathbb{F}: \mathbf{I}$:

$$
\begin{equation*}
(\mathbb{F}: \mathbf{I}) \mathbf{r}=\beta \mathbf{r} . \tag{23}
\end{equation*}
$$

Then, from (22),

$$
\begin{equation*}
(\mathbb{F}: \mathbf{I}) \mathbf{Q r}=\mathbf{Q}(\mathbb{F}: \mathbf{I}) \mathbf{r}=\beta \mathbf{Q r} . \tag{24}
\end{equation*}
$$

Because \mathbf{Q} is arbitrary, (24) leads to the conclusion that every direction is a proper direction for $\mathbb{F}: I$ with the same proper value $\beta(\mathbb{F})$; in other words,

$$
\begin{equation*}
\mathbb{F}: \mathbf{I}=\beta \mathbf{I}, \tag{25}
\end{equation*}
$$

or, by virtue of the linearity of \mathbb{F},

$$
\begin{equation*}
\mathbb{F}: \mathbf{S}=\beta(\mathbb{F}) \mathbf{S} \quad(\forall \mathbb{F} \in \mathbb{s} t, \mathbf{S} \in \mathbf{S p h}) . \tag{26}
\end{equation*}
$$

Lemma 4. Let $\mathbb{F} \in$ Ist. Then there are scalars $\varphi_{ \pm}$(in general $\varphi_{+} \neq \varphi_{-}$) such that

$$
\begin{equation*}
\mathbb{F}:(\mathbf{u} \otimes \mathbf{v}+\mathbf{v} \otimes \mathbf{u})=2 \varphi_{ \pm}(\mathbf{u} \otimes \mathbf{v} \pm \mathbf{v} \otimes \mathbf{u}) \quad(\forall \text { non-collinear } \mathbf{u}, \mathbf{v} \in \mathscr{V}) . \tag{27}
\end{equation*}
$$

Proof. The argument $\mathbf{u} \otimes \mathbf{v} \pm \mathbf{v} \otimes \mathbf{u}$ has a proper direction

$$
\begin{equation*}
\mathbf{w}:=\mathbf{u} \wedge \mathbf{v} \tag{28}
\end{equation*}
$$

By virtue of Lemma 1, we have

$$
\begin{equation*}
[\mathbb{F}:(\mathbf{u} \otimes \mathbf{v} \pm \mathbf{v} \otimes \mathbf{u})] \mathbf{w}=\mathbf{w} \mathbb{F}:(\mathbf{u} \otimes \mathbf{v} \pm \mathbf{v} \otimes \mathbf{u})=\hat{\beta}_{ \pm} \mathbf{w} \tag{29}
\end{equation*}
$$

Referred to the basis $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$, the value $\mathbb{F}:(\mathbf{u} \otimes \mathbf{v} \pm \mathbf{v} \otimes \mathbf{u})$ may be expressed in the dyadic form:

$$
\begin{align*}
\mathbb{F}:(\mathbf{u} \otimes \mathbf{v} \pm \mathbf{v} \otimes \mathbf{u})= & \beta_{11} \mathbf{u} \otimes \mathbf{u}+\beta_{12} \mathbf{u} \otimes \mathbf{v}+\beta_{13} \mathbf{u} \otimes \mathbf{w}+\beta_{21} \mathbf{v} \otimes \mathbf{u} \\
& +\beta_{22} \mathbf{v} \otimes \mathbf{v}+\beta_{23} \mathbf{v} \otimes \mathbf{w}+\beta_{31} \mathbf{w} \otimes \mathbf{u}+\beta_{32} \mathbf{w} \otimes \mathbf{v}+\beta_{33} \mathbf{w} \otimes \mathbf{w} \tag{30}
\end{align*}
$$

Generally, the $\beta_{i j}(i, j=1,2,3)$ depend on \mathbf{u} and \mathbf{v}, and of course on the sign " \pm ". Inserting (30) into (29), we obtain

$$
\begin{align*}
& \beta_{13} \mathbf{u}+\beta_{23} \mathbf{v}+\left(\beta_{33}-\beta_{ \pm}\right) \mathbf{w}=\mathbf{0} \tag{31}\\
& \beta_{31} \mathbf{u}+\beta_{32} \mathbf{v}+\left(\beta_{33}-\beta_{ \pm}\right) \mathbf{w}=\mathbf{0} \tag{32}
\end{align*}
$$

The linear independence of $\mathbf{u}, \mathbf{v}, \mathbf{w}$, leads to

$$
\begin{gather*}
\beta_{13}=\beta_{31}=\beta_{23}=\beta_{32}=0 \tag{33}\\
\beta_{33}=\beta_{ \pm}(\mathbf{u}, \mathbf{v})=\beta_{ \pm} /|\mathbf{w}|^{2} \tag{34}
\end{gather*}
$$

Taking these results and

$$
\begin{gather*}
\mathbf{Q}(\mathbf{u} \otimes \mathbf{v} \pm \mathbf{v} \otimes \mathbf{u}) \mathbf{Q}^{*}=(\mathbf{Q u}) \otimes(\mathbf{Q} \mathbf{v}) \pm(\mathbf{Q} \mathbf{v}) \otimes(\mathbf{Q u}) \tag{35}\\
(\mathbf{Q u}) \wedge(\mathbf{Q} \mathbf{v})=\mathbf{Q}(\mathbf{u} \wedge \mathbf{v})=\mathbf{Q} \mathbf{w} \tag{36}
\end{gather*}
$$

into account, and applying the isotropy definition (19) to the expression (30), we have, $\forall \mathbf{Q} \in$ Orth,

$$
\begin{align*}
&\left(\beta_{11}-\beta_{11}^{Q}\right)(\mathbf{Q u}) \otimes(\mathbf{Q u})+\left(\beta_{12}-\beta_{12}^{Q}\right)(\mathbf{Q u}) \otimes(\mathbf{Q v}) \\
&+\left(\beta_{21}-\beta_{21}^{Q}\right)(\mathbf{Q v}) \otimes(\mathbf{Q u})+\left(\beta_{22}-\beta_{22}^{Q}\right)(\mathbf{Q v}) \otimes(\mathbf{Q v}) \\
&+\left[\beta_{ \pm}(\mathbf{u}, \mathbf{v})-\beta_{ \pm}(\mathbf{Q u}, \mathbf{Q} \mathbf{v})\right](\mathbf{Q w}) \otimes(\mathbf{Q w})=\mathbf{0} \tag{37}
\end{align*}
$$

where $\beta_{i j}^{Q}=\beta_{i j}(\mathbf{Q u}, \mathbf{Q v})$. By virtue of the linear independence of the dyadic basis above, we get from (37)

$$
\begin{gather*}
\beta_{i j}(\mathbf{u}, \mathbf{v})=\beta_{i j}(\mathbf{Q u}, \mathbf{Q} \mathbf{v}) \quad(i, j=1,2), \tag{38}\\
\beta_{ \pm}(\mathbf{u}, \mathbf{v})=\beta_{ \pm}(\mathbf{Q u}, \mathbf{Q} \mathbf{v}) . \tag{39}
\end{gather*}
$$

Since \mathbf{Q} is arbitrary, these coefficients depend on the sign " \pm " only. Thus, (30) reduces to $\mathbb{F}:(\mathbf{u} \otimes \mathbf{v} \pm \mathbf{v} \otimes \mathbf{u})=\beta_{11} \mathbf{u} \otimes \mathbf{u}+\beta_{12} \mathbf{u} \otimes \mathbf{v}+\beta_{21} \mathbf{v} \otimes \mathbf{u}+\beta_{22} \mathbf{v} \otimes \mathbf{v}$

$$
\begin{equation*}
+\beta_{ \pm}(\mathbf{u} \wedge \mathbf{v}) \otimes(\mathbf{u} \wedge \mathbf{v}) . \tag{40}
\end{equation*}
$$

The assumed linearity of \mathbb{F} makes it also linear relative to \mathbf{u} and \mathbf{v}; therefore

$$
\begin{equation*}
\beta_{11}=\beta_{22}=\beta_{ \pm}=0 \tag{41}
\end{equation*}
$$

and, consequently,

$$
\begin{equation*}
\mathbb{F}:(\mathbf{u} \otimes \mathbf{v} \pm \mathbf{v} \otimes \mathbf{u})=\beta_{12} \mathbf{u} \otimes \mathbf{v}+\beta_{21} \mathbf{v} \otimes \mathbf{u} \tag{42}
\end{equation*}
$$

Using the linearity again with (42), we have

$$
\begin{equation*}
\mathbb{F}:(\mathbf{u} \otimes \mathbf{v} \pm \mathbf{v} \otimes \mathbf{u})= \pm \mathbb{F}:(\mathbf{v} \otimes \mathbf{u} \pm \mathbf{u} \otimes \mathbf{v})= \pm\left(\beta_{21} \mathbf{v} \otimes \mathbf{u}+\beta_{21} \mathbf{u} \otimes \mathbf{v}\right) \tag{43}
\end{equation*}
$$

A comparison of (42) and (43), by virtue of the linear independence of $\mathbf{u} \otimes \mathbf{v}$ and $\mathbf{v} \otimes \mathbf{u}$, gives

$$
\begin{equation*}
\beta_{12}= \pm \beta_{21} \equiv 2 \varphi_{ \pm} \tag{44}
\end{equation*}
$$

and, finally, from (42) the representation (27).
Introducting the notation

$$
\begin{equation*}
\mu(\mathbb{F})=\varphi_{+}, \quad \alpha(\mathbb{F})=\varphi_{-}, \tag{45}
\end{equation*}
$$

we apply (27) in sequence to the expressions (21) and (11); because \mathbb{F} is linear, we get the following

Corollary. Dev and Skw are invariant characteristic spaces for \|st, i.e., $\forall \mathbb{F} \in$ \|st,

$$
\begin{array}{ll}
\mathbb{F}: \mathbf{D}=2 \mu(\mathbb{F}) \mathbf{D} & (\forall \mathbf{D} \in \mathrm{Dev}), \\
\mathbb{F}: \mathbf{A}=2 \alpha(\mathbb{F}) \mathbf{A} & (\forall \mathbf{A} \in \mathbf{S k w}), \tag{47}
\end{array}
$$

At this point we are already able to prove the representation theorem. On the basis of Lemma 3 and corollary, (i) implies (ii) directly. In order to show the implication (iii) by (ii), we assume that for $\mathbb{F} \in \operatorname{Set}, 3 \mathrm{k}(\mathbb{F}), 2 \mu(\mathbb{F})$ and $2 \alpha(\mathbb{F})$ are the proper values corresponding to the characteristic spaces Sph, Dev and Skw, respectively. Introducing the scalar $\lambda(\mathbb{F})$:

$$
\begin{equation*}
3 \mathrm{k}(\mathbb{F})=2 \mu(\mathbb{F})+3 \lambda(\mathbb{F}), \tag{48}
\end{equation*}
$$

and taking the linearity of \mathbb{F} and (14-16) into account, we use Lemma 3 and the Corollary to $T \in \operatorname{Lin}$ expressed in (13) and obtain

$$
\begin{align*}
\mathbb{F}: \mathbf{T} & =\frac{1}{3}(\operatorname{tr} \mathbf{T})(2 \mu+3 \lambda) \mathbf{I}+\mu\left(\mathbf{T}+\mathbf{T}^{*}\right)-\frac{2 \mu}{3}(\operatorname{tr} \mathbf{T}) \mathbf{I}+\alpha\left(\mathbf{T}-\mathbf{T}^{*}\right) \\
& =\lambda(\operatorname{tr} \mathbf{T}) \mathbf{I}+\mu\left(\mathbf{T}+\mathbf{T}^{*}\right)+\alpha\left(\mathbf{T}-\mathbf{T}^{*}\right) \tag{49}
\end{align*}
$$

This is just the expression (2) in (iii). Finally, to verify the implication (iii) \Rightarrow (i) means to check whether every \mathbb{F} of the form (2) satisfies the isotropy condition (19). To this end, taking $\operatorname{tr}\left(\mathbf{Q T Q}^{*}\right)=\operatorname{tr} \mathbf{T} \forall \mathbf{Q} \in$ Orth into account, from (2) we have

$$
\begin{align*}
\mathbb{F}:\left(\mathbf{Q T Q}^{*}\right) & =\lambda(\operatorname{tr} \mathbf{T}) \mathbf{I}+(\mu+\alpha) \mathbf{Q T Q}^{*}+(\mu-\alpha) \mathbf{Q T}^{*} \mathbf{Q}^{*} \\
& =\mathbf{Q}\left[\lambda(\operatorname{tr} \mathbf{T}) \mathbf{I}+(\mu+\alpha) \mathbf{T}+(\mu-\alpha) \mathbf{T}^{*}\right] \mathbf{Q}^{*}=\mathbf{Q}(\mathbb{F}: \mathbf{T}) \mathbf{Q}^{*}, \tag{50}
\end{align*}
$$

which shows that (iii) \Rightarrow (i).

References

[1] Zhong-heng Guo, The representation theorem for isotropic, linear asymmetric stress-strain relations, J. Elasticity, to appear
[2] H. Jeffreys, Cartesian tensors, University Press, Cambridge, 1963
[3] M. E. Gurtin, The linear theory of elasticity, in Handbuch der Physik (ed. C. Truesdell) Vol. VIa/2, Springer, Berlin-Heidelberg- New York, 1972
[4] L. C. Martins and P. Podio Guiduli, A new proof of the representation theorem for isotropic, linear constitutive relations, J. Elasticity 8, 319-322 (1978)
[5] C. Truesdell, A first course in rational continuum mechanics, Academic Press, New York-San FranciscoLondon, 1977

[^0]: * Received May 10, 1982. The research reported here was done with the partial support of a grant from the National Science Foundation to The Johns Hopkins University. The author is grateful to Professor C. Truesdell for his encouragement.

