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Summary. Steady flows of an incompressible and nondiffusive fluid stratified in vis-

cosity and in density that take place in porous media are considered, and conditions

necessary for similarity between any two such flows are given with proof. Results on the

vorticity and circulation in such flows are also given.

Then the problem of axisymmetric steady flow of a stratified fluid into a point sink is

solved by the use of Whittaker functions, and the solution for two-dimensional flow of a

stratified and diffusive fluid into a line sink is presented. The solution of these two problems

illustrate many of the general results mentioned above.

1. Introduction. Flows of a fluid stratified in salinity (and therefore in density) in

porous media bear on agriculture and domestic water supply, notably in Holland, and

flows of a fluid stratified in viscosity in porous media occur in oil-recovery operations. Thus

the modeling of stratified flows in porous media is of environmental, agricultural, and

industrial interest. And yet the laws of modeling such flows have never been clearly stated.

In this short note steady stratified flows in porous media are considered, and the conditions

of similarity between two such flows stated, with a proof of the similarity (or at least the

possibility of similarity) when these conditions are satisfied. Results on the vorticity and the

circulation in steady stratified flows in porous media will also be given.

Then the problem of axisymmetric steady flow of a stratified fluid into a point sink is

considered and solved in terms of Whittaker functions. Finally, the problem studied by List

(1969), two-dimensional steady flow of a stratified diffusive fluid into a line sink, is con-

sidered, and it is found that List's solution does not satisfy the symmetry condition for the

density at the plane of symmetry. An approximation to the correct solution for low Peclet

numbers is presented here. The formulation and solution of the two special problems

considered here illustrate many of the general results given in Sees. 2 and 3 of this paper,

thus providing a sense of unity to the various subjects considered.

2. Governing equations. With xt(i = 1, 2, 3) denoting the ith Cartesian coordinate, u;

denoting the velocity component in the direction of increasing xf, /i denoting the viscosity,

and k, p, p, and g denoting the permeability, the pressure, the density, and the gravitational
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acceleration, respectively, the equations of motion are given by (Yih 1961)

V dp x m
~kUi= ~~dx~P9i3'

where <5[3 is the Kronecker delta, if we take the direction of increasing x3 to be opposite to

that of the gravitational acceleration. In this study, we assume k to be constant.

The equation of continuity is

d(puj/dx7 = 0, (2)

where the summation convention is used. We shall neglect diffusive effects, so that

|^ = 0, (3)dxx

",^ = 0. (4)
dx„

From (2) and (4) follows

dujdxx = 0. (5)

which can be used in lieu of (2).

Now let (uf, u*, p*, p*) represent a solution of Eqs. (1)—(4), or Eqs. (1), (3), (4), and (5).

To fix ideas, let us consider this solution to represent a flow E* (E is the first letter of

ecoulement; we wish to avoid the letter F, which has been used for the Froude number) in

nature, and let

P* = Po + Pu (6)

where pi is a constant. We wish to produce a flow E in the laboratory which is similar to

E*. The first question that arises is "what constitutes similarity?" and the second question

is "what must one do to achieve it?"

To answer the first question we note first of all that the boundary geometry of E must be

similar to that of E*. That is to say, the boundary shape must be the same for both flows,

although the sizes do differ. Let the length scale of E* beL* and that of E be L, and let

A = L*/L, (7)

y* = Xt/L*, >>; = xJL. (8)

A point in E* with (dimensionless) coordinates y* and a point in E with coordinates yt are

called corresponding points if y* = yt. The flows E* and E are said to be similar if at

corresponding points

(a) The direction of the velocities u* and u are the same, i.e., the flow patterns are

similar, and

(b) p can be found from p* by a linear operation, specifically

P = Po + P i. (9)

where p0 is a constant, and

r = Pi/Pi=(P*-Po)/Pi> 0°)

r being a constant.
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We have thus defined similarity. It is an indication of the power of the transformation

(Yih 1961), which is contained in the transformation to be given below, that we do not

mention the ^-distribution at all in our definition of similarity, apart from the consequence

of (a) and (3) that p or p* is constant along a streamline in E or £*, and the streamline

patterns are similar for E and E*. Given the upstream distribution of p* in E*, any

upstream distribution of p in E will do.

The answer to the second question posed above is that, to achieve dynamical similarity,

we must have, apart from the geometrical similarity stated above, the satisfaction of (9) and

(10) at some upstream section, and theWj at that section related to theuf at the correspond-

ing section in E* in a definite way to be described below. To demonstrate this, we first write

(1) in the form

lLui= ~ y- ~ LpigSu (11)
k dyt

where n is defined by

n = p + p0gxT,, (12)

and p0 is the constant part of p. Correspondingly, n* is defined as

n* = p* + p* gx3, (13)

and if E* is a possible flow the equation

u* du*

&L*"r= ~dyf ~L*P*g5" (14)

is satisfied for i = 1, 2, 3.

Then we consider pl given by (10) and the u, and n given by1 (remember yt = yf in

similarity considerations)

p* 1
Pi = pf, n = — 7i* + any constant, (15a, b)

rKp rl

with

k = k*/k, (16)

and see whether (10) and (15) satisfy (11). In demonstrating this, we are of course borrowing

(10), but (10) stands everywhere if it stands at some upstream section in E (and the corre-

sponding section in £*), which we demand, and if the velocity relationship (15a) is satisfied.

Upon substitution of (10) and (15) into (14), we obtain (11) after division by Ar throughout.

Thus, if we choose a p0 and arrange to have (10) and (15a) satisfied at some upstream

section in E, the quantities (ut, p, p, p) represent a possible flow, since they satisfy the

equation of motion and (3), (4), and (5) as well. That they satisfy (3) follows from (15a). For

(15a) gives the flow pattern in E, and along the streamlines we simply assign to p its

upstream value, whatever it is, so that the satisfaction of (3) is trivial. Similarly, we demand

the satisfaction of (4), and since at an upstream section (9) and (10) are satisfied, they are

1 (1). (15a), and subsequent arguments imply that for similarity between two flows the dimensionless number

g | grad p \ Lk/nu must be the same at corresponding points of the two flows.
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satisfied at any two corresponding points downstream from that section, justifying the use

of (9) and (10) to go from the satisfaction of (14) to that of (11). Thus it remains only to show

that (5) is satisfied if

du*/dxx = 0. (17)

But from (15a) and (17), on account of (3) and (4), whose satisfaction has just been shown,

and of

8u* dp*
u* — = 0 and u* — = 0,

dxa dx«

whose satisfaction has been presumed, it is an easy though far from trivial exercise to show

that (5) is indeed satisfied by the u, given by (15a).

Finally, we note that the boundaries may either be impermeable boundaries or free

surfaces. The former kind needs no comment. We note here that ifp0 andpg are taken to be

zero, n is p and n* is p*. If n* is constant on a free surface, (15b) shows that n is also

constant on the corresponding surface in the laboratory flow E. Thus free surfaces are not

excluded.

We note also that although we assume the macro-geometry to be similar, we do not

include in this geometry the micro-geometry of the grains and interstices constituting the

porous media. Indeed, we allow k to take any value, larger or less than 1. This gives some

freedom in the choice of the porous medium used in the laboratory.

3. Generation of vorticity and circulation. Let the components of a pseudo-velocity,

denoted by u\, be defined by (Yih 1961)

u'i = — ui, (18)

where p0 is a constant viscosity. Then, because of (3), it can be shown trivially that

, dP c

T" i= ~~dx~P9 i3' ^

and not so trivially that, on account of (3),

d(pu'J/dxa = 0. (20)

Eqs. (3) and (4) can be written as

8u
= (21)

dxa

< ~ = 0. (22)
dxx

On account of (22), (20) can be replaced by

du'Jdx,, = 0. (23)

Thus we have reduced the flow of a fluid stratified in viscosity to that of a fluid of constant

density. This is known (Yih 1961). We have reproduced this result here only because we

need to use (19), and its use without a mention of the significance or rather the admissibility
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of the velocity field u[ as a solution for seepage of a fluid of constant viscosity (though

stratified in density) would seem incomplete.

The vorticity of the flow is defined by

\ = curl u, (24)

which has the components (^l5 £2, £3)- Similarly, we define a pseudo-vorticity by

% = curl u', (25)

which has components (£i, <f2, <f3).

From the first two equations in (19), i.e., for 1 = 1 and 2, we obtain

£3 = 0 (26)

by cross-differentiation. Thus the vertical component of the pseudo-vorticity is always zero.

That, however, does not mean that £3 is zero. Next, from (19) we easily obtain

Mo dp /"o ,,
T^l = ~gd7' T^2 = gdT' (27)l\ Ca 2 fv l/A j

which can be combined with (26) into the vector form

Y % = -g curl(pk), (28)
k

where k is a unit vertical vector. The significance of (28) or (27) is that it is the horizontal

variation of p that produces the pseudo-vorticity.

Thus true vorticity is produced in two ways: (1) by the viscosity variation which would

produce true vorticity even in the absence of density variation (or of gravity), even though it

would not produce any pseudo-vorticity, and (2) through the creation of pseudo-vorticity

by the density variation in the presence of a gravitational field.

The circulation along any circuit is defined by

r = () u, dxt. (29)

We shall define a pseudo-circulation by

P = (j) u'j dxi. (30)

From (19) we have

Y P = -g ()p dx3. (31)

If p is constant, or if on the circuit it is constant, V is zero. Also, of course if the circuit is

horizontal T' is zero. This is to be expected since £'3 = 0, and an application of Stokes

theorem will give a zero T'.

4. Steady flows into a point sink. To illustrate the general results obtained in the preced-

ing sections, we consider axisymmetric flows of a stratified fluid confined between two

horizontal boundaries into a point sink.

In cylindrical coordinates (r, (j), z), with z increasing vertically upward, and with the
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pseudo-velocity (Yih 1961) defined by

(«', w') = — (u, w), (32)
Mo

the equations of motion are

Mo , Sp no , dp
T u"TrJ- w-'T2-gp- ,33)

Note that the r is now not the r defined in (10); we use the same symbol since there is little

danger of confusion. In (32) and (33), n0 is a (constant) reference viscosity, u and w are the

velocity components in the directions of increasing r and z, respectively, and the other

symbols have the same meanings as they have in (1). As shown by Yih (1961), because p.

does not change along a streamline in steady flows, u' and w' satisfy the equation of

continuity and we can use a new stream function ij/' and write

1 ^ ' 1 5^ (1A\u = —, W =-— • (34)
r dz r or

The final equation governing the flow is then, upon elimination of p in (33), if the fluid is

incompressible and therefore p is a function only of tp' in steady flows (Yih 1961),

 1 8 d2 V, kgr dp

dr2 r 8r dz2) p0 dip' dr '

The horizontal boundaries are at z = 0 and z = d, and the sink is at r = 0, z = d. First, we

note that the flow at infinite r must be horizontal, since there the velocity is zero and from

(33) we see that the pressure is hydrostatic and the isopycnic lines horizontal. Then at

infinite r the streamlines are also horizontal and ifr' must be a function only of z, and (35)

shows that must be linear in z at infinite r. Hence the flow at infinity is given by

«'= ~^-j, (36)
27zrd

where Q is a pseudo-discharge which will be used to measure the strength of the sink. At

infinite r, then,

(37)

We emphasize that whatever the sink distribution at the axis may be, (37) always holds. Let

the density at infinite r be given by

P = Po{l~^j)' ^

Then

*P_= Meq m)
d4>' Q
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We now use the dimensionless quantities

Then (35) becomes

where

The boundary conditions are

82 1 5 82\ „ffV

a?,4I)

a2 = Infipo kgd2/no Q■ (42)

T = 0 at C = 0, (43)

*P = 1 at C = 1, (44)

T = 0 at <f = 0, (45)

¥ = C at £ = oo. (46)

The discontinuity of T at £ = 0 and ( = 1 represents the sink.

The solution by the separation of variables is of the form

00

T = C + X sin nnC, (47)
n= 1

which satisfies (43) and (44). The coefficients A„ are determined by (45) to be

2( — iy

nnf„( 0)

and the condition (46) is satisfied if

fJico) = 0. (49)

It is evident that the solution/„(£) must satisfy not only (49), but also

/„(0) # 0, (50)

in order for A„ to be finite.

The differential equation satisfied by/„(£) is

K-(l2Z + j)f;-n2it2fn = 0. (51)

Power-series expansion by the Frobenius method gives two independent solutions for

fn '■ fni which is a power series in £2 starting with £2, andfnl which is of the form

/.,«)= l+a1«2 + -+/.2(01n{. (52)

It is evident that /„2(£) does not satisfy (50). So the solution has to be fnl or a linear

combination offnl andfn2. The crititerion is that it has to satisfy (49). The determination of

the right combination is far from trivial. We choose to give an explicit solution of (51) that

satisfies both (49) and (50).
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Let

1 = i2Z2/2. (53)

Then (51) becomes

where

Now let

which transforms (54) to

dll_dL + lh
dt]2 dtj t]TT-Trr + T/=°< (54)

kn = — n2n2/2/.2. (55)

/ = e"l2h(ri), (56)

d2h / 1 k

dt]2 + \ 4 /;
2 + ( ~ 7 + - )* = 0- (57)

The Whittaker equation in its cannonical form (Whittaker and Watson 1945, p. 337), is

d2W ( 1 k 1-4 m2\„, „~ T + ( ~ 7 + ~  7^2 — (58)
dtj \ 4 t] 4 ij

Taking 2m = 1, and identifying our kn with the k in (58), we obtain

h = e~"l2tik"
K

r'"( 1 +-) e~' dt, (59)

which, except for a multiplicative constant which is inconsequential here, is the same as that

given for Wk 0.5(/?) by Whittaker and Watson (1945, p. 340). Thus

Ul) = '1k• \t-k{l+-)kne--dt. (60)
Jo V nj

It is a simple calculation by the use of (60) to show that

/„( 0)=1. (61)

Hence (48) gives

An = -(-l)". (62)
nn

Furthermore, it is evident that (49) is satisfied. Thus (47), (60), and (62) gives the solution.

We note in passing that w' on the axis of symmetry cannot be obtained by differentiation of

(47) with respect to £ term by term. This is a peculiarity arising from eigenfunction ex-

pansions, and has been noted before in similar problems (Yih, O'Dell, Debler 1962).

The flow patterns for various values of X2 are similar to those given for the two-

dimensional case by Yih (1961). The larger )} is, the more gradually the streamlines rise to

the sink. We therefore refrain from presenting the flow patterns. Instead, we make the

following observations on the connection of the results for this problem with the general

results given in Sees. 2 and 3.



STEADY STRATIFIED FLOWS IN POROUS MEDIA 227

First we note that two flows into a point sink are similar if the X2 defined by (42) is the

same for both flows. And for linear upstream density distributions, such as given by (38),

this statement is quite equivalent to requiring the constancy of r in (10) and the requirement

of (15a) far upstream.

Then we note that the left-hand side of (35), divided by — r, is the pseudo-vorticity, and

this pseudo-vorticity is zero at infinite r, but is created by the combined action of gravity

and stratification as the streamlines deviate from horizontality, in agreement with (28).

The fact that (37) holds for any sink distribution on the axis is of practical importance.

For if one wishes to draw a lighter fluid (say oil) and does not wish to have water underlying

the oil come out with the oil, one merely has to use two sinks of the appropriate strengths

calculated from the depths of the oil and the water far upstream and from their viscosities.

The upper sink will then draw only oil and the lower one only water. So while it is futile to

try to separate oil and water by using only one sink, however small the discharge is (since

(37) always holds), it is possible to separate oil from water by using two sinks of the

appropriate strengths—and it does not seem very inconvenient to do so.

5. Sink flows when diffusion is taken into account. List (1969) gave an exact solution

for a two-dimensional diffusive flow of a stratified fluid into a line sink, and showed that my

solution (1961) for nondiffusive flow remains intact when diffusion is considered. The

simplicity of his solution has an elegance that is very appealing. However, upon closer

examination one notes that the boundary condition for the temperature (or density) at the

plane of symmetry has not been considered by List. The most natural form of this condition

is

dp/d£, = 0 at £ = 0, (63)

if we write now

where x is measured horizontally and y increases vertically upward, d being the spacing

between two impermeable planes. The sink is situated at

£ = 0, 17=1.

List's solution does not satisfy (63). Therefore his solution requires a heat-sink distribution

on the plane of symmetry £ = 0. Nor is the p given by his solution constant on £ = 0. It

varies linearly with r], Thus his solution is for an unrealistic temperature distribution at the

plane of symmetry, where this distribution is artificially maintained. It does not solve the

problem of symmetric flow into the sink from left and right. The elegance of his solution is

therefore illusory, and this is most unfortunate since the solution has such appealing

simplicity.

The problem admits only an approximate solution if it is to be solved properly. We shall

consider the effect of temperature variation on the viscosity p to be small, and take p to be

constant. Furthermore, we shall use p instead of the temperature, implicitly assuming the

variation of p with the temperature to be linear. Then the equation of motion is (Yih 1961)

pV2ip = gkpx, (65)

where ip is the usual stream function and k again denotes permeability, as in Sec. 2.
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The velocity given by Darcy's law at any "point" is the mean velocity over not just the

pores but over a mean, sufficiently small area. We therefore do not use the porosity as List

(1968, 1969) did in his diffusion equation. To be consistent we also consider the diffusivity a

(thermal or saline, as the case may be) to be determined in a similar average way, and not to

be the molecular diff usivity in the absence of the grain matrix. Then the diffusion equation

^yPx-^xPy = °^2P- (66)

We shall deal with the region .x < 0 first.

To render the equations dimensionless, and to make things convenient, let

~ = F(c, ri), (67)

- = 1 - fa + 0(i, r,), (68)
P o

where U is the velocity at x = — oo, p0 is the density at y = 0, and 1 — fa is thep/p0 at

x = — oo. Then (65) becomes

V2F = A6^, (69)

where

-4 = gkpJuU, (70)

and (66) becomes

+ (jFi) = p6(F^ Q( _ F( (71)

where Pe is the Peclet number Ud/a.. In (69) and (71), V2 now is

il ii
d£,2 + 8r]2

The boundary conditions are

F(£, 0) = 0 = F(Z, 1), (72)

F( — c&, t]) = 0, (73)

F(0, rj)= -t], (74)

0(Q, 0) = 0 = 0(c, 1), (75)

6(-oo,n) = 0, (76)

0,(0, n) = 0. (77)

The solution by Yih (1961) is for infinite Pe. Now we shall consider the case of low Pe

only. For this case we can expand F and 9 in powers of Pe. But this is not an efficient way of

finding the solution. The most efficient way is to multiply the right-hand side of (71) by e,

solve the equations by a power expansion in e, and then make £ equal to 1. In this way the

terms containing Pe on the left-hand side of (71) appear in the first approximation already.

For the first approximation, then, we have (69) and

V20 = Pe(0« + j8F4). (78)
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Elimination of 9 between (69) and (78) gives

V2V2F - Pe(V2F? + A(jF(i) = 0. (79)

Using the method of separation of variables, we have

00

F = X A« Fn(Z)sin nnri, (80)
n= 1

oo

0= X An 0„(£)sin nnr], (81)
« = i

which satisfies (72) and (75) exactly. The function F„ satisfies

l(D2 - n2n2)2 - Pe(£>2 - n2n2 + /4^D)D]F„ = 0. (82)

Of the four independent solutions of (82), all exponential functions, only two satisfy (73),

and these are exp( — a„£) and exp( —6„<J), where, when terms of O(Pe) are neglected (since

the right-hand side of (71) has been dropped in this approximation),

a„ = H7t(l + Q), (83)

b„ = mil- Q), (84)

with

The solution for Fn(i;) is

Q = {PeA/J) 1 . (85)

FJtQ^e-'t + ye-™ (86)

where y will be determined by (77). Substituting (86) into (69) and applying (77), we find, by

using (83) and (84), that y = 1. Then integrating (78), using (86), we obtain

9»=t^q2 i^f)l2{~bne~a"t + a"e~b"il (87)

which satisfies (76) and (77).
Only (74) needs to be satisfied by determining the Fourier coefficients A„. These are

found to be

A. = — (- 1)".
Tin

Thus

2 ® (—If
F = - X  -^©sin nnrj, (88)

n „=! n

2 ® (-1)"
0 = - X  $n(£)s'n nnr\, (89)

n „ = ! n

and the solution is obtained for the first approximation. Higher approximations can be

found by successive substitution of the results of the previous approximation into the

right-hand side of (71) and integration. But it should be remembered that the indicial

equation for (82) has to be solved to higher orders in Pe, since terms of O(Pe) have been

neglected in (83) and (84). The higher approximations present no real difficulty, and we
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content ourselves with the solution given by (67), (68), (88), and (89) for low Peclet numbers.

The solution for x > 0 is given by

ip/ud= -n-F(-z, nl

P/Po = 1 - Pi + 0(-£ l),

with F and 6 given by (88) and (89). The reflection of the solution across the axis of

symmetry is possible because

ip = 0 and (— ) =0 at £, = 0.
\PoJt

A similar solution for the axisymmetric case is possible. But to save space we shall not

present it, and note here only that it involves Hankel functions that vanish at large dis-

tances from the axis of symmetry.

The solution given by (88) and (89) is in a sense already the second approximation. A

truly first approximation is obtained if we drop all terms containing Pe in (71). Then we

obtain

9 = 0

exactly, and (69) shows that the flow will be irrotational. We mention this fact to show that

when p( (or px) is zero there is no vorticity, in agreement with (28) in Sec. 3, where is the

true vorticity % in the present case of constant p. The results in Sees. 4 and 5 illustrate the

general results given in Sees. 1 and 2, thus providing a sense of unity to the various subjects

treated in this paper.
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