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A LINEAR INTEGRODIFFERENTIAL EQUATION FOR
VISCOELASTIC RODS AND PLATES*

By

KENNETH B. HANNSGEN

Abstract. It is proved that the resolvent kernel of a certain integrodifferential equa-
tion in Hilbert space is absolutely integrable on (0, o). The equation arises in the linear
theory of isotropic viscoelastic rods and plates.

1. Introduction. We study the (operator-valued) resolvent kernel of an integrodif-
ferential equation in Hilbert space which arises in the linear theory of isotropic vis-
coelastic rods and plates. As in [5, 2, 3], we find sufficient conditions for certain norms of
the resolvent and its derivative to be absolutely integrable, but here the kernel of the
equation is made up in a complicated way from the (distinct) moduli of stress relaxation
for compression and shear.

Throughout the paper, L denotes a positive self-adjoint linear operator defined on a
dense domain 2 of a Hilbert space 5. We consider the equation

Y@)=—-A*Ly®)+gt) (=d/dtteR" =[0, c0)), y(0)=yo,, (1.1)

where y, and g(¢) belong to #, A: R* — R is locally absolutely continuous, and * denotes
the convolution

t

hl * hz(t) = fhl(t d s)hz(s) ds.
0

The integral in (1.1) is a Bochner integral, and a solution belongs to C}(R*, #) n C(R*,

2).

The hypotheses on A will be stated in terms of its Fourier transform A4; the fact that A
is locally absolutely continuous will be deduced in Theorem 1.1(i). In this paper, the
Fourier transform h is defined for a function h such that h(t)e =" € IN(R*) for all ¢ > 0 by
the formula

h(z) = J e ™hitydt (Imt<0), h(zog)= lim Akx) (10€R),
0 t—=t0,Imt<0
whenever the limit exists.

The equation for a dynamic problem in linear viscoelasticity [1] can be obtained by a
“correspondence principle” from the equation for the corresponding problem in the
purely elastic case. After applying the Fourier transform to the elastic equation, one re-
places the elastic moduli of shear and compression (u and k) by Y,(7)/2 and Y,(t)/3 respec-
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tively, where Y, and Y, are the complex moduli of shear and compression for the vis-
coelastic material. For example, the transformed equation for transverse vibrations in a
viscoelastic plate [1, pp. 109-112] is

’y\* .

(5;> (x, 7) = —G,(1A%ji(x, 1) + H(x, 1), 1.2)

where H is a forcing term and
. (2b(1) + d(x)
Gi0) = ”“(’)<B(:) n 2d(r)>
with itd(t) = Y(x), ith(r) = Y,(1). Now suppose
A@)=dx)f(r) (Imzt<O0), (1.3)
where
w+m

f@) = Fb()/aw),  F(w) = (1.4)

pw+q’
with m = p =4, g = 1. Then formal differentiation of (1.1) (with L = A%, y(t) = (-, 1)),
followed by an application of the Fourier transform, yields (1.2) with some H. Similarly,
the equations for waves in a rod come from (1.1), (1.3), (1.4) withm =0, p =2, g = 1; for
longitudinal waves, L = —0%/0x?, while for bending waves, L = §*/0x*. In all cases we
must take self-adjoint boundary conditions.

Throughout this paper we assume that

m, p, and g are nonnegative, p > 0, and q > mp, (1.5)
a(t) and b(t) are continuous, nonnegative, nonincreasing,
convex, and not constant on R*, with a’(0) + b'(0) > — co. (1.6)

Thus (1.5) includes the examples given above. In the applied literature, the moduli a(t) and
b(t) are often assumed to be positive linear combinations of decaying exponentials. Pipkin
[7] takes a more general approach, but (1.6), even together with (1.17) below, seems to
include many of the plausible models and some implausible ones. If p = 0, (1.1) reduces to
the problem studied in [, 2, 3], where weaker hypotheses are imposed; in particular, 4(0)
need not be finite.

Let {E,} be the spectral family corresponding to L; without loss of generality we
assume that the spectrum of L is contained in [1, c0). Define

@

U(t)=qu(t, HdE,, U@= J uft, 4) dE,,
1

1
where u(t, 4) is the solution of
w(i)= —AA4 = ut), u0)=1. 1
Clearly,
IU@I < sup lut, D,  NLT2U@I < sup |27 2uft, ),

1€4<w 1Si<ow

where || - | denotes the norm of bounded operators from 3 to itself. Our main results,
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(1.15), (1.18), (1.19), and (1.20) in Theorem 1.1 below, then imply, respectively,

Ul <1 (teRY), (18)
lim || tU(2)|| = 0, (1.9)
J “1uo) dt < o, (1.10)
0
lel L_UZU'(t)ll dt < 0. (1.11)
0

Existence, uniqueness, and representation results for (1.1) work out just as in [5, 2, 3]. In
particular, the conclusions of Theorem 1.1 imply that

Uy = % [Uey] ifL Yye 9; (1.12)

moreover, if y, € 9, g: R — 5 is continuous with g(t) € 2 for all ¢, and Lg: R* — # is
locally Bochner-integrable, then the unique solution of (1.1) is given by

¥(®) = Ut)yo + U * g(0). (1.13)

Under weaker hypotheses, (1.13) gives the unique solution of (1.1) in a weak sense. Clear-
ly, (1.8) through (1.13) can be used to study the asymptotic behavior of y(t) as t— oo
under various assumptions on g. We refer the reader to [3] for further discussion.

THEOREM 1.1.  Suppose (1.5) and (1.6) hold.
(i) There exists B € I2(R*) such that the function

A(t) = f(c0)a(t) + f ‘B(s) ds
o

satisfies (1.3).
(i) For A > 0, u(t, A) satisfies

i(z, ) = [it + AA(x)] ! (Im z <0), (1.19)
lut, )| <1 (t=0), (1.15)

moreover,
sup A2yt 2) < o0 (T < ). (1.16)

0<A<ow,0=<t<T
(iii) If, in addition,
—a’ and —b' are convex on R*, (1.17)

then
lim sup |tu(t, A)| =0, (1.18)

t#+o 1€A<w

I sup |u(t, A)} dt < oo, (1.19)
0

1€i<w

f sup A™Y|ugt, A)| dt < oo. (1.20)
0

1€4<w
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Remark. In (i), it will be seen below in (2.11) that f(co) exists and is equal to
F(b(0)/a(0)).
2. Proof of Theorem 1.1. We first recall some consequences of (1.6). By [4],
d(t) = ¢(r) — it6(r) and b() are analytic in {Im 7 < 0}
and continuous in S = {r € ¢: Im 7 <0, 7 # 0}. Moreover,
if Im 7 < 0 and Re 7 > 0, d(r) and b(z) lie in
{—n/2 < arg w < 0}; if (1.17) holds, this
conclusion remains true when Imt =0, t > 0. (2.1)

In this paper, —n < arg w < (w € ).
Integration by parts and the Riemann-Lebesgue theorem show that

a(0) b()

()=—+0( "3, b= +0t"%) (t— o, 1€S); (2.2)

if (1.17) holds, this can be strengthened to

i) =222 o)
2.3)
B(T)=%?) bt(0)+ ot™}) (1o o0, 7€8)

From [8] (with slight modifications) we know that d(r) and b(r) are differentiable for t > 0
and

1/t

l 1/t
23z I a(t) dt <|a(r)l < 4 J a(t) dt,
0 0

e 24)
|d(7) < 40 J tatydt (¢ > 0),
0
fo" ta(z) dt
J (47 dp & < 2.5)

with similar estimates for b. By [5, Lemma 2.2],
() <0 (t>0). (2.6)
If (1.17) holds, [2, Lemma 5.1] shows that d and b belong to C(0, o) with

|a"()] < 6000 f 1/ttza(t) dt; 2.7
o

together with (2.4) and (2.5), this implies
J |wd"(@)| + 14| (t)l de
P

The analogous inequalities for b are, of course, valid.

< 0. (2.8)
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The fractional linear transformation F maps {Re w > 0} onto the disk with diameter
[m/q, 1/p]. Moreover,

0 <arg F(w) <argw 0 < arg w < 1/2),
F(%) = F(w) w e ).

It follows that arg d(z) f(t) lies between arg d(t) and arg b(z), and strictly between them
when arg d(t) # arg b(t) (t € S). In particular, if we write d(t) () = ®(t) — it®(z), then in
{Im 7 < 0} (and in S when (1.17) holds),

(2.9)

(1) > 0. (2.10)
By (2.2),
f@) =f(0)+ 01 (t— 0, 1€ ), (2.11)
with f(o0) = F(b(0)/a(0)) = L.
To prove (i), define

G(7) = [f(x) — f(0)][d'(7) + a(0)].

By (2.1), (2.2), and the properties of F, G belongs to the Hardy class H 2 in {Im t < 0}, so
G = B for some Bin I?(R"). But

1
77 000 + f(0)d(x) = f(2)a(z),

so (1.3) holds with A4 as in (i), as asserted.
By (2.10) and elementary transform theory, (1.14) holds, and [6, Theorem 1 i and its
proof] yields (1.15). Differentiation of (1.7) gives us
u'(t)= —ALAO)u(t) + A" * u(r)] (t>0),

so by (1.15),

T
sup |u,(t, A < X[A(O) + J | A'@) dt];

0

0st<T

this estimate and (1.15) yield (1.16).
In the remainder of this paper, we assume that (1.17) holds. We first develop estimates
on A. Using (2.3) and (1.5), one shows with a little calculation that

., _ b'(OYmp — q) — d(0)[pe® + 2mpa + mq]
Jm w0 = s+ 9 >0
lim 120(1) = a(0)f(o0) >0, (2.13)

1=+

2.12)

where a = b(0)/a(0).

If a [or b] belongs to L'(R*), then d(0) = [ a(t) dt [or b(0) = [& b(t) dt]; otherwise,
1/d(t)—> 0 (t— 0, T € S [and similarly for b] (see [4]). By examining the various cases (a or
binor notin I!, m = 0 or m # 0), one deduces that

. 1 . . .

lim —— exists and is real and nonnegative. (2.14)
=0

teS
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Thus for each 4 > 0
i(t, A) is continuous in {Im t < 0}, (2.15)

Since d, b € C0, oo) when (1.17) holds, 4 € C*0, o). We see from (2.1), (1.5), (2.4),
(2.7), (2.8), and (2.3) that

|7d"@)| + | A@)
dt < o0, 2.16
f B (216
2AII
[A@+ D _ o oy, 2.17)
| ()l
A0 = 0(1) (1— + 00,j=0,1,2). (2.18)
Furthermore, ii € C%(0, o0) as a function of 7, and
j
a—l;(_:}ﬁ =0(7/ Y (t— +00,j=0,1,2,A>0). (2.19)
By (2.3),
i, ) =01 (t—o0,7€8,4>0) (2.20)
By (1.14), (2.15), (2.20), (2.16), and the argument of [8, pp. 323-324],
u(-, A) e {(RY) 0 < i< ). (2.21)

We now follow the scheme of [5, 2]. Let D(z, A) = A(z) + (it/4), and choose p > 0 such
that

|[A@) =2t (O <t<p); (2.22)

p exists, by (2.4) and (2.14). Using the complex inversion formula for Laplace transforms,
together with a contour shift and integration by parts, we establish the representation

mu(t, A) = Im{A ™ uy () + id 7 2u,y(e) + A7 2u;(0) + uglt, A) + us(t, A}, (2.23)
where (see [2], Eq. (4.34) for the computation)
1 (%, A@)dt
ul(t) - t Jo e 132(1) ’
Y 24'()

wL=7 | 776 [1 At) ] 4.
1 (., 2tde
t Jo A1)’

[P 2 1
ut, )= 73, L"’ DG A [ﬁ(z) b, i>] .

_ L ([*.Dh
us(t, ) = vy J; e D(z, ) dt

The validity of this representation and the absolute convergence of the integrals are en-
sured by estimates (2.16) through (2.20) and (2.22).
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We show that
luglt, <M= (4 t=>1), (2.29)
lus(t, A)) < Mt™? A t=1). (2.25)
(Here and below, M denotes a finite constant, independent of ¢ and A; its value can
change from line to line.) Then by (2.23), (2.21), and (1.15), (1.19) follows. Moreover, (1.18)
is a consequence of (2.23), (2.24), (2.25), and the Riemann-Lebesgue theorem.
For (2.24), integrate by parts in the definition of u, (using (2.17)) and then use (2.17)

and (2.22).
For (2.25), first define w, = w,(4) > 0 by

Blw,) = 1/4;

by (2.6), w, is unique when it exists. Now let w(4) = w,(4) when w, exists and w, > p, and
let w(4) = p otherwise. As shown in [5], w is continuous and nondecreasing, and by (2.3),

w? = 1a(0) + o(A1?)  (A— o0). (2.26)
Moreover ([5, Eq. (6.8)]), there exists Q > 0 such that
@) —tlle® +d o1l _gol  @mp iz, 227)
T°A A
By (2.11) and (2.2),
O(t) = Lb(r) + Ot ?) (t— + o0). (2.28)
Using (2.27), we see that there exists R > 0 such that
L ) — A+t]L R
0lem—7|> o) "t[,‘;’( )+l 5 @2 (2.29)

Now choose p, > p so large that when w(4) > p, we have
w*L/4% > R/p,, (2.30)
14a(0) < w? < 21a(0) (see (2.26)). L < 4, and
¢ = 16R/a(0)L < w/2.

Thenifw > p,, 1 > }o,

L 1 w+1 8R
2fow- [z Lo (4) -5
Thus
L |T—w|L o]
Q‘G(T)—/I 2 <122,|t—w|28,w2p,). (2.31)

Integrate by parts in the definition of u, (using (2.18)) to see that

iAt? LB g Dl WD) [ A'x) 2Dz, A/L) i
)¢ v n T | ¢ | D yD T D AL |4
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Then by (2.10) and (2.18)
24 A
t, — || <
us < s L) <M

© 1—3 1.'_4 + 1—2) ]
—_ 1+ + dr |. 2.32
L [ j (I D, 401 D%, AL (232
In view of (2.10) and (2.18) it is clear that the right-hand side of (2.32) is bounded on
{A>=L:p<wl) <2p,} =A. For each 1e[L, o)A, let E, =[p,, 0/2], E, = [w/2,
w—c¢el,oy=[w—¢w+e], E, =[w+¢ ©). On E,, (2.29) and (2.30) imply that

Q1D(, /L) = Q1|0 — Lja| » DL R
21t 01
> @+ ol
4it
On E, u E4,(2.31) shows that

L|t— w|
24

On E,, (23) and (2.26) show that A™'=6(r) + O(w™?) (A— oo, uniformly for
|7 — w| < ¢). Then by (2.12) and (2.28),

Q1D(z, 4/L)| >

1
sup <o
02 201, | t-w|<c AP(T)

Thus for 4 ¢ A we can estimate the integral on the right in (2.32) as follows ((2.26) is

used):
© T 3 l— 2 +1 -4
L =M U [(w/4l)2 + a1+ a)/r):l de

-3/2 ,1 2
*. [(z— oA i w)3/813] &

-3/2

(1>2(t) <D3(f)]

JE

AR 72
U‘ (r—a»w gy R

© /2 ) 11/2 l
sM{Aj r‘3dt+l"’2f d1:+J. (—2+—3)do+28/1}
P1 0 4 o o

<MA

This establishes (2.25) and completes the proof of (1.18) and (1.19).
Finally, we sketch the proof of (1.10). In place of (2.23), we have

_ 1 (= 1Ak — A(r) .
nu,(t, 2) = Re {t > L iy e dt} (t > 0); (2.33)

the integral converges, by (2.16) and (2.19). Integration by parts, together with (2.16) and
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(2.19), shows that

© tA)— A[) M iV L
J; e ——D(T, 2 d‘tl < ; [1 +,[,, _—TlDz(t, Y dt |. (2.34)

Estimating the denominator as above when w > 2p,, we get

? Tt Qe Nde [ AP
b, TIDT, /L) T g, U@/A)°(1 + oft) g, (t — 0)/A°

N 7302 d1:+ A '+t Y)de
Es ®(7) b, (0 — w)Y/A°

w/2 71/2 © o 73/2
SM{J : dt+f A—‘fﬂf 2 ,d’da+2sa3/2}
o1 P1 o1 T e o

< MA32,

Thus by (2.33) and (2.34),

t2 sup | A7 Y2ut, A)| < oo.
az1

Since (1.16) holds, (1.20) is proved.
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