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Abstract. We study the one-phase Stefan problem on a semi-infinite strip x > 0, with

the convective boundary condition —KTX( 0, f) = h\_TL — T( 0, t)]. Points of interest include:

a) behavior of the surface temperature T(0, f); b) asymptotic behavior as h—> oo; c) unique-

ness, and d) bounds on the phase change front and total system energy.

Introduction. In this paper we study the following problem:

Problem I. Find A"(f) and T(x, t) such that

X(t) is Lipschitz-continuous for f > 0; (1.1)

X'(t) is continuous for t > 0; (1.2)

T(x, t) is continuous for t > 0 and 0 < x < X(t)\ (1.3)

Tt(x, t), Txx(x, t) are continuous for t > 0 and 0 < x < X(t); (1.4)

— oo < lim inf T(x, t), lim sup T(x, t) < oo; (1.5)
x,f-»0 x,t~* 0

Tx{x, t) is continuous for t > 0, 0 < x < X(t); (1.6)

A'(f) and T(x, t) obey the conditions

Tt(x, t) = a Txx(x, t), t > 0, 0 < x < X(f), (1.7)

T{x, t) = Tct, t > 0, x > X(t), (1.8)

X(0) = 0, (1.9)

pHX'(t)= ~KTx(X(t),t), (1.10)

— K Tx(0, t) = h[TL - T(0, t)l t > 0. (1.11)

Here a, p, H, K, h are positive constants, TL and Tcr are constants, and TL > Tcr.

Eqs. (1.7-1.11) describe melting of a material due to convective heat transfer from a fluid

with ambient temperature TL flowing across the face at x = 0. The parameters are:

a = material thermal diffusivity (m2/s),

K = material thermal conductivity (KJ/m — s — °C),
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p = material density (Kg/m3),

H = latent heat of melting (KJ/Kg),

Tcr = material melting temperature (°C),

Tl = ambient fluid temperature (°C),

h = fluid to material surface heat transfer coefficient (KJ/m2 — s — °C).

We will also use

AT = Tl - Tcr (°C),

and the material specific heat

c = specific heat (KJ/Kg — °C).

Of course a = K/cp. The melting front at time t is at x = X(t) while T(x, t) is the temper-

ature at position x and time t.

It is known [3] that a solution to Problem I exists. While a number of papers in the heat

transfer literature are devoted to various approximations pertinent to this problem [5,

8-10], the only studies of the qualitative behavior of its solution concern existence and

smoothness ([7], [12], in addition to [3]). We will study the qualitative behavior of a

solution, focusing on questions pertinent to the melting (or solidification) problem from

which it arises. These include

Question 1. How do T(x, f), ̂ (f) behave at t = 0?

Question 2. How does the surface temperature T(0, t) vary with t?

Question 3. What happens as h—> oo ?

On physical grounds it would be expected that the surface temperature T(0, t) would tend

to Tcr as t—> 0 + , and to the fluid temperature TL as t—* oo. Similarly, (1.10) and (1.11) would

lead us to conjecture that A"(0 + ) exists and is given by

X'(0 + ) = h(TL - TJ/pH.

The situation whereby h—> oo could arise from a greater flow rate for the transfer fluid at

x = 0 [6], in which case we would expect that T(0, f)—> TL; in this case we would also

anticipate that the solution to problem I should tend to that of the problem with (1.11)

replaced by

T(0, t) = TL, t > 0. (1.12)

This latter problem (1.1)—(1.10), (1.12), will be referred to as Problem II, and its exact

solution is given by

X Jt) = 2/vV t > 0, (1.13)

TJx, t)=TL - AT zx{(x/2^/at)/erf A (1.14)

with X the root of

/eA2erf/L = St /Jn. (1.15)

Here St is the so-called "Stefan number", indicating the ratio of sensible to latent heat [11],

and given by

St = cAT/H.
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Our aim is to establish these claims. To do this we use a number of moment-type

relations as well as the maximum principle. These are discussed in Sec. 2. In Sec. 3 we

address questions 1 and 2; what happens as h—> oo is examined in Sec. 4. We close in Sec. 5,

with upper and lower bounds on the total heat in the material. In the Appendix we prove a

form of the maximum principle which we use.

2. Preliminaries. The maximum principle for the heat equation is normally used in

two forms [4], The first asserts that a solution to the heat equation cannot attain its

greatest or least value at an interior point P0 of a domain unless it equals that value at all

points influencing P0. The second, due to Friedman, concerns the behavior of a nontangent

temperature derivative at a boundary point. As stated in [4] it presents some difficulty due

to the assumed "strong-sphere" property of the boundary. For this reason we use the

following version of the maximum principle suggested by a result of Vyborny [13].

Theorem 1. Corner Point Maximum Principle. Let D be a simply connected domain in the

x, t plane and P0 = (x0, f0) a point of its boundary. Let N be the disk

N = {(x, t) I (x - x0)2 + (r - t0)2 < S2}.

G° = D n N n {(x, t) \ t < t0}, G° = G° - dD.

Suppose that u e C(D), ux,u,, uxx e C(D), and

Lu = u, — auxx < 0 (2.1)

in D. Furthermore, let

u(P) < u(P0) for P e G°, (2.2)

U(P) < u(P0) for P edD n N, (2.3)

and suppose that 8D n N is a C1 curve representable as x = X(t). Then

— u(P)-u(P0) n
hm —    < 0

P^Po I P ~~ Po I
Pe Go

where P tends to be P0 in any nontangential direction.

The proof of this theorem is given in the Appendix.

Corollary 1. If all of the conditions of Theorem 1 hold except for (2.2), (2.3), and if

Hm (u(P) — u(P0)/| P — P01) > 0,
P-P 0
P s Go

then either

a) there exist points P = (x, f) in G° arbitrarily close to (x0, f0), with t < t0, for which

u(P) > u(P0)

b) there exist points P on 8D n N arbitrarily close to P0 for which w(P) > m(P0).

Reversing the inequalities in Theorem 1 and Corollary 1 yields the corresponding corner-

point minimum principle.
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We will use a number of integral relations satisfied by a solution X(f), T(x, t) to Problem

I. From the continuity of Tx(x, f) in any region f > t > 0 we find

•(

h[TL - T{0, t')~]dt' = pH[X(t) - X(t)]

'x<o rxt t)

cp[T(x, t) - Tcr]dx -
0 Jo

f*(t) rxd)
cpx[T(x, t) — Tcr]dx

cp[T(x, t) - TcJdx, (2.4)

I

cpx[T(x, t) — Tcr]dx

+ (pH/2) [X2(t) - X (i)] = K

rx in
(cp/2) [T(x, t) - Tcr]2dx

0

X(t')

K Tx(x, t')2dxdt' -
o

'[T(0, (') - T^df, (2.5)

fX(t)

(cp/2) [T(x, t) - Tcr]2<fx

/![(Tl - T(0, r')][T(0, t') - Tcr]]dt'.

For example, (2.4) is derived as follows. Let 9 be any value between 0 and 1/2. Consider the

closed domain

D0 = {(x\ 01 t < t' < t, 0X(t') < x' < (1 - 0)X(t')} (2.6)

By the conditions (1.1)—(1.11) we find

(d/df)

'(1 -S)X(I')

cp[T(x', f) - TCI~]dx' = (1 - 6)X\t')cp[_T[_{ 1 - 0)X(t'), f] - Ter]
ex(ti)

- dX'(t')cp[T[eX(t'), t] - Tcr] + KTX[( 1 - O)X(t'), f] - KTxieX(t'), t'l

Integrating this equation with respect to t' on [t, f] and letting 0—> 0 yields (2.4). Relations

(2.5), (2.6) are derived similarly. From the boundedness of T(x, t') and the fact that A'(J)—> 0

as £—> 0+, we conclude that in (2.4)

xw

cp[T(x, r) - Tcr]dx—> 0
o

as t —> 0, whence

'< rx (i)

h[TL - 7(0, t'fldt' = pHX(t) +
Jo Jo

which is the overall heat balance relation on [0, t]. In the same way (2.5) implies

*x<n

cp[T(x, t) - Tcr]dx, (2.7)

cpx[T(x, t) - T^dx + (pH/2) X(tf = K
t

2
[T(0, f ) - Tcr]dt'. (2.8)

Consider (2.6). By elementary calculus

[Tl - 7(0, f')][T(0, t') - Tcr] < (1/4) (Tl - Tcf
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Hence

'*<()

(cp/2) [T(x, f) - Tct]2dx

**«')

'X(t)

(cp/2) [T(x, t) - 7cr]2<;
o

KTx(x, t'fdx dt' < lh(TL - Tcr)2/4](f - t). (2.9)

*<t)
(cp/2) [T(x, t) - Tcr]2dx +

o

Letting t—> 0 we conclude that

'X(t')

KTx(x, t'fdx dt' < \_h(TL - TJ2/4] t,
Jo

and, in particular, that

**«')

KTx(x, t'fdx dt' < tlh(TL - TCI)2/4], (2.11)
o Jo

3. The qualitative behavior of a solution. We now address the qualitative behavior of a

solution to Problem I for a fixed h > 0.

Theorem 2. The phase boundary X(t) solving Problem I is always positive: X(t) > 0 for

t > 0.
Proof. Since X(t) > 0 for all f > 0, a point t0 > 0 for which Zffo) = 0 must be a zero of

the (continuous) derivative X'(t). However, we would then have T(0, t0) = Tcr, whence

0 = pHX'{t0) = -KTx[X(t0), to]

= -KTX(0, t0) = h(TL - Tcr) + 0

and the theorem is proved.

Theorem 3. Tcr < T(x, t) < TL for t > 0 and 0 < x < X(t).

Our proof rests upon the following lemma, which asserts that T(x, t) cannot be bounded

away from Tcr in a neighborhood of the origin.

Lemma 1. Let t0 > 0 be given. There is no function x = x*(f) satisfying the following

conditions on (0, r0]: a) 0 < x*(r) < X(r); b) 0 < co < \ T[x*(t), £] — Tcr | for some co.

Proof of Lemma 1. Roughly speaking, we will see that if T(x, t) is bounded away from

Tcr, then Tx(x, t) must grow in a manner inconsistent with the bound (2.11).

For suppose that x*(t) satisfies (a) and (b), and let t e (0, f0]. Since Tx(x, t) is continuous

on [0,X(f)],

rx(t) rx (t)
I Tx(x, t)\dx<{X(t)

x'(l)

| Tcr - T[x*(r), t] | <

or by (b),

%X(t

to2 < X(t) Tx(x, t)2dx.
Jo

Integration over [t/2, r] for any t < t0 yields

(u>2t/2) <

Tx(x, t)2dx}112
o

X(t')
t/2

X(t')

Tx(x, t'fdx dt'.
o
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By the generalized mean value theorem,

(to2t/2) < X(t*)
1/2 J

X(t')

Tx(x, t')2dx dt'

where t* e [t/2, t]. Now by (2.11) we obtain

(co2t/2) < X{t*) (htAT2/4)

2aS < X(t*) h(TL - Tct)2.

This contradicts X{t*) —> 0 as r—» 0 and thus proves the lemma.

Proof of Theorem 3. We begin by showing that T(x, t) must be less than TL for all points

(x, t) with t > 0, 0 < x < X{t). Suppose that T(x0, t0) > TL for some t0 > 0, and x0 e [0,

X(t0)].

Claim: For each tx e (0, t0) there is some x* = x*{ti) e [0, X(t)] such that Tfx*^,), tj >

tl.

Since this directly contradicts Lemma 1 we need only establish this claim. Fix £x e (0, t0)

and let

S = {t: t e [tj, r0], T(0, t) > TL}.

If x0 = 0 then t0 e S and S is not empty. If x0 > 0 then, by the strong maximum principle

[4] applied to Dl = {(x, f): 0 < x < X(t), < t < f0}, T(x, f) must exceed T(x0, f0) > TL

somewhere on its parabolic boundary. If this occurs at some point (x, fj, x e [0, the

claim is proved. If it occurs on x = 0, i.e., for some (0, f*) with f* e [f,, t0], then t* e S, so

again S is not empty. Let

t** = inf S.

Suppose t** > tx. Then T(0, tx) < TL while T(0, t**) = TL, whence —KTx(0, (**) = 0 and

by Corollary 1 to the corner point maximum principle either there exist points (x, t)

arbitrarily close to (0, t**) with t < t** for which T(x, t) > TL, or there exists some t < t**

for which T(0, t) > TL. Either possibility violates the definition of t** and thus t** = tv

Hence T(0, t,) > TL, and x*^) = 0. Thus our claim is proved and T(x, t) < TL. The proof

that T(x, t) > Tct is carried out in a similar way, as we see by assuming that

T(x0, t0) < Tcr — a)

for co >0 and some point (x0, t0),x0 e [0,

By the strong maximum principle we now have:

Corollary 2. T(x, t) > Tcr for t > 0, x e (0, X(f)).

This result implies that at any point (A'(t), t), T(x, t) assumes a strictly minimum value

relative to points to its left. Hence by the corner point minimum principle pHX'(t) =

— K Tx{X(t), t) > 0 and we have

Corollary 3. X'(t) > 0 for t > 0.

We will now use the moment-type relations of Sec. 2 to derive upper bounds on A"(f).
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Theorem 4. For any t > 0 the phase boundary of Problem I obeys the conditions:

X(t) <m = htAT/pH, (3.1)

X(t)<f2(t) = {2KtAT/pH}1'2, (3.2)

f f,(t), t < t*

with

t * = 2KpH/h2AT. (3.4)

Proof: From Theorem 3, T(x, t) > Tcr, whence (2.7) implies (3.1). Similarly T(0, t) < TL

whence from (2.8), j pHX(t)2 < KtAT, or (3.2) is proved.

By a straightforward calculation we see that ft(t) < f2(t) for t < t*, and/^f) > f2(t) for

t > t*, whence (3.3) holds.

Note that the bound (3.3) indicates an initial linear growth in the phase front, followed

by growth as t1'2.

Theorem 5. T(x, t) is nondecreasing in t; that is, T(x, t + At) > T(x, t) for all x e [0, X(t)],

At > 0.
Proof. The concept of the proof is to show that the first forward difference of T(x, t) in t,

namely

v{x, t, At) = T(x, t + At) — T(x, t)

is never negative for any choice of At > 0. To do this we note first that y(x, t, At) is defined

and satisfies the heat equation for t > 0, x e [0, Ar(t)]. Moreover, by Corollary 2 and 3,

v{X(t), t, Af) > 0.

At x = 0

K vx(0, t, At) = hv(0, t, At).

Suppose now that v(x, t, At) is negative at some point (x0, t0):

v(x0, t0, At) < — <x> < 0.

By an identical argument to that used in proving Theorem 3 we conclude that for each

0 < t < t0 there is a point x* = x*(t) for which

v{x*(t), t, At) < -co.

Hence

| v(x*(t), t, At) — v(X(t), t, At) | > a)

for all t e (0, f0). However, we may now apply the argument used in proving Lemma 1 to

show that this violates (2.11) and the theorem is proved.

Corollary 4. T(x, f)-» Tcr as x, t—► 0+.

Proof. By the Theorem, T(x, t) is nonincreasing for t—> 0 + . But then by Lemma 1 it

cannot be bounded away from Tcr, whence it must tend to Tcr as x, t—* 0+. Thus, we can
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now extend 7(x, f) continuously to (0, 0 + ) and define it for f > 0, x e [0, X(t)] as a

continuous function.

An immediate implication of Theorem 5 is that for t > 0, x e (0, X(£)),

aTJx, t) = T,(x, t) > 0. (3.5)

This in turn implies the following theorem.

Theorem 6. Let q(x, t) = —KTx(x, t) for t > 0, x e [0, X(t)]. Then

pHX'(t) < q(x, t) < h[TL - 7(0, t)] < hAT. (3.6)

Proof. For any 9 e (0, 1/2)

Tx(x, t) - Tx(0X(t), t) =

whence

TJx, t) dx > 0
exit)

-KTx(x, t) < — KTx(6X(t), t);

letting 9—> 0 and using the continuity of Tx(x, t) on the closed x-interval, we have

q(x, I) = — KTx(x, t) < -KTX(0, t) = h\_TL - 7(0, t)].

The second inequality of (3.6) is proved in the same manner.

The key difficulty in understanding the convective boundary condition lies in the varia-

bility of the surface temperature T(0, t). We will now obtain a bound on it describing its

long-term behavior.

Theorem 7. For any t > 0, the surface temperature T(0, t) of Problem I obeys

0 < Tl - 7(0, t) < (1 + St)(2KPHAT)l'2/ht112. (3.7)

Proof. From the heat balance relation (2.7) and the fact that 7(x, t) e [7cr, T, ],

"t

hlTL - 7(0, f')]dr' < HpX(t)l 1 + St],
)

and using the upper bound (3.2)

X(t) < {2KtAT/pH}1'2

we find

*t
h[TL - 7(0, < {2KpHtAT}ll2[\ + St],

Jo

However, 7(0, f) is nondecreasing for increasing t, whence

ht(TL - 7(0, f)) < h[_TL - 7(0, tWt'

and (3.7) holds true.

Corollary 5. 7(0, t)—► TL as t—» oo.

We will now further examine the behavior of X(r), 7(x, r) at the origin.
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Theorem 8. X(f) has a right-hand derivative at t = 0, given by

X'(0 + ) = (hAT/pH). (3.8)

Proof: From (2.7)

(X(t)/t) = (h/tpH)

Since 7(0, f) is continuous for t > 0,

fX(t)
(Tl - 7(0, 0) dt' - (c/tH) I (T(x, t) - TJ dx.

(1/0

Moreover,

(Tl - 7(0, t')) dt' =71- 7(0, 9t), 9 e [0, 1],

rx( i)

(c/tH) (T(x, t) - TJ dx = lcX(t)/H,^(\fX(t))
X(l)

(7(x, t) — 7cr) dx)
1 J

= (c/H) (X(t)jt) (T(x*(t), t) - 7cr)

for x*(r) e [0, A'(t)]. Hence

(X(t)/t){\ + (c/H)[7[x*(t), f] - 7cr]} = (h/pH) (7, - 7(0, 0f)).

Letting t—> 0 yields the asserted result.

Corollary 6. T,(0,0+) exists and equals (hAT)2/pHK.

Proof: For any t > 0,

(7(0, t) - TJi) = (7(0, t) - T(X(t), t)/t

= ~(X(t)/t) Tx(x*(t), t), 0 < x*(t) < X(t).

Moreover, from (3.6)

(pHX'(t)/K) < - Tx(x*(t), t) < (h/K) (7l - 7(0, t)),

and as t —> 0 this implies

-Tx(0+,0 + ) = (hAT/K),

whence

7(0, 0+) = ((hAT)2/pHK).

The bound (3.6) on | Tx \ is the principal tool needed for proving uniqueness of the solution,

using the approach of Douglas [2], Because of the direct nature of the proof we will merely

state

Theorem 9. The solution to problem I is unique.

4. Dependence on the heat transfer coefficient. We now address the question of how

the solution to Problem I depends upon h. Indeed, from (3.7) of Theorem 7 we can state

Theorem 10. As h-* oo, 7(0, f)—<► TL in a pointwise manner for all t—> 0.
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Similarly we may assert:

Theorem 11. The solution to Problem I depends monotonically on h. In particular, if

(Tl{x, t), and (T2(x, f), X2(f)) are the solutions to Problem I for h = hu h2, respec-

tively and if hi < h2, then X2(t) > A^r) for f > 0 and T2(x, t) > Tl(x, t) wherever they are

both defined.

Proof : From Theorem 8, Corollary 6 and the maximum principle, there is somer0 > 0

such that our assertion is true when t < t0. This is seen by considering the difference

v(x, t) = T2{x, t) — T'(x, t).

at points where they are both defined. Let

t* = sup{f | T2(0, t) > T'(0, t)}, t** = sup(f | A^f) > X,(f)).

By definition

vx(0, t) = (hl- h2)(TL - T2(0, 0) + ^ K(0, t).

Suppose that t*, t** < 00.

Claim 1. t* f t**.
Suppose that t* = t**. Then

a) *,({*) = X2(t*),

b) X\(t*) > X'2(t%

c) v(Xl(t*),t*) = 0,

while for t < f*, 0 < x < X^r), v(x, t) > 0. But by (b), r*) > 0, which would

contradict the corner minimum principle since

v(x, t) > viX^t*), t*) for t < t*, 0 < x < Xj(r).

Claim 2. t* < t** is impossible.

On [0, f*], ^2(0 > whence y(X,(r), t) > 0. Hence we must have u(0, t*) = 0 with

u(0, t) > 0 for t < t*. But then i;(0, t*) is a minimum value up to time f* whence fx(0, r*) > 0,

which contradicts

vJO, t*) = (h, - h2)(TL - T2(0, t*)) < 0.

Claim 3. t** < f* is impossible, since

T2(X2{t**), t**) = T^XJt**), t**) = Tcr.

Thus Theorem 11 is proved.

The solution to Problem II (see Sec. 1) is given explicitly by [1]

XJt) = 2/vV) (4.1)

Tr(x, t)=TL - (AT/erf/l) erf(x/2(4.2)

where I is the root of

/eA2erf/ = St/^rc). (4.3)

We claim that this solution constitutes an upper bound for that of Problem I, namely

Theorem 12. Let h > 0, and let Xh(t), Th{x, t) denote the solution to Problem I for this

value of the heat transfer coefficient. Then X^t) > Xh(t) for all t > 0, and T®(x, t) >

T\x, t) for all (x, t) for which both functions are defined.
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Proof: We note first that since XA(f) < (htAT/pH), we find XJt) > Xh(t) for

0 < t < t0 = (4/2KpH2/ch2AT2).

Moreover, for t <t0, T°°(0, t) = TL> Th(0, t) and

TJXh(t), t) > T\Xh(t), t) = Tcr.

Let t < t0 and x e [0, Xh{t)~\. Then by the mean value theorem

Tx(x, t) - T\x, t) = (T '(x, t) - Tcr) - (T\x, t) - TJ

= (x - XJt)) Ti'(x\ t)-(x- Xh(t)) Thx(x", t)

for x', x" e (x, But then from (4.2)

T°°(x, t) - T\x, t) = [(X Jt) - x)ATlJ(nat) erf/] e"x,2/4a' + (Xh(t) - x) Thx(x", t)

> (^^(0 - x) ATe-^/vWjertt - (Xh(t) - x)(hAT/K)

> [Xh(t) - x) ATe^2lJ{nat)trU. - (hAT/K)

> 0

for t < ti = (e~X1 K/h^(na)erD.)2. It is easily seen that tt < t0. Thus for t < tt the solution

to problem II bounds that of problem I.

Let

t* = sup{r: XJt) > Xh(t)},

t** = sup{t: Tc0(x, t) > Th(x, f)}, for 0 < x < min Xh(tj).

v(x, t) = Tx(x, t) - T\x, t)

where both functions are defined. Suppose that t*, t** < oo.

Claim 1: It is not possible to have t** < t*.

Indeed, suppose that t** < t*. Then v(x, t) would vanish at some point (x, t**) for x e

(0, Xh(t**)) while it is positive on the line f = tj2 and at x = 0 and x = Xh{t) for t < t**,

violating the maximum principle.

Claim 2: It is not possible to have t* < oo.

For at t*,

XJt*) = Xh(t*), v(Xh(t*), t*) = 0,

v(x, t) > 0 for t < t*, X'h(t*) > XJt*)

whence

vx{X„(t*), t*) > 0,

and by the corner point maximum principle v{x, t) could not have a minimum a^X^*), t*).

Thus the claim is proved, and t*, t** must be infinite, proving the theorem.

We now assert that as h—> oo the solution to Problem I converges to that of Problem II.

Theorem 13. Let t > 0. Then as /i—► oo,

Xh(t)-+XJt), T\x, t)—* T°°(x, t).
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The proof rests upon the following observation:

Lemma 2. The relation (2.8)

X(t) ft
cpx[T(x, t) - TCI]dx + (1/2) pH X(t)2 = K [T(0, t') - TCI~]dt' (2.8)

i Jo

holds for Xh, Th as well as for Xx, T°°.

Indeed, the factor x in the spatial integral prevents the flux at x = 0 from entering into

the equation. Of course

T=°(0, t') = Tl, t'> 0.

Proof of Theorem 13. For any h > 0, by Lemma 2,
'*»«)

cpx[T™(x, t) - TCI~]dx + (1/2) pH XJt)2 = K

"Xh(t)

'[_Tl - TCIW, (4.4)
o

r cpx[_T\x, t) - TJdx + (1/2) pH Xh(tf = K [T"(0, t') - Tcr]dt'. (4.5)

Recalling that A^r) > Xh(t) and T°°(x, t) > Th(x, t) and subtracting (4.5) from (4.4), we find,

using the estimate (3.7) on (TL — T*(0, f)), that

"XxU)

c/9x[T°°(x, t) — Tcr]dx
JXh(0

fXh(l)

cpx[Tc0(x, t) — T\x, t)]dx +
o

+ (1/2) pH[XJt)2 - X,(t)2] = K (71 - T\0, r')) df

< (2K^(2KpHAT)(l + St)/h)J(t), (4.6)

which immediately implies that as /i—► oo

Xh(t)->XJt).

Consider the family of functions {Th(x, f)} for h—► oo. By (3.6) and (3.7), for any x e

[0, *„(t)]

-Tx(x, t) < h[TL - T\0, 0] < (1 + St)(2KpHAT)ll2/t112.

Hence for any t > 0 the functions T\x, t) are equicontinuous; since they are all bounded by

T°°(x, r) and monotonically increasing in h the Arzela-Ascoli lemma implies their uniform

convergence on [0, Xm([)] (assuming them extended beyond Xh(t) as Tcr) to a limiting

function. By (4.6) this limit must coincide with Tco(x, t) and the theorem is proved.

Relation (4.6) yields the following interesting observation.

Theorem 14. As f—> oo, {Xh(t)/Xx(t)) —> 1; that is, the fronts for finite and infinite h agree

asymptotically.

Proof: From (4.6),

(1/2)PH [XJO2 - Xh(t)2] < (2Kj(2KpHAT) (1 + SX)J(i)!h.

Division by X^it) = 2A^/(ixt) yields

0 < 1 - (X,(t)/X00(t))2 < eij(t)
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for 9 = (c(l + St)/X2hy/(2KpAT/H), or

(l - (0/V(r)))1/2 < (Xh(t)/XJt) < 1 (4.7)

which, letting t—* oo, implies our result. We note that (4.7) provides a potentially useful

bound on Xh(t),

XJt) V(1 - (61 Jm < Xh(t) < XJt). (4.8)

5. A bound on the total system energy. If the motivation for studying problem I lies in

the goal of storing heat in a phase-changing material, then the total heat stored by time f,

<2(0 = h [71 - T(0, t')W

assumes a special importance. Using the relations (2.7, 2.8) we can obtain useful upper and

lower bounds on 0(t). Thus we assert:

Theorem 15. At time f > 0,

Q(t) > F0(f) = (KpH/h) 7[1 + (2th2AT/KpH)] - 1, (5.1)

<2(0 < Fi(0 = KpH( 1 + St/2)2{[ 1 + (2tATh2/KpH(l + St/2)2)]1/2 - 1 }/h.

Moreover,

0 < - F0 < {a2t2h*e2AT2/K*H2) = (t2h*AT2/K2p2H2). (5.3)

Proof of (5.1). We note that

*X(l)X(t)

xcp\T(x, t) — Tcr]dx < X(t)
0

cp[T(x, t) - TCI]dx

while

'[7(0, f) - Tcr]dt' = ~(l/h)Q(t) + tAT,
)

whence, after some manipulation, (2.7) implies

lX(t) - (Q(t)/pH)-]2 + ((2K/pHh) [htAT - <2(0] - LQ(t)2/(pH)2^) < 0

and since X(t) is real, we find

(2K/pHh) [htAT - 0(f)] < \Q(t)2/(pH)2l

Further manipulation yields the bound (5.1).

To obtain the lower bound we note that [by (3.5)]

T(x, t) < TL — [xA T/X(t)l

whence
X(t)

cp[T(x, t) — TcJdx < [cpX(t)AT/2]
o

and so

Q(t) < pHX(t){\ + (l/2)St).
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But from (2.8),

X(t) < y/l(2K/pH)1{-m)/m + 'AT},

whence (5.3) yields

<2(0 ̂ [1 + (l/2)St] J(2KpH{tAT - [6(t)/H]}.

By straightforward manipulations we are then led to (5.2).

It is interesting to note that Ft — F0 = 0(St2). Indeed, if we introduce the nondimen-

sional parameters

F0 = (at/L2), Bi = (hL/K),

for L a representative length, then

Fl -F0<(F0Bi2St)2.

Thus the bounds (5.1, 5.2) are effective for small values of the parameters St and/or Bi; they

may be used to augment previously derived approximations for the surface temperature

and moving boundary history [8],
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Appendix: Proof of the corner point maximum principle. Let h(x, t) = \ X(t) - x |3/2 +

| X(0 — x | in G°, with /? = const > 0 to be chosen. Note that

h > 0 in G°, h |5D = 0

Then

Lh= ±{f|x — X(r)|1/2 + fl} X\t)-l\x-X(t)\'"2

where + correspond to the cases where X lies to the right or left of x, respectively. We can

thus choose N and /? > 0 so small that Lh < 0 in G°. Let v(P) = u(P) + eh(P), e > 0. Then
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Lv < eLh < 0 in G° and v e C(G°). Thus v(P) attains its maximum value in G° on the

boundary of G°. Now

8G° = 80G° u 8^° u d2 G°

where

80 G° = G° n {( = t0}, 8iG° = 8G° n 8D, d2 G° = G° n 8N,

Suppose M = maxp 6 go v(P) is attained at a point P* ^ P0. There are three possibilities:

a) P* e 80 G°. Then at P*, v, > 0, vxx < 0, whence Lv > 0, which is not possible since

Lv < 0 in G°. Thus P* £ 80G° — P0.

b) P* e dxG°. Then M = v(P*) = u(P*) < u(P0) = v(P0), whence v(P0) would equal M

(which is claimed) or exceed M (which is not possible).

c) P* 6 d2 G°. Now M = v(P*) = u(P*) + sh(P*). But u(P*) < u(P0) and we may choose

£ so small that

v(P*) = u(P*) + eh(P*) < u(P0) = v(P0).

Hence in all cases

u(P0) > v(P), P e G°.

Thus

0 > [v(P) - v(P0)/| P - P01] = [u(F) - u(P0)/\ P - P01]

= [_u(P) - u(P0)/\ P - P01] + e[h(P) - h(P0)/\ P-P01]

or

MP) - u(P0)/\ P-P o |] < -eWP) - h(P0)/\ P-P o |]

whence, by the form of h,

— u(P) — u(P 0)
lim — — < 0

P->Po I P ~ I
PeGo

for P—> P0 in a nontangential direction. Thus the principle is proved.


