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Abstract. We study the one-phase Stefan problem on a semi-infinite strip x > 0, with
the convective boundary condition — KT(0, t) = h[ T, — T(0, t)]. Points of interest include:
a) behavior of the surface temperature T(0, ¢); b) asymptotic behavior as h— 00; ¢) unique-
ness, and d) bounds on the phase change front and total system energy.

Introduction. In this paper we study the following problem:
Problem 1. Find X(t) and T(x, t) such that

X(t) 1s Lipschitz-continuous for t > 0; (1.1)

X'(t) is continuous for t > 0; (1.2)

T(x, t) is continuous for t > 0 and 0 < x < X(1); (1.3)

T(x, t), T.(x, t) are continuous for t > 0 and 0 < x < X(t); (1.4)

— o0 < lim igf T(x, t), lim sgp T(x, 1) < 0; (1.5)
X 1= X, 1=

T(x, t) is continuous for t > 0, 0 < x < X(1); (1.6)

X(t) and T(x, t) obey the conditions

T(x, t) = aT,(x, 1), t > 0,0 < x < X(1), (1.7)
T(x,t)=T,,t>0, x> X(1), (1.8)
X(0) = 0, (1.9)
pHX'(t) = —KT(X(1), 1), (1.10)
—KTL0, t) = h[T, — T(0, 1)], t > 0. (1.11)

Here o, p, H, K, h are positive constants, T; and T,, are constants,and T, > T, .
Egs. (1.7-1.11) describe melting of a material due to convective heat transfer from a fluid
with ambient temperature T; flowing across the face at x = 0. The parameters are:

o = material thermal diffusivity (m?/s),
K = material thermal conductivity (KJ/m — s — °C),
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p = material density (Kg/m?),
H = latent heat of melting (KJ/Kg),
T., = material melting temperature (°C),
T, = ambient fluid temperature (°C),
h = fluid to material surface heat transfer coefficient (KJ/m? — s — °C).

We will also use
AT =T, - T, (°0),
and the material specific heat
¢ = specific heat (KJ/Kg — °C).

Of course a = K/cp. The melting front at time ¢ is at x = X(t) while T(x, t) is the temper-
ature at position x and time ¢.

It is known [3] that a solution to Problem I exists. While a number of papers in the heat
transfer literature are devoted to various approximations pertinent to this problem [5,
8-10], the only studies of the qualitative behavior of its solution concern existence and
smoothness ([7], [12], in addition to [3]). We will study the qualitative behavior of a
solution, focusing on questions pertinent to the melting (or solidification) problem from
which it arises. These include

Question 1. How do T(x, t), X(t) behave att = 0?
Question 2. How does the surface temperature T(0, t) vary with ¢?
Question 3. What happensas h— o0?

On physical grounds it would be expected that the surface temperature T(0, t) would tend
to T,, ast— 0", and to the fluid temperature T}, as t — cc. Similarly, (1.10) and (1.11) would
lead us to conjecture that X'(0*) exists and is given by

X'(0") = WT, — T.)/pH.

The situation whereby h— oo could arise from a greater flow rate for the transfer fluid at
x = 0 [6], in which case we would expect that T(0, t)— T} ; in this case we would also
anticipate that the solution to problem I should tend to that of the problem with (1.11)
replaced by

TO,t)=T,,t>0. (1.12)

This latter problem (1.1)«1.10), (1.12), will be referred to as Problem II, and its exact
solution is given by

X, (0)=24Jat, >0, (1.13)
T (x, 1) = T, — AT erf(x/2/at)/erf (1.14)

with A the root of
ieterf i = St/\/n. (1.15)

Here St is the so-called “Stefan number”, indicating the ratio of sensible to latent heat [11],
and given by

St = cAT/H.
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Our aim is to establish these claims. To do this we use a number of moment-type
relations as well as the maximum principle. These are discussed in Sec. 2. In Sec. 3 we
address questions 1 and 2; what happens as h— oo is examined in Sec. 4. We close in Sec. 5,
with upper and lower bounds on the total heat in the material. In the Appendix we prove a
form of the maximum principle which we use.

2. Preliminaries. The maximum principle for the heat equation is normally used in
two forms [4]. The first asserts that a solution to the heat equation cannot attain its
greatest or least value at an interior point P, of a domain unless it equals that value at all
points influencing P, . The second, due to Friedman, concerns the behavior of a nontangent
temperature derivative at a boundary point. As stated in [4] it presents some difficulty due
to the assumed “strong-sphere” property of the boundary. For this reason we use the
following version of the maximum principle suggested by a result of Vyborny [13].

THEOREM 1. Corner Point Maximum Principle. Let D be a simply connected domain in the
x,t plane and P, = (x4, to) a point of its boundary. Let N be the disk

N = {(x, )](x — x0)* + (t — to)* < &%},
Set
G'=DnNn{xt<ty), G =G —aD.
Suppose that u € C(D), u, , u,,u,, € C(D), and

Lu=u,—oau, <0 2.1
in D. Furthermore, let
u(P) <u(P,) for PeG° (2.2)
u(P) < u(P,) for PedD n N, (2.3)
and suppose that 0D ~ N isa C' curve representable as x = X(t). Then
e
PeGo

where P tends to be P, in any nontangential direction.
The proof of this theorem is given in the Appendix.

CoroLLARY 1. Ifall of the conditions of Theorem 1 hold except for (2.2), (2.3), and if

lim (u(P) — u(Po)/| P — Pol) 2 0,
P—>l_’o
PeGo
then either
a) there exist points P = (x, t) in G° arbitrarily close to (x,, t,), With ¢ < t,, for which
u(P) = u(P,)
or
b) there exist points P on @D n N arbitrarily close to P, for which u(P) > u(P,).
Reversing the inequalities in Theorem 1 and Corollary 1 yields the corresponding corner-
point minimum principle.
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We will use a number of integral relations satisfied by a solution X(t), T(x, t) to Problem
I. From the continuity of T(x, t) in any region t > t > 0 we find

f’h[TL — T(O, t')]dt = pH[X(t) — X(7)]

T

X(t) X(1)
+ j cp[T(x, 1) — T, Jdx — J cp[T(x, 1) — T, ]Jdx, (24)
0 (]
X X(1)
j CpX[T(X, t) - nr]dx - f Cpx[T(x’ t) - nr]dx
(J 0
+(pH/2) [X?(t) — X*(1)] = K J'[T(O, t) — T,ldr, 2.5)
X(1) X(r)
J (cp/2) [T(x, t) — T,J*dx — J (ep/2) [T(x, 1) — T.1%dx
0

0
t X(t) t
+J f K T(x, t')%dxdt = J h((T;, — T(0, )][T(O, ) — T,]]dr.
T JO T

For example, (2.4) is derived as follows. Let 6 be any value between 0 and 1/2. Consider the
closed domain

Dy={(x,t)t<t <t 0X({)<x <(1-—6X() (2.6)
By the conditions (1.1)}1.11) we find
(1-60)X@r)
(d/dt) cp[T(x', 1) — T, Jdx" = (1 = O)X'(t)ep[ TL(1 — O)X(¢), '] — T.,]
6X(tr)

— 0X'()ep[TLOX(1), 1] — T.] + KT[(1 — )X(r), '] — KT[6X(¢), t'].

Integrating this equation with respect to ¢’ on [z, t] and letting 8 — 0 yields (2.4). Relations
(2.5), (2.6) are derived similarly. From the boundedness of T(x, t') and the fact that X(t)— 0
ast— 07, we conclude that in (2.4)

X(v)
J CPI:T(X, t) - Tc‘:r]dx -0

0

as 1 — 0, whence

t X
j h[T, — T(O, t')]dt’ = pHX (1) + f “cp[T(x, 1) — T, )dx, (2.7)

0 0

which is the overall heat balance relation on [0, t]. In the same way (2.5) implies
X(r) t
f epx[T(x, ) — T, Jdx + (pH/2) X(1)* = K J [T, ¢') — T ]dr'. (2.8)
(0} 0

Consider (2.6). By elementary calculus

[T, — T, )I[TO, ¢) - T,] < (1/4) (T, — T.)".
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Hence

X(»)

X(t
J ”(CP/2) [T(x, 1) = T,])%dx —J (ep/2) [T(x, 7) — T, )%dx
0 0

t (X
+ f J ( )K TAx, t)dx dt’ < [W(T, — T,)*/4](t — 7). (2.9
t JO

Letting T — 0 we conclude that
X() t (X))
f (cp/2) [T(x, t) — T, J%dx + j f KT(x, t')%dx dt < [WT, — T.)*/4] t,
[} 0 JO
and, in particular, that
t X(tr)
J J KT(x, t')*dx dt’ < t[W(T, — T,)?*/4]. (2.11)
0 JO

3. The qualitative behavior of a solution. We now address the qualitative behavior of a
solution to Problem I for a fixed h > 0.

THEOREM 2. The phase boundary X(t) solving Problem I is always positive: X(t) > 0 for
t>0.

Proof. Since X(t) > 0 for all t > 0, a point t, > 0 for which X(¢,) = 0 must be a zero of
the (continuous) derivative X'(¢). However, we would then have T(0,t,) = T,,, whence

0= pHX'(to) = — KT.[X(to), o]
—KTA0, to) = W(T, — T) # 0

and the theorem is proved.

THEOREM 3. T, < T(x,t) < T fort > 0and 0 < x < X(t).

Our proof rests upon the following lemma, which asserts that T(x, t) cannot be bounded
away from T, in a neighborhood of the origin.

LEmMA 1. Let ty > 0 be given. There is no function x = x*(t) satisfying the following
conditions on (0, 1,]:a) 0 < x*(t) < X(1); b) 0 < w < | T[x*(t),t] — T, | for some w.

Proof of Lemma 1. Roughly speaking, we will see that if T(x, t) is bounded away from
T.,, then T(x, t) must grow in a manner inconsistent with the bound (2.11).

For suppose that x*(t) satisfies (a) and (b), and let t € (0, t4]. Since T,(x, t) is continuous
on [0, X(r)],
X(@)

X
| T,, — T[x*(), ]| < J [ Tx, t)|dx < {X(¢) f Tx, t)*dx}'/?
o

xX*(1)
or by (b),
X
w? < X(t) J T(x, t)%dx.
o

Integration over [¢/2, t] for any ¢t < ¢, yields

t X(tr)
(@*t)2) < J X(@) f T, t')%dx dt'.
/2 0
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By the generalized mean value theorem,

t X(r)
(0*t)2) < X(t%) T(x, t')%dx dt’

t/2 JO
where t* € [t/2,t]. Now by (2.11) we obtain
(0?t/2) < X(t*) (htAT?/4)
or
207 < X(t*) KT, — T,,)*

This contradicts X(t*) — 0 as t — 0 and thus proves the lemma.

Proof of Theorem 3. We begin by showing that T(x, t) must be less than T;, for all points
(x, t) with t > 0, 0 < x < X(t). Suppose that T(x,, to) = T, for some t, > 0, and x, € [0,
X(t0)].

Claim: For each t; € (0, ty) there is some x* = x*(t,) € [0, X(¢)] such that T[x*(t,), t,] >
TL .

Since this directly contradicts Lemma 1 we need only establish this claim. Fix ¢, € (0, t,)
and let

S={t:te[t,to], T, t) > T.}.

If x, = 0 then ¢y, € S and S is not empty. If x, > O then, by the strong maximum principle
[4] applied to D, = {(x, 1): 0 < x < X(¢), t, <t < 1o}, T(x, t) must exceed T(x,, to) = T,
somewhere on its parabolic boundary. If this occurs at some point (x, t,), x € [0, X(t,)] the
claim is proved. If it occurs on x = 0, i.e,, for some (0, t*) witht* € [ty, to], then t* € S, so
again S is not empty. Let

t** =inf S.

Suppose t** > t,. Then T(0, t,) < T, while T(0, t**) = T, whence —KT,(0, t**) = 0 and
by Corollary 1 to the corner point maximum principle either there exist points (x, t)
arbitrarily close to (0, t**) with ¢t < t** for which T(x, t) > T, or there exists some t < r**
for which T(0, ¢t) > T, . Either possibility violates the definition of t** and thus t** =¢,.
Hence T(0, t;) > T;, and x*(¢;) = 0. Thus our claim is proved and T(x,t) < T, . The proof
that T(x, t) > T, is carried out in a similar way, as we see by assuming that

T(XO’ [0) < Tc‘:r —w

for w >0 and some point (x,, ty), X € [0, X(to))-
By the strong maximum principle we now have:

COROLLARY 2. T(x,t) > T, fort > 0, x € (0, X(¢)).

This result implies that at any point (X(t), t), T(x, t) assumes a strictly minimum value
relative to points to its left. Hence by the corner point minimum principle pHX'(t) =
—KTJ(X(t),t) > 0 and we have

COROLLARY 3. X'(t) > Ofort > 0.
We will now use the moment-type relations of Sec. 2 to derive upper bounds on X(t).
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THEOREM 4. For any ¢t > 0 the phase boundary of Problem I obeys the conditions:

X(t) < f,(t) = htAT/pH, (3.1)
X(1) < f5(t) = {2KtAT/pH}'7?, (3.2)
fil), t<rt*
X(0) < { 0, > (3.3)
with
t* = 2KpH/h*AT. (3.4)

Proof: From Theorem 3, T(x, t) > T, whence (2.7) implies (3.1). Similarly T(0,t) < T
whence from (2.8), 1 pHX(t)?> < KtAT, or (3.2) is proved.

By a straightforward calculation we see that f,(t) < f5(¢t) for ¢t < t*, and f,(t) = f5(¢) for
t > t*, whence (3.3) holds.

Note that the bound (3.3) indicates an initial linear growth in the phase front, followed
by growth as t'/2,

THEOREM 5. T(x, t) is nondecreasing in t; that is, T(x, t + At) > T(x, t) for all x € [0, X(¢)],
At > 0.

Proof. The concept of the proof is to show that the first forward difference of T(x, t) in ¢,
namely

v(x, t, At) = T(x, t + At) — T(x, t)

is never negative for any choice of At > 0. To do this we note first that v(x, t, At) is defined
and satisfies the heat equation for t > 0, x € [0, X(t)]. Moreover, by Corollary 2 and 3,

v(X(t), t, At) > 0.
Atx =0
K v (0, t, At) = hv(0, t, At).
Suppose now that v(x, t, At) is negative at some point (x, to):
U(xg, tg, At) < —w < 0.

By an identical argument to that used in proving Theorem 3 we conclude that for each
0 <t <ty there is a point x* = x*(t) for which

v(x*(t), t, At) < —o.
Hence

| v(x*(t), t, At) — (X (¢), t, At)| > @

for all t € (0, t,). However, we may now apply the argument used in proving Lemma 1 to
show that this violates (2.11) and the theorem is proved.

COROLLARY 4. T(x,t)— T, as x,t— 0",
Proof. By the Theorem, T(x, t) is nonincreasing for t— 0*. But then by Lemma 1 it
cannot be bounded away from T,,, whence it must tend to T, as x,t— 0*. Thus, we can
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now extend T(x, t) continuously to (0, 07) and define it for t > 0, x € [0, X(¢)] as a
continuous function.
An immediate implication of Theorem 5 is that for t > 0, x € (0, X(¢)),

aT (x, t) = Tfx, t) = 0. (3.5)
This in turn implies the following theorem.
THEOREM 6. Let g(x,t) = — KT(x, t)fort > 0, x € [0, X(t)]. Then
pHX'(t) < q(x,t) < h[T, — T(0, 1)] < hAT. (3.6)
Proof. Forany 9 € (0, 1/2)

X

Ty(x, 1) — TAOX(1), 1) = f T, 1) dx' > 0

0X (1)

whence
—KT(x, 1) < —KT(0X(1), 1);
letting # — 0 and using the continuity of T,(x, t) on the closed x-interval, we have
q(x, t) = —KTJ(x, t) < —KT(0, t) = h[ T, — T(O, t)].

The second inequality of (3.6) is proved in the same manner.

The key difficulty in understanding the convective boundary condition lies in the varia-
bility of the surface temperature T(0, t). We will now obtain a bound on it describing its
long-term behavior.

THEOREM 7. For any r > 0, the surface temperature T(0, ¢) of Problem I obeys
0<T,—T@O,t) <(1 + SHORKpHAT)"?/ht"2. 3.7)

Proof. From the heat balance relation (2.7) and the fact that T(x,t) € [T, T, ],
jh[TL — T(0, t')]dt’ < HpX(t)[1 + St],
o

and using the upper bound (3.2)
X(1) < {2KtAT/pH}'/?

we find

t

jh[TL — T(0, ¢')]dt’ < {2KpHtAT}'*[1 + St].

0

However, T(0, t) is nondecreasing for increasing t, whence
0

ht(T, — T(0, t)) < fth[’l‘,_ — T(0, t')]dr

and (3.7) holds true.

COROLLARY 5. T(0,t)— T, ast— oo.
We will now further examine the behavior of X(t), T(x, t) at the origin.
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THEOREM 8. X(t) has a right-hand derivative at t = 0, given by
X'(0%) = (hAT/pH). (3.8)
Proof: From (2.7)

t

(X(@)/t) = (h/tpH) j

0

x@)
(T, — T(O, t') dt’ — (c/tH) J (T(x, 1) — T,,) dx.
0
Since T(0, ¢) is continuous for ¢t > 0,
(1/1) J(T" — T, t)dt =T, — T(0, 6t), 6 € [0, 1].
0

Moreover,

X(t)

(c/tH) J m(T(x, - T,)dx = [CX(t)/Ht]{(l/X(t))

(o ()

(T(X, t) - T;:r) dx}

= (¢/H) (X(®)/1) (T(x*(1), 1) — T.,)
for x*(t) € [0, X(t)]. Hence
X@/{1 + (c/HTLx*t), t] = T..1} = (h/pH) (T, — T(0, 61)).
Letting t — 0 yields the asserted result.

COROLLARY 6. T,(0,07) exists and equals (hAT)?/pHK.
Proof: Foranyt > 0,

(T, 1) — T.,/t) = (T(O, ) — T(X(t), )/t

—(X(@®)/t) Tx*),t), 0 <x*t) < X(t)

Moreover, from (3.6)
(PHX'(t)/K) < — T(x*(1), 1) < (h/K) (T, — T(0, 1)),
and as t — O this implies
—T(0%,0%) = (hAT/K),
whence
T(0, 0%) = (hAT)*/pHK).

The bound (3.6) on | T, | is the principal tool needed for proving uniqueness of the solution,
using the approach of Douglas [2]. Because of the direct nature of the proof we will merely
state

THEOREM 9. The solution to problem I is unique.

4. Dependence on the heat transfer coefficient. We now address the question of how
the solution to Problem I depends upon h. Indeed, from (3.7) of Theorem 7 we can state

THEOREM 10. As h— oo, T(0,t)— T}, in a pointwise manner for all t — 0.
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Similarly we may assert:

THEOREM 11. The solution to Problem I depends monotonically on h. In particular, if
(TY(x, t), X,(t)) and (T*(x, t), X ,(t)) are the solutions to Problem I for h = h,, h,, respec-
tively and if h, < h,, then X ,(t) > X,(t) for t > 0 and T?*(x, t) > T'(x, t) wherever they are
both defined.

Proof: From Theorem 8, Corollary 6 and the maximum principle, there is somet, > 0
such that our assertion is true when t < t,. This is seen by considering the difference

v(x, t) = T?(x, t) — T(x, t).
at points where they are both defined. Let
t* = sup{t| T*0, t) > TY(0, 1)}, t** = sup(t| X,(t) > X,(t)).
By definition
00, ) = (hy — hy)(T;, — T*O, 1)) + h, V(0, t).
Suppose that t*, t** < oo.

Claim 1. t* # t**

Suppose that t* = t**. Then

a) X (%) = X,(t%),

b) X'\(t*) > X5(t%),

) u(X(t*),t*) =0,
while for t <t*, 0 < x < X,(¢), v(x, t) > 0. But by (b), v (X,(t*), t*) =0, which would
contradict the corner minimum principle since

v(x, t) > v(X (t¥), t*) for t<t*,0<x< X, (1)

Claim 2. t* < t**is impossible.

On [0, t*], X,(t) > X,(t) whence v(X (1), t) > 0. Hence we must have v(0, t*) = 0 with
(0, t) > Ofort < t*. But then v(0, t*) is a minimum value up to time t* whencev (0, t*) > 0,
which contradicts

00, t*) = (hy — hy)(T, — T*(0, t*)) < 0.
Claim 3. t** < t* is impossible, since
TAXH(t**), %) = TH(X,(**), t**%) = T,,.

Thus Theorem 11 is proved.
The solution to Problem 1I (see Sec. 1) is given explicitly by [1]

X (0) = 24/ (at) @.1)
T*(x, t) = T, — (AT /erfl) erf(x/Z\/ (at)) 4.2)

where A is the root of
Je*erfl = St//(n). 4.3)

We claim that this solution constitutes an upper bound for that of Problem I, namely

THEOREM 12. Let h > 0, and let X,(t), T*(x, t) denote the solution to Problem I for this
value of the heat transfer coefficient. Then X _(t) > X,(¢) for all t >0, and T*(x, t) >
T"(x, t) for all (x, t) for which both functions are defined.
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Proof: We note first that since X ,(t) < (htAT/pH), we find X _(¢) > X (¢) for
0<t<ty=(42°KpH?/ch®>AT?).
Moreover, for t < to, T*(0,t) = T, > T*0, t) and
T=(X,(t), ) > THX,(0), 1) = T,,.
Lett < toand x € [0, X,(t)]. Then by the mean value theorem
T=(x, 1) = T'(x, ) = (T(x, 1) — T,,) — (T"(x, ) — T,,)
=(x = X (1) TY(X, 1) — (x — X,(1)) TYx", 1)
for x’, x" € (x, X;(t)). But then from (4.2)

T (x, t) — TH(x, t) = [(X ,(t) — x)AT/\/ (mat) erfi] e ™42 4 (X,(t) — x) T"(x", t)
> (X (1) — x) ATe™ ¥/ /(mar)erfl — (X,(t) — x)(hAT/K)
> (X,(t) — x) ATe™#//(nat)erfi — (hAT/K)
>0

fort<t, = (e"zK/h\/(na)erfi)z. It is easily seen that t, < t,. Thus fort < t, the solution
to problem II bounds that of problem I.
Let
* = sup{t: X (1) > X\()},

t** = sup{t: T(x, t) > T*(x, 1)}, for 0 < x < min (X 4(¢), X,(1))-

Let
v(x, t) = T*(x, t) — T(x, t)

where both functions are defined. Suppose that t*, t** < co.
Claim I: 1t is not possible to have t** < t*,

Indeed, suppose that t** < t*. Then v(x, t) would vanish at some point (x, t**) for x €
(0, X ,(t**)) while it is positive on the line t = ¢,/2 and at x = 0 and x = X,(¢) for t < t**,
violating the maximum principle.

Claim 2: Itis not possible to have t* < co.
For at t*,
X (%) = Xy(t*),  vo(X4(t%), t*) =0,
v(x, t) > 0 for t < t*, X" = X', (t%)
whence
v (X (%), t*) = 0,

and by the corner point maximum principle v(x, t) could not have a minimum at (X ,(¢*), t*).
Thus the claim is proved, and t*, t** must be infinite, proving the theorem.
We now assert that as h— oo the solution to Problem I converges to that of Problem II.

THEOREM 13. Lett > 0. Then as h— o0,
X(t)— X (1), T"(x, 1)— T*(x, t).
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The proof rests upon the following observation:

LEMMA 2. The relation (2.8)

f " epx[T(x, 1) — T.Jdx + (1/2) pH X(0? = K J 170, ) - T, dr 28)
0

0

holds for X,,, T" as well as for X, T.
Indeed, the factor x in the spatial integral prevents the flux at x = 0 from entering into
the equation. Of course

T0,t)=T,, t>0.
Proof of Theorem 13. For any h > 0, by Lemma 2,

j“"’cpx[rw(x, 0 — T, Jdx + (1/2) pH X 0 = K j (7, — T 3dr, 4
X (]

Xn(t) t
f cpx[T"(x, 1) — T, )dx + (1/2) pH X,(1)* = K f [T"O, ¢) - T.Jdt" 4.5)
() 0
Recalling that X (f) > X ,(t) and T®(x, t) > T"(x, t) and subtracting (4.5) from (4.4), we find,
using the estimate (3.7) on (T, — T*(0, t)), that

X (1)

Xn(1)
f cpx[T*(x, t) — TH(x, t)]dx + J cpx[T>(x, t) — T, ]Jdx
0 Xn(t)

t

+(1/2) pHIX (1)’ — X))’ 1 = K J(TL - T"0, t)) dt’

0
< (2K /QKpHATY1 + St)/h)/(t),  (4.6)
which immediately implies that as h — oo
X(t)— X o{0).

Consider the family of functions {T*(x, t)} for h— co. By (3.6) and (3.7), for any x €
[O’ Xh(t)]

—TJx, t) < h[T, — T"O, )] < (1 + SRKpHAT) 1?/t*/2,
Hence for any ¢t > 0 the functions T*(x, t) are equicontinuous; since they are all bounded by
T*(x, t) and monotonically increasing in h the Arzela-Ascoli lemma implies their uniform
convergence on [0, X (¢)] (assuming them extended beyond X ,(t) as T,,) to a limiting

function. By (4.6) this limit must coincide with T ®(x, t) and the theorem is proved.
Relation (4.6) yields the following interesting observation.

THEOREM 14. As t — o0, (X (t)/X o(¢)) — 1; that is, the fronts for finite and infinite h agree
asymptotically.
Proof: From (4.6),

(1/2)pH [X (1) — X4()*] < QK /QKpHAT) (1 + St)/(t)/h.
Division by X (1) = 24./(at) yields
0< 1 — (X)X (1) < 0//(0)
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for 0 = (c(1 + St)/A*hy/(2KpAT/H), or
(1 = (O//O)? < (Xt X (1) < 1 (4.7)

which, letting t — oo, implies our result. We note that (4.7) provides a potentially useful
bound on X (1),

X.(0) J(1 = (0/ /) < X,(t) < X (0). 4.8)

5. A bound on the total system energy. If the motivation for studying problem I lies in
the goal of storing heat in a phase-changing material, then the total heat stored by time ¢,

QW)=nh f[TL — T(0, t')]dr
(4
assumes a special importance. Using the relations (2.7, 2.8) we can obtain useful upper and
lower bounds on 0(t). Thus we assert:
THEOREM 15. Attimet > 0,
Q(t) = F(t) = (KpH/h) \/[1 + (2th*AT/KpH)] — 1, (5.1)
Q1) < F (1) = KpH(1 + St/2)*{[1 + (2tATh*/KpH(1 + St/2)*)]'/* — 1}/h.

Moreover,

0<F, — Fy <(*t*h*c*AT?*/K*H?) = (t*h*AT?*/K?p*H?). (5.3

Proof of (5.1). We note that

X(t) X(@)
j xep[T(x, t) — T, Jdx < X(1) | cp[T(x, t) — T, Jdx
0 0

while
j t[T(O, t) — T,Jdv = —(1/h)Q(r) + (AT,
0

whence, after some manipulation, (2.7) implies

[X(0) — (Q(0)/pH)]* + (2K/pHh) [RAT — Q(1)] — [Q(1)*/(pH)*]) < 0

and since X(t) is real, we find

(2K/pHh) [htAT — Q] < [Q(1)*/(pH)].

Further manipulation yields the bound (5.1).
To obtain the lower bound we note that [by (3.5)]

T(x,t) < T, — [xAT/X(t)],
whence
X(@)
J cp[T(x, t) — T, Jdx < [cpX(t)AT/2]
o
and so

0(t) < pHX ({1 + (1/2)St).
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But from (2.8),
X(1) < /[2K/pH){ —[Q)/H] + (AT},
whence (5.3) yields
Q(t) < [1 + (1/2)8t] \/@KpH{tAT — [Q(t)/H1}.

By straightforward manipulations we are then led to (5.2).
It is interesting to note that F, — F, = O(St?). Indeed, if we introduce the nondimen-
sional parameters

Fo = (at/I), Bi = (hL/K),
for L a representative length, then
Fl - FO S (FoBizst)Z.

Thus the bounds (5.1, 5.2) are effective for small values of the parameters St and/or Bi; they
may be used to augment previously derived approximations for the surface temperature
and moving boundary history [8].
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Appendix: Proof of the corner point maximum principle. Let h(x, t) = | X(t) — x |3 +
Bl X(t) — x|in G°, with B = const > 0 to be chosen. Note that

h>0in G°, h|eDEO
Then
Lh= +{3|x — X(O|"* + B} X'(t) — 3|x — X(1)|~*/?

where + correspond to the cases where X lies to the right or left of x, respectively. We can
thus choose N and 8 > 0 so small that Lh < 0 in G°. Let v(P) = u(P) + eh(P), ¢ > 0. Then
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Lv < eLh <0 in G° and v € C(G°). Thus u(P) attains its maximum value in G° on the
boundary of G°. Now

0G° = 0,G° U 9,G° U ,G°
where
0,G° =G n{t=ty, 0,G°=0G°n D, 08,G°=G°n oN,

Suppose M = maxp . g, v(P) is attained at a point P* # P,. There are three possibilities:

a) P* € 0,G°. Then at P* v, > 0, v,, <0, whence Lv > 0, which is not possible since
Lv < 0in G°. Thus P* ¢ 0,G° — P,.

b) P* € 0,G°. Then M = v(P*) = w(P*) < u(P,) = v(P,), whence v(P,) would equal M
(which is claimed) or exceed M (which is not possible).

c) P* € 0, G°. Now M = v(P*) = u(P*) + ¢h(P*). But u(P*) < u(P,) and we may choose
¢ so small that

V(P*) = u(P*) + ¢h(P*) < u(P,) = v(P,).
Hence in all cases
u(Po) > v(P), P € G°.
Thus
0> [v(P) — v(Po)/| P — Py ] = [0(P) — u(Py)/| P — Py ]

= [u(P) — u(Po)/| P — P[] + e[h(P) — h(Po)/| P — P[]
or

[u(P) — u(Po)/| P — Py |] < —&[h(P) — h(Po)/| P — P, |]

whence, by the form of h,

T WP —ulPo)
P—Po |P_P0|
PeGo

for P— P, in a nontangential direction. Thus the principle is proved.



