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Abstract. The changes in the stability of a system of linear differential delay equations

resulting from the delay are studied by analyzing the associated eigenvalues of the charac-

teristic equation. A specific contour is mapped by the characteristic equation into the

complex plane to give an easy test for stability from an application of the argument

principle. When the real part of an eigenvalue is positive, the contour gives bounds on the

imaginary part which are important in certain applications to nonlinear problems.

1. Introduction. An important question in studying a system of differential delay equa-

tions is how changes in the delay affect stability of the system. Consider the linear differen-

tial delay system

x(t) = Ax(t) + Bx(t — r) (1.1)

where x(t) e Rn and A and B are n x n matrices. The associated eigenvalues in this system

are found by evaluating the characteristic equation

det[4 - XI + BfTAr] = 0

for X. For more details see Bellman and Cooke [1] or Hale [3]. When there are two

eigenvalues with positive real parts then the differential equation has a two-dimensional

unstable manifold. We shall define the system (1.1) with eigenvalues in the right half-plane

to be unstable.

By expanding the determinant in the characteristic equation an exponential polynomial

F(X, r) = P(X) + Q(il)e ~Xr = 0 (1.2)

is formed where P(X) is a polynomial in X of degree n and Q(X) is a polynomial of degree less

than n. When the system (1.1) is given so that the polynomials P(X) and Q(X) satisfy certain

conditions, the stability of the system can be easily determined by mapping the contour C

given in Fig. 1.1 where ^*—> +oo with F(X, r) and using the argument principle to deter-

mine if any roots X satisfying (1.2) lie inside the contour in which case the system (1.1) is

unstable. The argument principle gives the number of roots of F(X, r) = 0 inside C by

calculating

~ Ac arg F(X, r),

* Received May 5,1981.
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Fig. 1.1 The contour C.

which is equivalent to the number of counterclockwise encirclements of the origin in the

image plane (see Churchill et al. [2, p. 298]).

Using this geometric approach we shall determine when the solutions of (1.2) cross the

imaginary axis as the delay r varies, i.e., when the system (1.1) has a Hopf bifurcation.

Furthermore, the analysis gives bounds on the imaginary parts of the eigenvalues for

system (1.1). Finding bounds on the imaginary part of the eigenvalues can be useful in other

applications; e.g., see Hale [3, p. 267] or Mahaffy [5] for applications showing the existence

of periodic solutions to an oscillating system.

With the delay r taken as a parameter and for r > 0 the characteristic equation (1.2) has

infinitely many solutions X. Determining if any solution X has Re X > 0 gives the stability of

the system (1.1). When r = 0 the system (1.1) reduces to an ordinary differential equation

and (1.2) becomes

F(X, 0) = P(X) + Q(X) = 0, (1.3)

an «-degree polynomial in X. For this particular case there are several techniques for finding

when Re / > 0 where X solves (1.3). A technique commonly used in engineering control is

the Routh-Huriwitz criterion (see Ogata [7] or Lancaster [4]). A matrix is formed from the

coefficients of the polynomial. By determining the number of changes in sign of the deter-

minants of the principal minors the number of roots X with Re X > 0 can be found. It is

easily seen that a necessary condition for stability of the ordinary differential equation is

that all coefficients of the polynomial (1.3) are positive.

For our results it is assumed that the system (1.1) with r — 0 is stable. The questions we

address are under what conditions on the system (1.1) do changes in the delay result in

instability and what is the form of the region of instability?

2. Main results. For all of the results below assume the following hypothesis:

(HI): When r = 0 all solutions of (1.2) are such that Re X < 0, i.e., F(X, 0) = 0 has

solutions only in the left half-plane.

First consider the case where P(X) = PJ"= t (X + fij) and Q(X) = a > 0 (a constant), with

Pj > 0, j = 1, ..., n. For this case arguments similar to those in Mahaffy [5] can be used to

establish the following theorem.

Theorem 1. Assume (HI). Let P(X) = ]~[j=i + Pj) and 2W = a- If n?=i Pj K a> then
there exists a delay r0 such that for all r > r0,

F(X, r) = P(X) + xe~Xr = 0 (2.1)



A TEST FOR STABILITY 195

has at least two roots with Re X > 0, and these roots are such that | Im X | < n/r. If either

, (}j > a or 0 < r < r0, then all solutions of (2.1) have Re X < 0.

The next result concerns a more general P(A); however, there is not necessarily a single

bifurcation point r0 in this case. Sec. 4 shows an example where the stable region may be

separated.

Theorem 2. Assume (HI). Let Q(X) = a and P(X) be given by the following:

P(X) = fl7=2i a2 + M + Cj) n?-.-i(A + Pj) (2-2)

where bj, Cj, [ij > 0 and bj < 4c j. If(n7=2i cj) (!!"=»■+ i Pj) < a> ̂ en there exists a delay

such that for all r > ru (2.1) has at least two roots with Re A > 0, and these roots are such

that | Im /1 < n/r.
When the results are extended to more general Q(X), more restrictive hypotheses must be

placed on our theorems in order to use the contour C of Fig. 1.1. An example of such a

theorem is given below.

Theorem 3. Assume P(X) = 177=1 (a+Pj) and ea)=ri7=i (X + a,), where 1 < m < n — 1.
Assume (HI) and [^7=1 Pj < 117=1 aj - ̂  Yj= i i IP j > Z7= i 1 /dj, then there exists a delay
r0 sufficiently large that for all r > r0, (1.2) has at least two roots with Re X > 0, and these

roots are such that | Im A \ < n/r.

3. Proofs of the Theorems. The proof of Theorem 1 uses the arguments found in

Mahaffy [5]. Consider the contour in Fig. 1.1 and let X = [i + iv. From the form of P(X) in

Theorem 1 we see that

|P(A)|= fl^+iUj + n)2)1'2,
j= i

" / v
arg P(X) = X arctan —-

j=1\ Pj + t-i

Along yu X = —iv, 0 < v < n/r. Note that while traversing yl in the counterclockwise

direction | P( — iv) | is monotonically increasing and arg P( — iv) is monotonically decreasing.

Geometrically, along y1, P( — iv) forms the parametric representation of the center of the

image arc while ae'vr circles halfway around this center maintaining a constant radius of a.

As seen in Mahaffy [5], F(0), P(0) and the origin align with P(0) lying between F(0) and the

origin. From the above monotonic properties of P( — iv) and the fact that arg (ae'vr) in-

creases from 0 to n along relative to P( — iv), i.e., arg[F( —iv, r) — P( — iv)] ranges from 0

to n for 0 < v < n/r, in a similar manner to the analysis in Mahaffy [5] there exists a first

v0, 0 < v0 < n/r, such that F( — iv0, r), P( — iv0) and the origin align (with the special case of

a Hopf bifurcation if F( — iv0, r) = 0 for some value of r). We now state as a lemma the

following (see [5], Proposition 3.1)

Lemma 3.1. (i) Suppose |P( — iv0)| > a; then F(X, r) does not encircle the origin as X tra-

verses C, and hence by the argument principle no roots of F(X, r) = 0 lie inside C.

(ii) Suppose \P{ — iv0)| < a; then F{X, r) encircles the origin as X traverses C. The argu-

ment principle can be used to demonstrate that at least two roots of F(X, r) = 0 lie inside C.

If n ;=!&>«, then since | P( — iv) \ is monotonically increasing as v increases and

ip(-iv)i>ri"=i [Ij, it is easily seen from Lemma 3.1(i) that no roots of (2.1) lie inside C

independent of the delay r. To extend this argument to show that no roots of (2.1) lie in the

right half-plane, continue the argument in [5] along the v-axis. At — iv0 alignment occurred
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with F( —iv0) lying between P(-iv0) and the origin. Then all subsequent alignments

between F( — ivk), P( — ivk) and the origin as v —> oo (with vk being the alignments given in [5]

without the restrictions that v < n/r) have F and P with the same argument relative to the

origin. This property continues to hold along C' as we trace a contour C' that encompasses

the entire right half-plane. The argument is as in [5] taking the corners of C' to be

±(2m — l)ni/r, n* ± (2m — \)ni/r with m = 1, 2, ... and let m—> oo and //*—> oo. From the

above arguments Ac, P(k) = Ac, F(k, r) = 0, as P(k) = 0 has only the real roots

-Pj,j = 1, ..., n.
Now suppose n:;=i/?7<«. By assumption when /• = 0 there are no roots of (2.1) in the

right half-plane, which implies that if arg P( — ivt) = —n from some vl5 then | P( — ivx) | > a.

(| P( —iv^ | < a implies that the origin lies between P and F at v, butVj is the first alignment

when r = 0, so Lemma 3.1 (ii) gives existence of roots of F(k, 0) = 0 in the right half-plane, a

contradiction.) So by continuity of | P( — iv) | there exists a v* such that | P( — iv*) \ = a with

— k < arg P( —iv*) < 0. (Note that if arg | P( — iv) \ > —n for all v then lim^^ | P( — iv) \ = oo

can be used.) Now solve r0 v* = n + arg P( — iv*) or

ii + arg P( — iv*)
ro = r .

v*

which gives the value r0 such that

P( — iv*) + a exp(i>0 v*) = 0.

With this value r0 the image of C under F passes through the origin, implying that two

eigenvalues / are + iv*. (Note that v* < n/r0 and v* is equivalent to the v0 above for

alignment. It easily follows by a argument similar to the one above that no other roots of

(2.1) with r = r0 have Re / > 0.)

Suppose 0 < r < r0 ; then the monotonicity of arg P( —iv) and a comparison of

arg P( — iv) to arg[F( — iv, r) — P( — iv)] imply that alignment occurs at some v0 > v*. Align-

ment occurs when arg[F( — iv, r) — P( — iv)] — arg P( — iv) = n or equivalently

rv — arg P( — iv) = n. By the monotone properties of | P( — iv) |, |P( — iv) | > a; thus by

Lemma 3.1 (i) no roots of (2.1) lie in the right half-plane.

If r > r0 a similar argument gives v0 < v* which by the monotone property of | P( — iv) |

and Lemma 3.1(ii) shows the existence of at least two roots of (2.1) inside C. Furthermore, as

the roots are inside C it follows that | Im k | < n/r, completing the proof of Theorem 1.

In Theorem 2, P(k) is a general nth-order polynomial with all roots in the left half-plane.

Let k = n + iv, then

ml 2 n

I m I = n C(A<2 -v2 + b^ + Cj)2 + (2/iv + bjV)2y2 n [(^ + Pj)2 + v2]1/2
7-1 j=m+1

n,.. f 2flV + b:V \ " ( V \
arg P(k) = > arctan -r 5 -1  + y arctan  —

j-1 W - v +bjH + CjJ J^+1 \n + pj)

with 0 < arctan x < n. From the contour C in Fig. 1.1 alongyu k = —iv, 0 < v < n/r, so

the above equations become

m/2 n

I P(-iv)\ = n - v2)2 + (bjV)2y2 n (v2 + i?2)1/2 (3.1)
j = 1 j = m + 1
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and

m/2 n

arg P( — iv)= £ arctan — fry v/(cy — v2) + £ arctan( —v//^), (3.2)
j—1 j=m+1

with 0 < arctan x < n. As in Theorem 1, arg P( — iv) is monotonically decreasing as X

traverses y, in the counterclockwise direction; however, it is no longer true that | P( —iv)|

increases monotonically. The simple bifurcation result in Theorem 1 followed from the

monotonic property of | P( — iv) \. The example in Sec. 4 shows the more complex nature of

the bifurcations in the present case.

To prove Theorem 2 a technique similar to the proof of Theorem 1 can be used. (HI)

implies that whenever arg P(iv) = (2n — 1 )n for n an integer, then | P( — iv) J > a. If this is

not the case, then for some v where | P( — iv) \ < a, the origin lies between P( —iv) and

F( — iv, 0) (F( — iv, 0) at the origin for equality) and the orientation of F compared to the

orientation of P relative to the origin is different. In particular, as P does not encircle the

origin as a contour C' enclosing the right half-plane is traversed, then F(X, 0) must encircle

the origin as X traverses C", contradicting (HI). Combining this result with the monotonic

property of arg P( — iv) and the hypothesis that a > cj)(Uj=n,+ i fh)' there exist

vi < v2 < • • • < vk such that 0 > arg P( — ivk) > — n and |P( —iv,)! = <x,j = 1,..., k. (It is

conjectured that 1 < k < 3.) F(X, r,) passes through the origin whenever the delay r,- is such

that

7T + arg P(-iVj) . , ,
r = *-,] = 1,k. (3.3)

VJ

Note that rl > r2 > • ■ ■ > rk by the monotonicity of Vj- and arg P( — ivj).

If r > ru then an argument similar to the one in the proof of Theorem 1 gives v0 < V!

where v0 is the first alignment of F, P and the origin. vl is the smallest value v for which

|P( — iv) | = a and by assumption |P(0)| < a. By continuity of |P( —iv)| it follows that for

v0 < Vj, |P( —iv0)| < a. Hence the origin lies between F( — iv0, r) and P( — iv0). As in the

proof of Theorem 1 or in [5], this alignment condition gives F(A, r) a different orientation

relative to the origin when compared to P(/), resulting in the encirclement of the origin at

least twice (from symmetry) in the image plane under F(2, r) as X traverses the contour C.

Thus for r > at least two roots of F(/, r) = 0 lie inside the contour C, i.e., at least two

roots X have Re X > 0 and | Im X \ < n/r.

Because | P( — iv)| is not monotonic it is possible that eigenvalues cross the imaginary

axis for values of the delay r < rl. From (HI) and by continuity it follows that for some

interval 0 < r < the system (1.1) is stable. This is easily shown by the fact that | P( — iv) |

> a for v in some neighborhood of vn with argP( —iv„) = (2n -I- l)7r, n = — 1, — 2, ..., —k;

hence for sufficiently small delays F(X, r) has the same orientation as P{X) relative to origin

as X traverses any contour C' in the right half-plane; i.e., there are no roots of F(X, r) = 0 in

the right half-plane. If there is the bifurcation only at rl; however, if rm < ri there

may be disconnected regions of stability (see Sec. 4) or it is possible that there are roots of

F(X, r) = 0,r < with Re / > 0 and | Im X \ > n/r.
To prove Theorem 3 the relative positions of P( — iv), F( — iv, r) and the origin are

determined in a manner similar to the techniques found above. To obtain alignment of

P( — iv), F{ — iv, r) and the origin the following condition must hold:

arg [F( — iv*, r) — P( —iv*)] — arg P( — iv*) = n, (3.4)
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where arg[F( — iv*, r) — P( — iv*)] = v*r + arg Q( — iv*) with 0 < v* < n/r. Clearly if

arg Q( — iv) < arg P( — iv) for 0 < v < n/r, then this condition cannot hold.

Along yu arg Q( — iv) = Yj=i arctan ( — v/oij) and arg P( — iv) = Yj=i arctan ( —v//^).

Considering the Maclaurin series expansion for the inverse tangent function,

arctan x = x — x3/3 + x5/5 — ..., | x | < 1,

along with the hypothesis that Yj=i (1 /Pj) > Yj= i (V°0)» then if r > r1 for some rl suf-

ficiently large, 0 < v < n/r and the higher-order terms in the expansion can be ignored. It

follows that arg Q( — iv) > arg P( — iv) for 0 < v < n/r, r >rv Therefore there exists a v*

such that (3.4) holds with 0 < v* < n/r.

From the condition J~["= i Pj < J~[™= t a.j it follows that for r >r2 where r2 is sufficiently

large, | Q( — iv) | > | P( — iv) |, 0 < v < n/r. Let r0 — max{rj, r2}; then for r >r0, P( —iv*),

F( — iv*, r) and the origin align with the origin between P( — iv*), and F( — iv*, r) for some

0 < v* < n/r (where v* depends on r). The remainder of the proof is similar to the proofs of

the previous theorems, giving at least two encirclements of the origin by F(A, r) as X

traverses C. Thus F(/, r) = 0 has at least two roots with Re X > 0 and | Im X \ < n/r.

4. Example. In this section a specific example will be used to illustrate how the

contour C can be used for stability analysis. The example chosen has a disconnected region

of stability with respect to the parameter r. Though the technique below is illustrated on a

specific problem, it can be extended to more general problems. The example was derived by

a geometric interpretation of the function |P( — iv) | as being the product of the distances

from the point — iv on the imaginary axis to the solutions of P(X) = 0 in the complex plane.

The solutions of P(X) = 0 lie in the left half-plane. If they are near the imaginary axis a

minimum of | P( — iv) | will occur for — iv near the solution.

The example that will be studied is the delay system (1.1) where

X —3/2 0 5 \ /0 0 3.9\
A = I 4 0 -19 and B = 0 0 0 .

V 0 1/4 0 / \0 0 0 /

The resulting characteristic equation is given by

F(X, r) = /3 + (3/2U2 + (19/4)2 + (17/8) + 3.9e~Xr = 0

where P(X) = (X + 1/2)((A + 1/2)2 + 4) and a = 3.9.
First the locations of the bifurcations are found by solving \P( — iVj)\ = a. This can be

done numerically by calculating | P( — iv) | as v increases from zero. If the location of the

roots of P(X) = 0 are known then consider | P( — iv) | for 0 < v < max^. |Im Xj \ = M with

P(Xj) = 0. All local minima of | P( — iv) | must occur in this range, as seen from Eq. (2.2). For

v > M, | P( — iv) | is monotonically increasing. By using this information local minima were

found for the above example at v = 0 with |P(0)| = 2.125 and v = 1.75 with \P{— 1.75i)|
= 3.849.

By assumption, a > 2.125. If a were less than 3.849, then | P( — iv) | = a at only one value

v and there would be a single bifurcation. There is also a local maximum atv = 1.32 with

| P( — 1.32i) | = 4.00. If a were greater than 4.00 again there would be a single bifurcation.

When a = 3.9 a more complicated bifurcation behavior is observed. | P( — ivj) | = 3.9 for

v1! = 1.09, v2 = 1.60, and v3 = 1.87. At these values of Vj arg P( — iv}) has values approxi-

mately equal to —1.48, —2.03, and —2.49 radians respectively. Eq. (3.3) gives delays
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rt = 1.52, r2 = .7, and r3 = .35. At each of the values rjt j = 1, 2, 3, a Hopf bifurcation

occurs. Hence the delay system (1.1) with the above choices of A and B is stable for delays in

the intervals [0, .35) and (.7, 1.52) and unstable for delays in the intervals (.35, .7) and

(1.52, oo).

The mapping F(A, r) was plotted for several values of r as X traversed the contour C in

Figure 1.1 with n* = 10. The figures below were drawn with a Calcomp plotting routine

showing both P(A) and F(X, r). For better visual clarity the y-axis scale is twice that of the

Fig. 4.2(a). r = . 1.

Fig. 4.2(b). r = .5.



200 J. M. MAHAFFY

FIX I.:

Fig. 4.2(c). r = 1.3.

x-axis. The plots show only the behavior of the image graphs near the origin. The directions

of the image graphs away from the origin are shown on the perimeters of Figs. 4.2(a-e).

Included in the figures is the position of the first alignment of P( — iv), F( — iv, r) and the

origin. This alignment is derived from the numerical output of the program also used to

define the plot.

Figs. 4.2(a-e) show the effects of increasing r. In Figs. 4.2(a, c), F(/1, r) does not encircle

the origin as X traverses C; hence the system (1.1) with the above matrices A and B is stable

for these values of r. In Figs. 4.2(b, e), F(X, r) encircles the origin twice as X traverses C;

Fig. 4.2(d). r = 1.52.
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Fig. 4.2(e). r = 5.

hence two roots of F(A, r) = 0 lie inside C for these values of r. Fig. 4.2d illustrates one of the

three Hopf bifurcations in this example. F(2., r) passes through the origin at the eigenvalues

X = ± 1.09/ where r = 1.52.

5. Conclusion. Determining stability of linear delay differential equations is more diffi-

cult than for ordinary differential equations. The delay system's associated eigenvalues are

found by evaluating the characteristic equation, an exponential polynomial. The Routh-

Huriwitz criterion gives an easy test for determining if an ordinary differential equation has

any associated eigenvalues in the right half of the complex plane, implying an instability of

the system. However, for differential delay systems there are no such easy tests. The theo-

rems above provide simple hypotheses to determine whether the linear delay system can

become unstable as the delay increases. Moreover, the example of Sec. 4 and the proofs of

the theorems demonstrate how to use the contour C of Fig. 1.1 and the argument principle

to determine stability of the system.

When the system is unstable the technique involving the contour C also gives bounds

on the imaginary parts of the eigenvalues. These bounds are important in the study of

nonlinear problems. One technique of proving the existence of periodic solutions to nonlin-

ear differential delay equations involves the use of a fixed-point theorem of Nussbaum [6].

To apply this theorem Hale [3, p. 267] and Mahaffy [5] consider the linearization about an

equilibrium solution of the nonlinear problem. The bounds on the imaginary part of the

eigenvalues are used to demonstrate the property of ejectivity in Nussbaum's theorem, thus

proving the existence of a non-constant periodic orbit.

The geometric nature of the arguments given in the proofs of the theorems provides a

technique for future research on related problems. The contour C of Fig. 1.1 would be

useful for specific problems not covered by the theorems in Sec. 2. Also, modifications of the

contour C would give easy tests for stability without the stringent hypotheses of the

theorems of Sec. 2.
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The arguments are geometric and also computationally easy, as shown by the example

in Sec. 4. The characteristic equation is analyzed by being split into its polynomial part and

exponential part. These two components of the characteristic equation are compared by

relating their magnitudes and arguments in the complex plane. With the parameter r fixed,

the position of the exponential part of the characteristic equation is compared to that of the

polynomial to give their relative orientations to the origin. By an application of the argu-

ment principle this comparison provides a simple test for stability. The computational

aspect of this problem is tractable, as the purely imaginary part of C is bounded; hence

stability questions for a specific problem can be answered.
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