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Abstract. The solution of an important class of boundary-value problems in aniso-

tropic inhomogeneous thermostatics and elastostatics is obtained in terms of a boundary

integral equation. The equation may be used as a basis for the numerical solution of

particular boundary-value problems.

1. Introduction. The boundary integral equation method is now well established as

an extremely useful method for the numerical solution of boundary-value problems go-

verned by linear elliptic partial differential equations with constant coefficients (see for

example, Cruse and Lachat [17], Cruse and Rizzo [2]). The method consists of expressing

the solution to a particular problem in terms of an integral equation with the integral

taken round the boundary of the region under consideration. It is possible to derive this

integral equation for a wide class of physical problems. In particular, the boundary inte-

gral equation is readily obtained for problems in homogeneous elastostatics and thermo-

statics where the governing equations are elliptic with constant coefficients. The integral

equation is not so easily derived in a usable form for inhomogeneous problems in which

the governing equations are still of the elliptic type but with variable coefficients. How-

ever, some progress has been made in deriving boundary integral equations for such prob-

lems and, in particular, in a recent paper Clements [3] obtained such an equation for a

single second-order elliptic equation.

The aim of the present paper is to extend the work of Clements to a more general

second-order equation. Specifically, the equation considered by Clements covers a class of

inhomogeneous problems in thermostatics and elastostatics for isotropic materials. The

present work is concerned with the equation which governs the same class of problems for

anisotropic materials.

2. The boundary-value problem. Consider the elliptic partial differential equation

d

cbc,- 8xj.
= 0, (2.1)

where the repeated suffix summation convention (summing from 1 to 2) is employed. The

coefficients ki} = kjt are taken to be functions of x2 only. Eq. (2.1) governs the static plane
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temperature field or antiplane stress field in an anisotropic inhomogeneous material (see

Clements [5]). In the first case the ktj denote the heat conduction coefficients and in the

second the elastic constants. In either case the coefficients are constrained by physical

consideration to be positive and to satisfy the ellipticity condition

k\2 — ki \k22 < 0. (2.2)

Here a solution to (2.1) is sought which is valid in a region R in E2 with boundary C

which consists of a finite number of piecewise smooth closed curves. On C either the

dependent variable 4> is specified or is specified, where n denotes the outward

pointing normal to C. In elasticity k^dcp/dxjjrii provides the traction vector and in ther-

mostatics it yields the heat flux.

The method of solution will be to express the solution to the problem in terms of an

integral taken round the boundary C of the region R under consideration. In general this

integral equation cannot be solved analytically. However, it may be solved numerically by

using well-established procedures and hence forms the basis for the numerical solution of

particular problems.

3. A general analytical solution to (2.1). The aim in this section is to obtain an ana-

lytical solution to (2.1) in terms of an infinite series involving a single arbitrary analytic

function. To achieve this aim, consider a representation for the dependent variable <j> in

the form

4> = t Tn(x2)En(x 1 + S(x2)), T0 # 0, (3.1)
n = 0

where the En satisfy the recurrence relations

£; = £„_! for n= 1,2,..., (3.2)

where the prime denotes the derivative with respect to the argument in question. Substitu-

tion shows that if the 0 given by (3.1) is to satisfy (2.1) then the coefficients T„(x2) and

S(x2) must be such that

I [{*n + 2 k12S' + k22S'2}TnE: + {k'22 S'Tn + 2k21T'n
n = 0

+ 2k22S'T'n + k22 S"Tn + k'2lTn}E'n + {k'22 T'„ + k22 = 0.

This equation may be rewritten in the form

z
n — 0

{ku+2k12S' + k22S'2}TnE: + 2(kl2 + k22 S')1/2

d 1
= 0. (3.3)' ~ {(*12 + *22 Sri2Tn}E'n + (k22 T'n)En

The first term in (3.6) will be zero for all n if

S' = k2il-kl2 ± (k\2 - knk22yi2l (3.4)

while use of (3.2) in the second term together with use of the third term provides

T0 = a[/c12 + *22^'] 1/2 (a arbitrary constant), (3.5)
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(d/dx2){k22 T,]
■ 1/2

(^12 + k22 S

kill
r/2 J dx2 for n = 1, 2,  (3.6)

In view of (2.2) it follows that (3.4) yields a complex conjugate pair r(x2) and i(x2) where

x(x2) is obtained from (3.4) by taking the positive sign. The corresponding T„ obtained

from (3.5) and (3.6) will be denoted by T„ and T„ respectively. Hence a real function </>

which satisfies (2.1) may be written in the form

<t> = Z LT„(x2)En(xi + t(x2)) + f„(x2)£n(x, + f(x2)], (3.7)
n = 0

where

T0 = (rl/2(knk22-ki2y1^, (3.8)

T„ — +2(kiik22 — k\2 ■1/4
"(<i/^2){/c22 t;_

•12.1

Let z = Xj + t(x2) so that, from (3.2),

kill
2rJ

dx2. (3.9)

E„(z) =

(knk22 — &i2)1/4

En_l{t)dt for n= 1,2,  (3.10)

Hence

If we choose

En(z) = — 3 — | (z - {)" lE0(t) dt for n>l. (3.11)

En{z) = i(i)1/20>n(z) for n = 0,1,2,3,... (3.12)

and a = 1, then (3.7) yields

t»w +_i^yr
0

(z_t)»-icDo(f)^l (3.13)

where

h0 = (kilk22-k2l2)-1'\ (3.14)

"(^x2){fc22^-t}"
''(! _ 2(^11^22 ^

2 *-1/4

J (ki x/c22 — fci2)1/4.
dx2 for n > 1. (3.15)

Eq. (3.13) provides the required solution to (2.1) in any domain in which the infinite

series converges uniformly. The uniform convergence of the series may be investigated

after the manner of Bergman [4], but here it will be sufficient to note that for certain

inhomogeneities the series (3.13) truncates after a finite number of terms. In such cases

(3.13) will certainly provide the required solution to (2.1). For example, the series termi-

nates after one term if

h'0 = — (K constant) (3.16)
k 22

and after n terms if h'„_ t = K/k22. In particular, if

kij = lijf(x 2), (3-17)
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where the Xtj are constants, then for the series to terminate after one term the function

f(x2) must satisfy

(AuA22 - A?2)-1/4 /- [/(x2)r1/2 = KIX12f(x2)
(IX 2

which yields

f(x2) = (Cx2 + D)2

where C and D are arbitrary constants. Thus if

fcn = An(Cx2 + D)2, k22 = A22(Cx2 + D)2, kl2 = Xl2(Cx2 + D)2

then a general solution to (2.1) may be written in the form

<t> = A (Cx2 + £>)_1^[<D0(z)]

where A = (AUA22 — ii2)~1/4 and <I>0(z) is an arbitrary analytic function. More generally,

it may be verified that the series (3.13) terminates after a finite number of terms if the

coefficients ktJ are given by (3.17) with

f(x2) = (Cx2 + D)2N for N = 0, ±1, ±2,... .

4. A reciprocal theorem

Theorem. Let 4> be a solution of

_d_ ~

dx
k ^

j dxjj
= 0 (4.1)

valid in the region R in E2 bounded by the contour C consisting of a finite number of

piecewise smooth closed curves. Also let be another solution of (4.1) valid in R. Then

I [*«*, * "'*]ds "a (4-2)

Proof:

r!(h f r rlrh r)(h ~l
ds

C 5<t> f 1. l
k"s^l*n' + k"d^l*"\

d_

R [SXi

, 8<t> ,
" *_

d
+

8x2 SAk2j — *H!' dR

and using (4.1)

Similarly,

d(p 5\jj d(f) di\i
ClJ dxj cbcj + 2j dxj dx2

dR. (4.4)

The required result follows immediately by subtraction of (4.4) from (4.3).
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5. The integral equation. In (4.2) let (p denote a required solution to a boundary-

value problem governed by (2.1) and let ip be the solution to (2.1) given by (3.13) with

$0(2) = Yn log (z ~ z°)' t5-1)

where z0 = a + t(b) with (a, b) a point in R. Hence

(z - t)"'1 log(t - z0) dt}
1 00 h (r \

= — ®{hQ log(z - z0) + £ 2
2tt 1 u w -t-j (n - 1)! J

= ~ ®{K log(z - z0)

- hn(x2) (n - l)!(-ir (z - zo)""1"' , +1
+ L 7 7TT z. -7, , W n Uz - zo) l°g(z - zo)

n=i (n - 1)! r = 0 H(n - 1 - r)! r+ 1

-(-z0)r+1 log(-z0) - (r + l)"^ - z0)r+1 + (r + lr1*-^*1}- (5-2)

If (4.2) is to be valid with ip given by (5.2), then it is necessary to exclude the point (a, b) by

surrounding it with a small circle T of radius e. Then (4.2) yields

kij ds = °' ^

Now, on T,

c + r

x1 = a + £ cos 9, x2 = b + e sin 9, z0 = a + t(b),

z = xl + z(x2)

= a + s cos 9 + z(b + £ sin 9)

= a + £ cos 0 + r(b) + £ sin 0r'(fr) + 0(£2),

z — z0 = e[cos 9 + r'(ft)sin 0] + 0(e2),

so that

ip = ${h0(b + £ sin (9)log[fi(cos 0 + t'(b)sin 0) + 0(e2)]
2.71

® h„(b + £ sin 0) po + £coS9 + et/(fc)sin0 + O(E2)

+ y —  
„=i (n-1)! Jo

• [z0 + £ cos 8 + £ sin 0t'(fr) + 0(£2) — t]log(t — z0) df}.

Hence, on T, for small e,

^ = Tn W)log +

_# = J_ f h0(b)
8xl 2n (fi(cos 9 + sin 9x'(b))

# _ 1 J h0(b)z'(b)

dx2 2n |e(cos 9 + sin Or'(b))

+ 0(log £),

+ 0(log £).
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Thus, for small e,

dipIk,j — ds
dxj

1 ^ f + fciiW"! + (k21(b)n2 + k22(b)n2)x'{b)]

2k Jo cos 8 + sin 8r'(b)

• <p(a, b) dd + 0(e log e)

= — K{b)(j>(a, b) + 0(e log e),

where (since n1 = —cos 8, n2 = —sin 0)

*2* h0(b){[ku(b) + fc12(fr)]cos 6 + [k2l(b) + /c22(fr)]T'(b)sin 6}
K(b) = St fl_L ■ dd■ ^

cos 0 + sin Ox (b)

Now from physical considerations the parameters /ci;(x2) are bounded in R, so that if

the derivatives d(j>/dxl and d(p/dx2 are required to be bounded in R then it follows that,

for small 6,

d(b
kij — riiip ds= 0(s log e).

Hence

lim ku f~ - ku n.'^J ds = K(b)<t>(a, b).

Thus (5.3) yields

<j)(a, b) =
dtp dip

ds. (5.5)
K(b) Jc

This equation is the required boundary integral equation for the solution of the

boundary-value problem. If the point (a, b) is on the boundary of the region R then it is

necessary to replace the formula (5.4) by

K(b) = @ C" ho(b){lkn(b) + fe12(fr)]cos 9 + lk2l(b) + k22(b)y(b)sm 9} ̂

Jo cos 8 + sin 8x'{b)

The precise value of the angle a depends on the geometry of the boundary. If C has a

continuously turning tangent then a = n.

In certain special cases it may be possible to employ (5.5) to obtain a simple analytical

solution to a particular boundary-value problem. However, in general this will not be

practical and Eq. (5.5) then forms the basis for an effective numerical method for the

solution of the problem. The procedure for obtaining the numerical solution is as follows.

If kijd^/dxjtii is given on C then the integral in (5.5) with x0 e C may be discretized to

yield m linear simultaneous equations for 0 at m points on the boundary C of the region

R. The integral in (5.5) with (a, b) e R may then be suitably discretized so that the right-

hand side of (5.5) is known, and hence (j>{a, b) may be determined for all (a, b) e R. If, on

the other hand, the (p(a, b) are given on C then (5.5) may be discretized to yield m simulta-

neous linear equations for the kijdcp/dXjtii at m points on C. Eq. (5.5) with (a, b) e R then

yields <p(a, b). Mixed boundary data may be handled in a similar manner.
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