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1. Introduction. In the framework of a program of investigating the stabilizing effects

of various dissipative mechanisms in continuum thermomechanics, we have studied [1, 2]

the initial-boundary value problem for the system of conservation laws of momentum and

energy in one-dimensional thermoviscoelasticity. The techniques employed in the above

papers restricted the analysis to the situation where viscosity does not vary with temper-

ature; this assumption is rather crude, especially for fluid materials.

A convenient test problem for elucidating the effects of the dependence of viscosity on

temperature is provided by adiabatic rectilinear shearing flow of an incompressible vis-

cous fluid between two parallel plates. Indeed, in this case the conservation equations are

particularly simple and viscosity is the sole dissipative mechanism present.

In a Cartesian coordinate system the two parallel plates occupy the planes x = 0 and

x = 1. The flow is described by the velocity field v(x, t) in the direction of the flow, per-

pendicular to the x-axis, and the temperature field 9(x, t). If we normalize units so that the

density of the fluid is unity, the conservation equations of momentum and energy read

v, — ax = 0, e, — avx - 0, (1.1, 1.2)

where a is shear stress and e is internal energy.

The fluid is assumed linearly viscous, that is

a = nvx, (1.3)

where n is viscosity. Internal energy and viscosity are determined by temperature via

known constitutive relations

e = e(9), n = (1.4)

In typical fluids e(6) is increasing, convex and practically linear (i.e., constant specific heat)

at moderate temperatures. The function on the other hand, is typically increasing in

gases and decreasing in liquids. Several empirical or theoretical (derived within the con-

text of the kinetic theory) forms of fi{6) are recorded in the literature. For instance, the

kinetic theory of gases with molecules behaving as ideal elastic spheres yields

H = ad112 (1.5)
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while the standard form for liquids is

H = a exp(f}/9). (1.6)

For our present purposes it is convenient to eliminate 6 between e(d) and fi(6) in (1.4)

and visualize viscosity as a known smooth function of internal energy, ji = fx(e), in which

case the conservation equations (1.1), (1.2) take the form

v, - Me)vx]x = 0, e, - n(e)v2x = 0. (1.7, 1.8)

We assume that the fluid is subjected to steady shearing so that the boundary con-

ditions read

r(0, t) = 0, t)(l, t) = 1, 0 < t < oo. (1.9)

We also impose initial conditions

v(x, 0) = f0(x), e(x, 0) = e0(x), 0 < x < 1, (110)

which are compatible with (1.9) in that vo(0) = 0, d0(1) = 1.

When u0(x) = x, e0(x) = E0 = constant, the solution to (1.7), (1.8), (1.9), (1-10) describes

a uniform shearing flow and can be written down explicitly:

v(x, t) = x, e(x, t) = E(t), (1 11)

where E(t) is determined by

*E(0 de
— = t. (1.12)

£o

Our objective is to discuss the asymptotic stability of the solution (1.11).

As the fluid is being sheared, energy is pumped into it and, since the flow is adiabatic,

the temperature will keep rising, tending to infinity with time. When, as e—* oo, n(e) ap-

proaches monotonically a positive finite constant ii(co), one expects that (1.7) will force vx

to become asymptotically constant so that (1.11) is asymptotically stable. To test this

conjecture we first assume that n(e) satisfies one of the following hypotheses:

n(e) > 0, n'(e) > 0, [^2(e)]" < 0, n(co) < oo, 0 < e < oo, (HI)

//(e) > 0, n'(e) < 0, n"(e) ̂  0, n(oo) >0, 0 < e < oo, (H2)

and show

Theorem 1. Assume u0(x) e W2- 2(0, 1), e0(x) e Wx- 2(0, 1), e0(x) >0, 0 < x < 1. Then,

under hypothesis (HI) or (H2), there exists a unique classical solution of (1.7), (1.8), (1.9),

(1.10) on [0, 1] x [0, oo). Furthermore, as t—* oo,

vx(x., t) = 1 + 0(t_1), (1-13)

-*<*,0 di
-j- = t + 0(1), (1.14)

eo(x) MC)

uniformly in x on [0, 1].

The situation is more interesting when //(e) is allowed to tend to zero or infinity as

e—> oo. Indeed, in these cases it is conceivable that the asymptotic distribution of vx, as

dictated by (1.7), is not uniform. Still it is plausible that (1.11) is asymptotically stable

provided /i(e) tends to zero or infinity in an "orderly" fashion. We verify this conjecture

I
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under the assumption that /z(e) satisfies one of the following hypotheses:

n(e) > 0, n'(e) >0, 1 < — < v < oo, 0 < e < oo, (H3)
H(ey

H(e) > 0, n'(e) < 0, 2 < v < <N < oo, 0 < e < oo. (H4)
//(e)2

A typical function class that satisfies (H3) or (H4) is

H(e) = ey, 0 < y < j or — 1 < y < 0. (115)

Theorem 2. Assume t>0(x) e W2' 2(0, 1), e0(x) e W1,2(0, 1), e0(x) > 0, 0 < x < 1. Then,

under hypothesis (H3) or (H4), there exists a unique classical solution of (1.7), (1.8), (1.9),

(1.10) on [0, 1] x [0, oo). Furthermore, as r—► oo,

vx(x, f)=l+ 0(r"), (1.16)

v,(x, t) = 0(r1), (1.17)

I
e(x,t) je

j, = t + 0(t\ (1.18)
Jeo(x) t*(£)

uniformly in x on [0, 1]. In (1.16), tj = 1 + 1/v under (H3) and q = 1 — 2/v under (H4). In

(1.18), <5 = 0 under (H3) and <5 = 2/v under (H4).
We note that the precise growth assumptions on n^'/n'2 in (H3), (H4) are essential

only for obtaining the exact decay rates in (1.16), (1.17), (1.18). These restrictions may be

relaxed in various directions at the expense of settling for cruder decay rates for vx — 1

and v,.

The proofs of Theorems 1 and 2 are presented in Sec. 3 and are based on a priori

estimations. The estimates are obtained with the help of a number of identities for solu-

tions of (1.7), (1.8), (1.9), (1.10), derived in Sec. 2, and certain properties of n(e) which

follow from (H3) or (H4) and are recorded in the Appendix.

2. Useful identities. Throughout this section, we assume that (d(x, t), e(x, ()) is a fixed

classical solution of (1.7), (1.8), (1.9), (1.10) on [0, 1] x [0, oo) such that v( ■, t), vx(-, t),

vt( ■, t), vxx( ■, t), e( •, f), ex( ■, t) are all in C°([0, oo); L2(0, 1)) while vx,( ■, t) is in C°((0, oo);

L2(0, 1)) and v„( •, t) is in L2OC((0, oo); L2(0, 1)). We derive certain identities that will be used

to estimate the solution in Sec. 3.

On account of (1.3), (1.2) yields

M(e), — n(e)et = a1 (2.1)

where

Using (1.1),

det Ce

M(e) = I mdl. (2.2)

cj2(x, t) = a2(y, t) + 2 <r(£, t)cM, t) dc

= f \2(y, t)dy + 2 [1 fX(T(^, t)vt(L t) d£ dy (2.3)
Jo Jo Jy
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so that (2.1) gives

M(e{x, t)) = M(e0(x)) +

+ 2

*r f l

*2(y,

0 Jo

1 r)v,(Z,
0 Jy

t) dy dx

t) dtI dy dx. (2.4)
Jo Jd

We now multiply (1.7) by v(x, t), integrate with respect to x over (0, 1), integrate by

parts and use the boundary conditions (1.9) to get

Jv(x, t)v,(x, t) dx + n(e(x, t))v*(x, t) dx = a( 1, t). (2.5)
o Jo

Integrating (2.5) over (0, t) and using (1.8), we obtain

1

2
2

u

0

v (x, t) dx + e(x, t) dx = ct(1, x) dx + ]- j Dq(x) dx +
Jo 2 Jo

e0(x) dx. (2.6)

Next we multiply (1.7) by vt, integrate over (0, 1) x (0, t), integrate by parts with re-

spect to x and t and use (1.8) to deduce

f f1 if1 1 f' f1
vf dx dx + - n(e(x, t))v^(x, t) dx — - n(e)n'(e)v* dx dx

Jo Jo 2 J0 2 Jo Jo

-ifH(e0(x))vlx(x) dx. (2.7)

Similarly, multiplying (1.7) by ft;,, following the same steps and using (1.8), we obtain

fi(e(x, f))i^(x> 0 dx — - rr xn(e)n'(e)v* dx dx
o J

xv? dx dx + - t
o 2

1 1

e(x, t) dx= - -
o z

i
e0(x) dx. (2.8)

o

To derive the next cycle of identities, we differentiate (1.7) with respect to t,

v„ - Me)vx, + n(e)ii'(e)vix]x = 0, (2.9)

and then multiply by v,, integrate with respect to x over (0, 1) and integrate by parts, thus

arriving at

i ri
vf(x, t) dx + | n(e(x, t))f«(x, t) dx

l

H(e(x, t))n'(e(x, t))vl(x, t)vx,(x, t) dx = 0. (2.10)

\d_

2 dt o

+

Integrating (2.10) over (0, t) and integrating by parts, we arrive at

- I vf(x, t) dx + j n(e)v2xt dx dx + ^
2 Jo Jo Jo 4

l

/x(e(x, t))n'(e(x, t))v$(x, t) dx
0

- fr
8 Jo.

ln2(e)J'n(e)vt dx dx =
0 *

1
+ 4

vf(x, 0) dx
o

H(e0(x))n'(e0(x))vtx(x) dx. (2.11)
o
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We now multiply (2.10) by t2 and then integrate over (0, t) to obtain

'i
1 f1 f' f1 f'
- t2 vf(x, t) dx — TV2 dx dx +
2 Jo Jo Jo Jo .

+
0

t n(e)v2t dx dx
'o Jo

z2fi(e)n'(e)vl vxl dx dx = 0. (2.12)
o

Finally, we multiply (2.9) by t3v„, integrate over (0, 1) x (0, 0 and perform a number of

integrations by parts with respect to x and t, thus obtaining

i 1
x3vl dx dx + - t3

2

i
t:(.a, ijji

Jo

3
H{e(x, t))vl,(x, t) dx = -

*< ri

o Jo
x2ji(e)vxl dx dx

7
+ 2 x3n(e)n\e)v2x v2, dx dx — t3 n(e(x, t))n'{e(x, t))vl(x, t)vxt(x, t) dx

+ 3 f x2n(e)n'(e)v3x vxt dx dx + ^ [ f x3\_n2(e)J'n(e)vl vxl dx dx. (2.13)
o Jo ^ Jo Jo

3. Proof of Theorems. In this section, we consider the solution (u(x, (), e(x, t)) dis-

cussed in Sec. 2 and use the identities derived there in order to establish the estimates that

will yield the proofs of Theorems 1 and 2 stated in the introduction. In what follows, K

will stand for a generic constant which can be estimated from above solely in terms of

properties of the function n(e) and upper bounds of the W2- 2(0, 1) norm of v0(x) and the

W1' 2(0, 1) norm of e0(x).

Lemma 3.1. Under hypothesis (HI), (H2), (H3), or (H4),

i
v2 dx dx < K, 0 < t < oo. (3.1)

o o

Proof. Under hypothesis (H2) or (H4), (3.1) follows directly from (2.7). For the hy-

pothesis (HI) or (H3), (3.1) is a consequence of (2.11) upon noting that [/<2(e)]" < 0 and

f1 1 f' f1
v2 dx dx < max n(e)vxt dx dx. (3.2)

Jo Jo o«xSi Weo(x)) Jo Jo

We now define

<P(t) = 1 + rr a2 dx dx, 0 < t < co. (3.3)

Lemma 3.2. Under hypothesis (HI), (H2), (H3), or (H4),

— (p(t) < M(e(x, t)) < K(p(t), 0 < x < 1, 0<f<oo. (3.4)
K.

Proof. Because of (2.4), (3.1) and (3.3),

M(e(x, t)) < 2

M(e(x,

1
2,

u

0

1

a2{y,x)dydx + K1<(K1+2)(p(t), (3.5)

a2(y, x) dy dx — K2 — \<p(t) - K3 . (3.6)
0
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At the same time,

M(e(x, t)) > min M(e0(x)) = \/KA. (3.7)
1

Combining (3.6) with (3.7), we easily deduce

MW*'!)) 2 ai + K.K.)m

so that (3.4) follows from (3.5) and (3.8).

Let us now set

E(t) = Ml(^<p(t)\ (3.9)

From (3.4) and properties of the functions fi(e), //(e), and 1 (e) (see Appendix, Eqs. (4.2),

(4.3), (4.4) and (4.5)), we deduce

Corollary 3.1. Under hypothesis (HI), (H2), (H3), or (H4),

E(t) < e(x, t) < KE(t), 0 < x < 1, 0 < t < oo, (3.10)

^ < n(e(x, t)) < Kfi(E(t)), 0 < x < 1, 0 < f < go, (3.11)

\n'(e(x, f))| < | n'(E(t))\, 0 < x < 1, 0 < t < oo. (3.12)

We now proceed to the estimation of the mean square growth of stress.

Lemma 3.3. Under hypothesis (H1), (H2), (H3), or (H4),

1
t; fi2(E(t)) < <x2(x, t) dx < Kn2(E(t)), 0 < t < co. (3.13)
^ Jo

Proof. Using (1.3), (3.11), and (1.9), we obtain

f a2(x, f) dx > -7- ji2(E(t)) f v2Jx, t) dx > -j- n2(E(t)) f t>x(x, t) dx
Jo Ai Jo A i LJo

= n2W)) (3.14)

which establishes the left half of (3.13). For the right half of (3.13) we have to distinguish

two cases.

Assume first that (HI) or (H3) holds. By the maximum principle for the parabolic

equation (1.7), |r(x, f)| < max0<),<1 |y0(y)l, 0 < x < 1, 0 < t < oo. At the same time, by

(2.11),
i
v2(x, t) dx < K2, 0 < t < oo. (3.15)

Hence, combining (1.3), (3.11), (2.5), (3.15), (1.1), and (3.14),

jj t) dxj <K3n2(E(t)) {f n(e(x, t))v2(x, t) dx j

< K3ii2(E(t)){2a2(l, t) + K4}
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< K3 n2(E(tK 4 o2(x, t) dx + 2

i
•2,0"*(x, t) dx + K4

<K3fi2(E(t)) 4

i
2,. *5<7 (x, f) dx +

H2(E(t))

i

(7 (x, t) dx

J a2(x, t) dx,< K6n2(E(t)) | a\x, t) dx, (3.16)

whence the right half of (3.13) follows.

We now take up the case of (H2) or (H4) for t > 1. Using (3.10), (2.6), (3.3), (3.1), (3.9)

and Schwarz's inequality,

E2(t) < jj e(x, t) dxj < 2||* <7(1, t) dx j + K-j

<21 cr2(l, t) dx + K-,
o

-i:h: a2(x, t) dx+
l

(t2(x, x) dx > dx + K

< Kg t(p(t) < Kg tM(E(t)). (3.17)

On the other hand, by (1.3), (3.11), (2.8) and (3.10),

i
.2,<7 (x, t) dx < Ki0fi(E(t)) jAe(x, t))v2(x, t) dxf'

< ~ H(E(t))

Combining (3.17) with (3.18), we obtain

e(x, t) dx + K! 2 J- < ~ n(E{t))E{t). (3.18)

E(t)n(E(t))

Applying L'Hopital's rule twice and using (H4), we find

lim inf = 1 + lim inf C

t) dx < K14 Af2(^(0)- (3.19)

Therefore,

M{e) e^o= H(e)/H'(e)

u'2(e) v — 2
= 1 + lim inf   >  . (3.20)

oo H (e) - lAe)n (e) v-1

e/i(e) > —-— > 0, 0 < e < oo. (3.21)
M(e) ~ K1S

In view of (3.21), (3.19) yields the right half of (3.13), for t > 1, under hypothesis (H2) or

(H4).
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It remains to establish the right half of (3.13) on 0 < ( < 1, for the case (H2) or (H4).

To this end we first note that, by virtue of (2.7),

i
■2, | f4e(x,a2(x, t) dx < max n(e0(y)) \ [i(e(xy t))vl(x, t) dx < Kl(s. (3.22)

Thus (3.3), (3.9) yield (p(t) < 1 + Kl6, E(t) < K17, 0 < t < 1, and thereby

mt))> 0<t<l. (3.23)
*■18

It is now clear that (3.22) together with (3.23) imply the right half of (3.13) on 0 < t < 1,

and this completes the proof of the lemma.

Lemma 3.3 allows us to estimate the growth of £(() in time. To see this note that, on

account of (3.9), (2.2) and (3.3),

dE(t) 1 1 d<p(t) 1 1

dt K n{E(t)) dt K n(E(t))

Hence, using (3.13), we arrive at the following

Corollary 3.2. Under hypothesis (HI), (H2), (H3), or (H4),

t) dx. (3.24)

^ H(E(t)) < < Kn(E(t)), 0 < t < oo, (3.25)

1 f£«> de
—- < Kt, 0 < t < oo. (3.26)

£<o) Me)

Lemma 3.4. Under hypothesis (HI) or (H2),

J* vf(x, t) dx < K^exp — £(t)J +/i'2(i£(0)|, 0 < t < oo, (3.27)

while under hypothesis (H3) or (H4),

Ivj(x, t) dx < Kfi'2(E(t)), 0 < t < oo. (3.28)

Proof. Upon using Schwarz's inequality, (2.10) yields

d_

dt

i
2,

V

0

vf(x, t) dx + H(e(x, t))vl,(x, t) dx <
o

H(e(x, t))[i (e(x, t))v%(x, t) dx. (3.29)

Therefore, by virtue of (3.11), (3.12), (1.3), (3.13) and

f<al(x, t) dx =
i
a(x, t)axx(x, t) dx,c2

Jo

we deduce from (3.28)

))d f1 2 f1
— I vf(x, t)dx + — n(E(t)) I v2Jx, t) dx < K2

H5(E(t)) J
a6(x, t) dx

o

H'2(E(t))

~ 2 Am)
max (t2(x, t)

O^x^l

i

<r (x, t) dx
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<m {I "'(x- "dx + 2 [1. " dx\' [I " dx_

nr-H'2(E(t)) f
a2(x, t) dx + 2

o< K} [i3(E(t)) I.

< K^(E(t)¥2(E(t)) + K5fi'2(E(t))

1
.2,

u

0

a2(x, t) dx a2xx(x, t) dx

1/4") 2

1 "11/2

v2xt(x, t) dx
> J

^{K^iK.K2 vl,(x, t) dx. (3.30)\n(E(t))ii'2(E(t)) + -j- n(E(t))
ji(E(t)) J j Xj

Keeping in mind that n\e)/n(e) is bounded on [£(0), oo), (3.30) gives

j; vf{x, t) dx +-^ n(E(t)) \ vf(x, t) dx < K6n(E(t))n'2(E(t)). (3.31)
"t Jo Jo

Integrating the differential inequality (3.31), we obtain

12,
u

0

v,(x, t) dx < exp-j —
K. i

n{E(i)) dx
0

1
,2/

0

+ ^6

Recalling (3.25), (3.32) yields

vf(x, 0) dx

fi{E(s))n'2{E(s))exp| - | (J.(E(z)) dx} ds. (3.32)

v2(x, t) dx < exp j [£(0) — £(f)] 1 | v2(x, 0) dx
10 (. 7 J Jo

+ K

<Kg\ 1 +

m c j
/i'2(e)exp|— [e - £(()] } de

E( 0)

fE(l)

n'2{e)exp
E{0)

1
dejexp iat\

Under (HI) or (H2),

1fE(D

Jfi(O)
(e)exp de < K10 exp ik + KuM' (jE(t))exp

i,£W

(3.33)

(3.34)

so that (3.33) yields (3.27).
We now turn to the case where (H3) or (H4) holds. Noting that /i"(e)///(e)—> 0, as

e—> oo, and applying L'Hopital's rule:

lim

M'2(c)exp
o

l
—- e
K,

c_,x M'2Wexp

Therefore, (3.28) follows from (3.33).

d£ n'2(e)exp

— = lim
e~* oo

l

K/

2/iW(e) + ~ H'2(e)
^7

exp
1

Ki£.

= K7. (3.35)
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Lemma 3.5. Under hypothesis (HI), (H2), or (H3),
•1

|ex(x, t)\ dx < K, 0 < t < oo, (3.36)
o

while under hypothesis (H4),

II ex(x, f) | dx< 0 < f < co. (3.37)
n(E(t))

Proof. Differentiating (2.4) with respect to x yields

H(e(x, t))ex(x, t) = M(e0(x))x + 2 J" a(x, x)v,(x, x) dx. (3.38)

By virtue of (3.13) and (3.25),

Jj <j(x, x)vt(x, x) dx dx < f | j <r2(x, t) dx j
o Jo Jo (.Jo J

1/2

vf(x, t) dx }> dx
o

n(E(t)) -j j vf(x, x) dx} dx < K
1/2 rEd)

E(0)

I ~) 1/2

v}(x, x)dx\ dE(x). (3.39)

We now estimate the integral on the right-hand side of (3.39) using (3.27), under hypoth-

esis (HI) or (H2), and (3.28), under hypothesis (H3) or (H4). Combining the result with

(3.38) and using (3.11), we arrive at (3.36) and (3.37).

Lemma 3.6. Under hypothesis (H1) or (H2),

| | vxx(x, t)| dx < K jexp - E(t)J + | n'(±E(t))| j, 0 < ( < go; (3.40)

under hypothesis (H3),

11? i v t\ I v

fi(E(t))'
| vxx(x, t) | dx < K , 0<t<oo; (3.41)

under hypothesis (H4),

J | vxx(x, t)l dx < —K ' 0 < t < oo. (3.42)Am)
H2(E{t)Y

Proof. From (1.3),

ax (Jn'(e)e

Me) Ae)
vx /-j A>y\

vxx = — ~ . .2/\ • (3-43)

We note that, by account of (3.13), (3.27) and (3.28),

I <r(x, t) | < Kn(e(x, t)), 0 < x < 1, 0 < t < co. (3.44)

Combining (3.44), (3.11), (3.12), (3.27), (3.28), (3.36), and (3.37), we arrive at (3.40), (3.41)
and (3.42).
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Since

I vx(y, t) - 11 < | vxx(x, f)| dx, 0 < y < 1, 0 < t < oo, (3.45)

Lemma 3.6 yields decay rates for vx(x, t) — 1.

Lemma 3.7. Under hypothesis (HI), (H2), or (H3),

re(x.t) de

eo(x) M®)

< K, 0 < x < 1, 0 < t < oo, (3.46)

while under hypothesis (H4),

•e(x.r) de

eo(x)

< 2,c., 0 < x < 1, 0<f<Go. (3.47)

Proof. Using (1.2), (1.3), (3.45) and (3.25) yields

e(x. 0 de

eo(x)

[vx(x, t) — 1] (It
o

^(x, t) — 11 dx

< K-2
red) c i

|0"
Je(0) Jo

| vxx(x, t)| dx dx < K3 I I |vxx| dx (3.48)
h(E{t))

Therefore, combining (3.48) with (3.40), (3.41) or (3.42), we deduce (3.46) and (3.47).

Our next project is to express the decay rates obtained in the above propositions in

terms of t. To this end we employ (3.26) and the assumed properties of the function n(e)

and its derivatives.

We first consider the case (HI) or (H2) holds. By (3.26), (1 /K)t < E(t) < Kt, for large t.

At the same time, in view of

*e

en'(e) = £//'(£) d£ + n(e) - /z(0), 0 < e < oo, (3.49)
Jo

we deduce

I H'(e) | < K/e, 0 < e < oo. (3.50)

Therefore, (1.13) follows from (3.45), (3.40) and (3.50). The remaining estimate has already

been established by (3.46).

We now turn to the case of hypothesis (H3) or (H4). We first use L'Hopital's rule

1

,. sup n'(e) ,. inf u(e)u"(e)
lim • r TTJ7 = - lim Z ~ (3.51)
e-.® mf r _d£_ e-oo sup (e)

J
in conjunction with (H3), (H4) and (3.26) to infer

— t < < Kt, 1 < t < oo. (3.52)

Let us fix our attention to (H3). We note that (3.46) yields (1.18) with 5 = 0. To get

(1.16), we observe that (H3) implies |>v + V)]" > 0; hence Ov + 1(e)]' is bounded from
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below, say n"(e)n'(e) > 1 /K, e > 0. Then, by (3.52),

Km > £ t1/v, 1 < t < oo, (3.53)

so that (3.45), (3.41) yield (1.16) with t] = 1 + 1/v.
Next we consider the case (H4). (H4) implies [/i1_v(c)]" < 0 so [/i1_v(e)T is bounded

from above, say (1 — v)n~v(e)n'(e) < K, e > 0. It then follows from (3.52) that

H(E(t))>^rll\ 1 < t < oo. (3.54)
IS.

Combining (3.52), (3.54), (3.45), (3.42) and (3.47), we arrive at (1.16) and (1.18) with
ri = 1 — 2/v and d = 2/v.

The remaining estimate (1.17) is an immediate corollary of (3.28), (3.52) and the follow-

ing proposition:

Lemma 3.8. Under hypothesis (H3) or (H4),

I
1

i^,(x, t) dx < K/t2, 0 < t < oo. (3.55)
o

Proof. From (2.12) and Schwarz's inequality,

I
t n rt r i rt r 1i

21 ,i

xt
0

t n(e)vxt dx dx <2 tv? dx dx +
o

x n(e)ri (e)vt dx dx. (3.56)
Jo Jo

To estimate the right-hand side of (3.56), we first note that, by virtue of (3.28), (3.52),

\f(x, t) dx < Klfi'2(E(t)) < K2 nm»n'(E(t)) < ^ n(E(t)) (3.57)
Jo 1

and then use (3.57), (3.11), (3.12), (3.52), and (1.16) to get

j j t2fi(e)vl, dx dx < K4 j n(E(x)) dx. (3.58)
Jo Jo Jo

For the remainder of the proof we employ (2.13). We note that, in view of (H3) or (H4),

||>2(e)]"| < Ksn'2(e). Taking account of (3.11), (3.12), (3.52), (1.16), (3.58), (3.25) and ap-
plying Schwarz's inequality a number of times on (2.13), we deduce

v2xt(x, t) dx < K6 tfi(E(t)) + K-, 1 ii{E(x)) dx
0 Jo

< K6tti(E(t)) + KsE(t), (3.59)

K' 1}

whence

i

°Ux-,)dx^ + ̂ wm- <3'60)

By virtue of (3.26), in order to show that E(t)/[tn(E(t)y\ is bounded it suffices to prove that

e

Me)
Ce d^ (3.61)

. Mij
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is bounded, 0 < e < oo. Under hypothesis (H3), the function (3.61) is obviously bounded

by 1. For the case (H4), we apply L'Hopital's rule twice to get

e

M«) , e
lim sup -r-—— = 1 + lim sup —

^ e-oo V(e)

/*'(«)

li'2(e) v
= 1 + hm sup  <  . (3.62)

e-*oo v(e)n (e) - n (e) v-1

Thus the function (3.61) is bounded and (3.60) implies (3.55).

We have thus established a priori the decay estimates in Theorems 1 and 2. The proof

that a solution exists can now be obtained by a routine procedure. One first establishes

the existence of a local solution on a maximal time interval by means of a straightforward

contraction argument and then uses the derived a priori estimates to show that this solu-

tion cannot escape in finite time.

Appendix. We record here certain useful properties of the functions n(e) and M'1(s)

that are induced by the hypotheses (H3) and (H4).

We first note that if/(£) is a smooth, nonnegative, increasing and concave function on

[0, oo), i.e.,/(£) > 0,/'(c) > 0,/"({) < 0, then

\<j^<k, 0 < £ < oo, k > 1. (4.1)

These assumptions are satisfied, under hypothesis (H3), by the functions n(e) and M-1(s),

so we have
u(ke)

1 < < k, 0 < e < oo, 1 < k < oo, (4.2)
Me)

1 < t ^ < k, 0 < s < oo, 1 < fc < oo. (4.3)
M 1(ks)

Under hypothesis (H4) the above assumptions hold for the function n1 ~v(e), so we deduce

u(ke)
1 > —— > fe1/(1_v), 0<e<oo, 1 < k < oo. (4.4)

Me)

Finally, we establish the analogue of (4.3) under hypothesis (H4), namely,

1 < M~l(ks)/M~1(s) < A(fc), 0<s<oo, 1 < k < oo. (4.5)

To this end let us define

g(e, X) = M(/.e)/M(e), 0 < e < oo, 1 < A < cc. (4.6)

On account of (3.21) and (4.4),

8g(e, /) _ en(Xe) _ e/i(e) n(Ae) ̂  1 ,1;n_v,

dl M(e) M(e) n(e) ~ Kl5 ' '

whence

g(e, 1) > g(e, 1) + -J- f ^ = 1 + J- V-^± _ 1}. (4.8)
15 Jl ^15 V — ^
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For k > 1 we define

f v — 2 ")<v—n/(v-2)
A(/c) = |l + K15 —(fe-l)j (4.9)

so that, by (4.8), g(e, A(/c)) > k, 0 < e < oo. Thus, setting M~l(s) = e and using (4.6) yields

M'\ks) M~1(kM(e)) ; M'Hgje, X(k))M(e))

e ~~ e

e

which proves (4.5).
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