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A LINEAR INTEGRODIFFERENTIAL EQUATION FOR
VISCOELASTIC RODS AND PLATES*

By

KENNETH B. HANNSGEN

Abstract. It is proved that the resolvent kernel of a certain integrodifferential equa-

tion in Hilbert space is absolutely integrable on (0, oo). The equation arises in the linear

theory of isotropic viscoelastic rods and plates.

1. Introduction. We study the (operator-valued) resolvent kernel of an integrodif-

ferential equation in Hilbert space which arises in the linear theory of isotropic vis-

coelastic rods and plates. As in [5, 2, 3], we find sufficient conditions for certain norms of

the resolvent and its derivative to be absolutely integrable, but here the kernel of the

equation is made up in a complicated way from the (distinct) moduli of stress relaxation

for compression and shear.

Throughout the paper, L denotes a positive self-adjoint linear operator defined on a

dense domain 3> of a Hilbert space . We consider the equation

y'(t) = —A * Ly(f) + g(t) (' = d/dt, t e U+ = [0, oo)), y(0) = y0, (1.1)

where y0 and g(t) belong to Jf, A: R + -» R is locally absolutely continuous, and * denotes

the convolution

hl * h2(t) = /jx(t — s)h2(s) ds.

The integral in (1.1) is a Bochner integral, and a solution belongs to C'(R+, $f) n C(R+,

2>).
The hypotheses on A will be stated in terms of its Fourier transform A ; the fact that A

is locally absolutely continuous will be deduced in Theorem l.l(i). In this paper, the

Fourier transform h is defined for a function h such that h(t)e~'" e 1}(U+) for all a > 0 by

the formula
* OO

h(z) = e~"'h(t) dt (Im t < 0), ft(z0) = lim /x(r) (t0 e R),
JO t-*to, lmt<0

whenever the limit exists.

The equation for a dynamic problem in linear viscoelasticity [1] can be obtained by a

"correspondence principle" from the equation for the corresponding problem in the

purely elastic case. After applying the Fourier transform to the elastic equation, one re-

places the elastic moduli of shear and compression (p. and k) by Ys(i)/2 and 7v(t)/3 respec-

* Received March 25, 1982. This material is based upon work supported by the National Science Founda-
tion under Grant No. MCS-8101618.
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tively, where Ys and Yv are the complex moduli of shear and compression for the vis-

coelastic material. For example, the transformed equation for transverse vibrations in a

viscoelastic plate [1, pp. 109-112] is

) (x, x) = — G,(t)A2j?(x, t) + H{x, t), (1.2)

where H is a forcing term and

^ J2^(t) +
c'(,)-Mt)1sSk25w)

with ixa(x) = ys(r), irb(r) = yv(t). Now suppose

A(x) = d(x)f(x) (Im t < 0), (1.3)

where

f(x) = F(S(x)/d(x)), F(w) = , (1.4)
pw + q

with m = p = i, q = 1. Then formal differentiation of (1.1) (with L = A2, y(t) = >>(•, 0).

followed by an application of the Fourier transform, yields (1.2) with some if. Similarly,

the equations for waves in a rod come from (1.1), (1.3), (1.4) with m = 0, p = 2, q = 1; for

longitudinal waves, L = —d2/dx2, while for bending waves, L = dA/dxA. In all cases we

must take self-adjoint boundary conditions.

Throughout this paper we assume that

m, p, and q are nonnegative, p > 0, and q > mp, (1.5)

a(t) and b(t) are continuous, nonnegative, nonincreasing,

convex, and not constant on R + , with a'(0) + b'(0) > — oo. (1.6)

Thus (1.5) includes the examples given above. In the applied literature, the moduli a(t) and

b(t) are often assumed to be positive linear combinations of decaying exponentials. Pipkin

[7] takes a more general approach, but (1.6), even together with (1.17) below, seems to

include many of the plausible models and some implausible ones. If p = 0, (1.1) reduces to

the problem studied in [5, 2, 3], where weaker hypotheses are imposed; in particular, ,4(0)

need not be finite.

Let {E^} be the spectral family corresponding to L; without loss of generality we

assume that the spectrum of L is contained in [1, oo). Define

U(r)= u(t,X)dEx, U'(t) = u,(t, X) dEx,

where u(t, 1) is the solution of

u'(t)=-AA * u(t), w(0) = 1. (1.7)

Clearly,

II U(t)|| < sup | u(t, 1)|, || L~1/2U'(f)ll < sup | rll2u,(t, 2)|,
1 < A < oo 1 ^ A< co

where || • || denotes the norm of bounded operators from JC to itself. Our main results,
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(1.15), (1.18), (1.19), and (1.20) in Theorem 1.1 below, then imply, respectively,

I! U(t)H < 1 (t 6 R+), (1.8)

lim || fU(t)|| = 0, (1.9)
f-» 00

"° II U(t)|| dt < oo, (1.10)
)

L-1/2U'(t)ll dt < oo. (1.11)

Existence, uniqueness, and representation results for (1.1) work out just as in [5, 2, 3]. In

particular, the conclusions of Theorem 1.1 imply that

U'(r)y = [U(t)y] if L"1/2y e 9\ (1.12)
at

moreover, if y0 e S>, g: R+ —> JC is continuous with g(t) e 3> for all f, and Lg: R+ —► JC is

locally Bochner-integrable, then the unique solution of (1.1) is given by

y(t) = U(t)y0 + U * g(t). (1.13)

Under weaker hypotheses, (1.13) gives the unique solution of (1.1) in a weak sense. Clear-

ly, (1.8) through (1.13) can be used to study the asymptotic behavior of y(t) as t—* oo

under various assumptions on g. We refer the reader to [3] for further discussion.

Theorem 1.1. Suppose (1.5) and (1.6) hold.

(i) There exists B e L2(R+) such that the function

A(t) = /(oo)a(t) + J B(s) ds

satisfies (1.3).

(ii) For A > 0, u(t, A) satisfies

ii(r, 1) = [it + XA(r)] ~1 (Im r < 0), (1.14)

|u(f, A)|<1 (r>0); (1.15)

moreover,

sup A~1/2| u,(t, 1)| <oo (T < oo). (1-16)
0<A< 00, O^rST

(iii) If, in addition,

—a' and —b' are convex on R+, (1-17)

then

lim sup | tu(t, A)| = 0, (1-18)
t~* oo 1 < X < oo

sup I u(t,
Jo UA<00

>1)1 dt < oo, (1.19)

sup X 1/2| ut(t, X)\ dt < oo. (1.20)
0 1 < A < oo
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Remark. In (i), it will be seen below in (2.11) that /(oo) exists and is equal to

F(b(0)/a(0)).

2. Proof of Theorem 1.1. We first recall some consequences of (1.6). By [4],

d(t) = </>(x) — ix6(x) and $(t) are analytic in {Im x < 0}

and continuous in S = {t e Im t < 0, x ^ 0}. Moreover,

if Im x < 0 and Re x > 0, a(t) and S(x) lie in

{ — n/2 < arg w < 0}; if (1.17) holds, this

conclusion remains true when Im x = 0, x > 0. (2.1)

In this paper, — n < arg w < n (w e (£).

Integration by parts and the Riemann-Lebesgue theorem show that

«(?) = + 0(x~2), S{x) = — + 0(t~2) (t-> oo, t e S); (2.2)
it it

if (1.17) holds, this can be strengthened to

a(0) a'(0) _
a(^) =   — + o(x 2),

ix x

B{T) = W_bW) + o{x-2) (t-> oo, t e S).
IT T

(2.3)

From [8] (with slight modifications) we know that a(x) and 6(t) are dififerentiable for x > 0

and

I ri/t r i/t
5 I a(t) dt < | d(t)| < 4 I a(t) dt,

I a'(T)| < 40
l/T

ta(t) dt (t > 0),

(2.4)

M fo/r ta(t) dt

with similar estimates for b. By [5, Lemma 2.2],

0'(t) <0 (t > 0). (2.6)

If (1.17) holds, [2, Lemma 5.1] shows that a and £ belong to C2(0, oo) with

•i/t
| a"(t)| < 6000 2

0

t2a{t) dt; (2.7)

together with (2.4) and (2.5), this implies

|Td"(T)| + |d'(T)|

l«WI2

The analogous inequalities for b are, of course, valid.

dx < oo. (2.8)
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The fractional linear transformation F maps {Re w > 0} onto the disk with diameter

[m/q, 1 /p]. Moreover,

0 < arg F(w) < arg w (0 < arg w < n/2),
  (2.9)

F(w) = F(w) (w e £).

It follows that arg a(i)/(t) lies between arg a(i) and arg S(t), and strictly between them

when arg d(z) / arg S(r) (r e S). In particular, if we write d(z)f(x) = <I>(t) — i't0(t), then in

{Im r < 0} (and in 5 when (1.17) holds),

<D(t) > 0. (2.10)

By (2.2),

/(t)=/(oo) + 0(t"1) (t —» oo, t e S), (2.11)

with f(oo) = F(b(0)/a(0)) = L.
To prove (i), define

G(t) = [/(r) —/(co)][a'(r) + a(0)].

By (2.1), (2.2), and the properties of F, G belongs to the Hardy class H2 in {Im x < 0}, so

G = B for some B in L2(IR + ). But

- G(t) +/(oo)a(r) =f(z)d(r),
IT

so (1.3) holds with A as in (i), as asserted.

By (2.10) and elementary transform theory, (1.14) holds, and [6, Theorem 1 i and its

proof] yields (1.15). Differentiation of (1.7) gives us

u"(t) = -A[,4(0)w(0 + A' * u(f)] (t > 0),

so by (1.15),

sup | u„(t, 1)| < X
o

^4(0) + A'(t)\ dtJ;

this estimate and (1.15) yield (1.16).
In the remainder of this paper, we assume that (1.17) holds. We first develop estimates

on A. Using (2.3) and (1.5), one shows with a little calculation that

b'{0)(mp — q) — a'(0)[p<x2 + 2mpa + mq~]

(pa + q)2
lim t2<D(t) = ————  / v    — > 0, (2.12)

lim t2@(t) = a(0)/(oo) > 0, (2.13)
X~* + 00

where a = b(0)/a(0).

If a [or fc] belongs to L'(IR+), then a(0) = jo a(t) dt [or 5(0) = jj" b(t) dt]; otherwise,

l/a(r)—> 0 (t—> 0, t e S [and similarly for 6] (see [4]). By examining the various cases (a or

b in or not in L1, m = 0 or m / 0), one deduces that

lim exists and is real and nonnegative. (2.14)
r-*0
t e S
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Thus for each X > 0

u(x, /) is continuous in {Im x < 0}, (2.15)

Since a, B e C2(0, oo) when (1.17) holds, A e C2(0, oo). We see from (2.1), (1.5), (2.4),

(2.7), (2.8), and (2.3) that

M |ti"(T)| + |i'(T)|

jo I A2{x)\

\xA'(x)\ + \x2A"(x)\

dx < oo, (2.16)

= 0(1) (T-0+), (2.17)
IA(x)\

Tj+1 A(J\x) = 0(1) (t-> + oo,; = 0, 1, 2). (2.18)

Furthermore, u e C2(0, oo) as a function of x, and

^VW'-1) (*- + oo,7 = 0, 1,2, A >0). (2.19)
ox

By (2.3),

u(x, X) = 0(t_1) (x—> oo, x e S, X > 0). (2.20)

By (1.14), (2.15), (2.20), (2.16), and the argument of [8, pp. 323-324],

u(-, X) e L\U+) (0 < A < oo). (2.21)

We now follow the scheme of [5, 2]. Let D(x, X) = A(x) + (ix/X), and choose p > 0 such

that

I A(x)\ > 2x (0 < t < p); (2.22)

p exists, by (2.4) and (2.14). Using the complex inversion formula for Laplace transforms,

together with a contour shift and integration by parts, we establish the representation

nu(t, X) = Im{/l_1u,(t) + iX~2u2(t) + X~3u3(t) + u4(t, X) + u5(t, 1)}, (2.23)

where (see [2], Eq. (4.34) for the computation)

1

"i (0 = t

«2(0 = -t

«aW = 7

V< A'iz) dx

o

0 A2(x)

A2(x) '

2A'(x)

A(x) _
1 dx,

" 2x dx
e

«.C. A) -

"s(*, V = Jj

A3( T)'

> x2Dt(x,X) f 2 1

0 i3(t)D(T, X) |_i(t) D(x, X)

r> *
02(t, A) '

dx,

The validity of this representation and the absolute convergence of the integrals are en-

sured by estimates (2.16) through (2.20) and (2.22).
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We show that

I U4(t, A)| < Mr2 (A, t > 1), (2.24)

|u5(t, 1)| < Mr2 (A, t > 1). (2.25)

(Here and below, M denotes a finite constant, independent of t and A; its value can

change from line to line.) Then by (2.23), (2.21), and (1.15), (1.19) follows. Moreover, (1.18)

is a consequence of (2.23), (2.24), (2.25), and the Riemann-Lebesgue theorem.

For (2.24), integrate by parts in the definition of u4 (using (2.17)) and then use (2.17)

and (2.22).

For (2.25), first define col = ft^A) > 0 by

0(Wl) = 1/A;

by (2.6), («! is unique when it exists. Now let co(A) = co^A) when co1 exists and > p, and

let co(A) = p otherwise. As shown in [5], co is continuous and nondecreasing, and by (2.3),

co2 = Aa(0) + o(A1/2) (A—► oo). (2.26)

Moreover ([5, Eq. (6.8)]), there exists Q > 0 such that

|o;(A)-t|[co(A) + t]
,2 1 ^ V

\-«)
(T > p, A > 1). (2.27)t A

By (2.11) and (2.2),

0(t) = L9(z) + 0(t ~3) (t — + oo). (2.28)

Using (2.27), we see that there exists R > 0 such that

Q 0(T) - J
. |co(A)-t|[«(A) + t]L *
> JT   - "3 (T ̂  P>- (2-29)

T A T

Now choose pi > p so large that when <u(A) > pt we have

co2L/4A > «/pj, (2.30)

fAa(O) < a;2 < 2Aa(0) (see (2.26)). L < A, and

e = \6R/a(Q)L < a/2.

Then if co > pu t > ^tu,

Q

Thus

— tA
, , | | ® + M 8R

11 — co IL / a) .
>—^— ( T >-, |t — CO I > e, CO > Pi ). (2.31)

Integrate by parts in the definition of u5 (using (2.18)) to see that

''At2 / A\ . , Dt(p, A/L)

r 1 1,1 ' D2(p, A/L) +
f>f _ 2£>2(t, A/L)-!
J, LD2(t, A/L) Z)3(t,A/L)J '
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Then by (2.10) and (2.18)

rU
L

"s I t, t
L

< M
1 + 1 (|D2(t, A/L)| + |D3(t!a/L)|) dT]- (132)

In view of (2.10) and (2.18) it is clear that the right-hand side of (2.32) is bounded on

{A > L: p < cu(A) < 2pi} = A. For each A e [L, oo)\A, let £t = [p1; a>/2], £2 = [ro/2,

a> — e], a>3 = [cu — e, co + e], £4 = [w + e, oo). On Elt (2.29) and (2.30) imply that

Q | D(t, A/L)| > Qt | 0(t) - L/A | > (C° + ')<0L —
2/T

(a> + t)coL

4At

On £2 u £4, (2.31) shows that

LI T — col

>

Q\D(t, A/L)| > ■
2A

On £3, (2.3) and (2.26) show that A 1 = 0(t) + 0(to 3) (A-> 00, uniformly for

|t — to | < e). Then by (2.12) and (2.28),

1
sup r < 00.

co(A)^ 2pi, | t-co |

Thus for A ̂  A we can estimate the integral on the right in (2.32) as follows ((2.26) is

used):

+ JL - «)2/4A2 + (t - o>)3/8A3] dZ

f r T~3 t"4 8A 1 |
Je4 l_(T - (U)2/4A2 + (T - fti)3/8A3 + (t - <u)3J TJ

C |*oo fw/2 fee /ll/2 1 \ ~)

< M |A j t~3 dx + A~1/2 dr + J ^—y ̂ —3J do + 2eA|

< MA.

This establishes (2.25) and completes the proof of (1.18) and (1.19).

Finally, we sketch the proof of (1.10). In place of (2.23), we have

+

+

nu,(t, A) = Re ">0)i ,233)

the integral converges, by (2..16) and (2.19). Integration by parts, together with (2.16) and
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(2.19), shows that

f°° - A(T) , , M T, , f00 A_ 1 + t"2 ,
J0e ~5^rd' 7 _ JP1 7\¥&X)\ (2.34)

Estimating the denominator as above when co > 2pu we get

00 A 1 + t 2
dz < M

t|D3(t, A/L)|

(A 1 + z 2) dz f A 3/2 dr
+

£i t((o/4A) (1 + w/t) e2 (* - «)3/l3

(D3(t)

(A 1 + t 2) dzA~3/2 dz r
+ -TT7- +

JE 3

< M

< MA3/2

ra/2 A1/2

pi

£4 t(t-w)3/A3

rft f00 A dz f°° A3/2 dr 3/2~|

r+i,-+„ — *+wi

Thus by (2.33) and (2.34),

f2 sup |A~1/2u,(t, A)| < oo.
1

Since (1.16) holds, (1.20) is proved.
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