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Abstract. A mixed problem for the M'Kendrick-Von Foerster equation is solved

explicitly: existence, uniqueness and regularity theorems are proved as well as several

integral formulas.

This theory provides us with an effective means to analyze microbial population dy-

namics and the underlying cellular physiological changes, taking into consideration that

one can calculate the main microbiological quantities from experimental data.

1. Introduction. In his epidemiological study of age-structured populations M'Ken-

drick [7] introduced a partial differential equation of the type

8u du .

Ta + Tt=

which was rediscovered by Scherbaum and Rasch [9] and studied by Von Foerster [12] in

the kinetics of cellular proliferation (cf. [8] and [11]). We use the differential operator Dc

according to, say, Gurtin [2] in order to extend the class of functions to be treated in the

equation. We shall call the equation the M'Kendrick-Von Foerster equation. The existence

and uniqueness of solution to this equation under an integral birth law (a kind of boundary

condition) have been studied by not a few investigators, e.g., Gurtin and

MacCamy [3], Sinestrari [10]. On the other hand, a birth law different from the integral

type is imposed on this equation in application to the age-dependent population dynamics

of a homogeneous cohort of microorganisms. Few theoretical treatments of this case have

been published so far.

Though microbial culture in the period of steady growth, i.e. with constant generation

time, has been treated by many authors, there have been few rigorous treatments of time-

dependent generation time. In our previous papers [1, 13] we explicitly introduced the

concept of time-dependent generation time (assumed to be the same for all the cells) and,

using it, analyzed microbial proliferation in the period of non-steady growth. The period

with constant generation time was described as a special case in this framework.

Our theory as presented in the first paper [1] had several restrictions. Among those

were the following: (i) the death rate of the cells was assumed to be zero; (ii) the increase of

biomass of a cell per unit biomass per unit time ("individual growth rate") was assumed to

be independent of time and the same for all the cells; (iii) the initial time had to be in the
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logarithmic phase; (iv) the length of time interval treated in the theory was such that a cell

could divide at most once during it. We applied the theory to the growth data [6] of

Bacillus subtilis and obtained some new results which might be very difficult to obtain

directly from microbiological experiments. In our second paper [13] the restrictions (iii)

and (iv) were completely eliminated and the death rate of the cells was supposed to be a

constant, not necessarily zero. The restriction (ii) remained unaltered.

In the present paper the death rate and the individual growth rate are allowed to vary

with the time, though they are still assumed to be the same for all the cells. The definition of

time-dependent generation time is made more rigorous and rendered fitter for practice.

Some functions treated separately in the previous papers are now unified as the solution of

a mixed problem for the M'Kendrick-Von Foerster equation. We solve the mixed problem

explicitly. Some results on regularity of the solutions are obtained. According to the theory,

we can calculate the solutions (which are functions of two variables) given the function

representing the time-dependent generation time; this function is fundamental in the sense

that it determines the shape of the domain in which the equation is considered. Further, we

get several important integral formulas by which we can calculate the integrals of the

solutions with respect to the first variable. For application of the theory to experimental

data, the inverse problem must be solved; that is, the problem of finding a function

representing the time-dependent generation time (which is of fundamental importance in

our theory), given the definite integral of the solution with respect to the first variable as a

function of the second variable. We also solve this inverse problem.

Though the assumption that all cells have the same generation time at each instant

deviates somewhat from reality, it greatly simplifies the formulation and allows us to get

formulas describing essential aspects of cellular growth. Also, our theory is ready to be

applied to the analysis of experimental data. As is shown in Sec. 3, the main microbiological

quantities (for example, the age distribution and the time-dependent generation time) can

be calculated from observed growth curves of cell number and cell biomass. A reader more

interested in biological significance and applications than in mathematical details had

better read Sec. 3 first and consult Sec. 2 when necessary.

2. A mixed problem for the M'Kendrick-Von Foerster equation

2.1 Preliminaries. Let D be a subset of IR2 satisfying the characteristic line condition (cf.

[1]):

(a, t) e Q, h e IR, (a + h, t + h) e Q, 0 < 6 < 1 => (a + 9h, t + 6h) e Q.

We shall say that a real-valued1 function v defined on fi is characteristically differentiable at

a point (a, t) e Q if

v(a + h, t + h) — v(a, t)
lim   
h-*o «

exists. This limit is denoted by Dc v(a, t). (See, e.g„ [2].) If v is partially differentiable in an

open neighborhood of (a, t) contained in Q and at least one of the partial derivatives dv/da

1 We assume in the present paper that functions are real-valued unless otherwise stated.
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and dv/dt is continuous at {a, t), then we have

Dc

Let t0 be a real number and g0 a positive one. We consider a positive continuous

function g defined on the interval [t0, oo) such that g(t0) = g0 and

t0 < t < t' => g(t') - g(t) < (' - t. (1)

Proposition 1. Condition (1) implies that

£1 = {(a, t) e R211 > t0, 0 < a < g(t)} (2)

satisfies the characteristic line condition.

Proof. Suppose that (a, t) e fl and (a + h, t + h) e Q. We shall show that (a + Oh,

t + Oh) e Q for 0 < 0 < 1. Without loss of generality, one can suppose that h > 0. It is

clear that t + Oh > t0 and a + Oh > 0. If there exists some 0o such that 0 < 0o < 1 and

a + 0oh > g(t + 00 h), setting

01 = sup{0 e [0, 0O) | a + Oh < g(t + Oh)}

02 = inf{0 e(0o,l~}\a + 0h<(t + Oh)},

we have 0 < 0t < 0o < 02 < 1. By the continuity of g,

a + 0\h - g{t + 0yh), a + 02h = g(t + 02 h).

Hence, 0t < 0o < 02 ■ We therefore reach a relation

(02 - 0t)h = g(t + 02h)~ g(t + 0M

which contradicts the condition (1). Q.E.D.

We define b(t) = t - g(t) for t >t0. Then, b is a strictly increasing continuous function

on [f0, oo)such that

b(t) < t for t >t0 (3)

b(t0) = t0 ~ 0o( = t-i)- (4)

We put

b^s sup b(t) (<co).

Since the range of the strictly increasing continuous function b is [f_i, b^), there exists an

inverse function b_1 of b defined on [f_j, b^). b~l is a strictly increasing continuous

function such that

b'1(s)>s for f_!<s <bx, b~i(t_1) = t0.

Let us recursively define a strictly increasing sequence of extended real numbers

(i.e., elements of { —co} u R u {oo}) as follows:

tn = b~1(tn_1) if t_i < t„_i <

= oo if bx < ! < oo

= undefined if f„_! = co.
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If there exists an n0 such that tno _ j = oo, then the sequence {t„} terminates at n = n0 — 1

and £ is defined as n0. Otherwise the sequence is infinite and we define £ = oo. It is clear

that

[r_i, oo)= (J [(„_!, tj (disjoint union). (5)
0 in<;

For later purposes we introduce the notation

= {(a, f) e Q | t„_ j < t — a < tn} for 0 < n < (. (6)

Since (a, t) e Q implies t — a > b{t) > t _ t, we have

= (J Q, (disjoint union). (7)
0 «n<£

We define recursively a sequence of functions bn defined on [t„_ u oo) as follows:

b0(t) = t for t > t_ u

bn(t) = bn.1(b(t)) for \ <n <C,t>tn_1.

Since t > tn-y implies b(t) > t„_2, bn is a well-defined strictly increasing continuous func-

tion on oo). The following formulas are immediate consequences of the definitions of

{fn} - 1 Sn<( ar|d {Uo«»<!:

bi(t) = b(t) for t > t0,

K(t) = b„-k(bk(t)) for t > tn.u 0 < fc < n < C, (8)

bn(tk) = bn-j(tk..j) for 0 <j < n < C, n - 1 < k <

W'«-i) = M'-i) = t-i, (9)

b„(tn) = b0(t0) = t0, (10)

1 <n<C, f..! <t<tn=>{§1 (ID
Un-2 ^ O(f) < f„_ j,

f„ = sup{t e [t0, oo)|/>(t) < f„_i} for 1 < n < (. (12)

2.2 Solution of a Mixed Problem for the M' Kendrick-V on Foerster Equation

Theorem 1. Let g, Q, b, {t„}_1Sn<? and {bn}oin<i be as in Sec. 2.1 and k be a continuous

function defined on [t0, oo), w an arbitrary function on (0, g0] and P an arbitrary one on

[t0, oo). Then, there exists a unique solution v(a, t) on Q of the mixed problem

(F) Dc v(a, t) = K(t)v(a, f) for (a, t) e Q,

(I) v(a, t0) = w(a) for 0 <a<g0, (13)

(B) v(0, t) = P(t)v(g(t), t) for t > t0.

The unique solution v(a, t) is given by the following formula:

(S) v(a, t) = K(t)p{t — a) for (a, t) e Q,
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where

K(t) = exp k(t) dz for t > t0 (14)
*0

and p is a function on [f _ j, oo) defined as

p(t) = w(t0 - b„(tj) I] P(bj(i)) for 0 < n < £, t„_, < t < t„ (15)
j=o

under the convention

n Wj(t))= 1 if n = 0. (16)
j = o

Proof. By the transformation

v(a, t) = K(t)f(a, t),

Eq. (F) is equivalent to the equation

Dc f (a, t) = 0 for (a, t) e Q.

Further, a function /on Q satisfies this equation if and only if there exists a function p

defined on [t _ l5 oo) such that

f(a, t) = p(t — a) for (a, t) e Q.

The mixed problem (13) is, therefore, equivalent to the following problem with respect to p:

(I') P(t0 ~ a) = w(a) for 0 < a < g0,

(17)
(B') p(t) = P(t)p(b(t)) for t > t0.

So we have only to show that (15) gives a unique solution of the problem (17). First we show

the uniqueness. Suppose that both functions pt and p2 defined on [l_ u oo) are solutions of

(17). We shall show by mathematical induction on n that pt and p2 coincide on [t„_ 1; tn).

1. For n = 0, we have pt(t) = p,(t0 — (t0 — t)) = w(t0 — t)(i = 1, 2;t_t <t< t0) by (I').

We obtain, therefore,

= for

2. Let 1 < n < ( and suppose that p,(£) = p2(t) for t„_2 < t < tn_ j. For t„_! < t < tn,

we have t„_2 < b{t) < t„_i by (11). We have, therefore, by the induction hypothesis,

Pi(b(t)) = p2(b(t)). Hence, we obtain, using (B'),

Pi(t) = Pi(t) for

which completes the induction.

Secondly, we show that (15) is a solution of (17). From (10), (11) and the definitions of

{t„} and {£>„}, it is clear that t0 — b„(t) and bj(t) belong to the domains of definition of w and

/?, respectively, for 0 < n < {, t„_ j < t < tn and 0 < j < n — 1. Hence, p is a well-defined

function on [t _ u oo) by (5). For 0 < a < g0, we have

p(t0 - a) = w(t0 - b0(t0 - a)) = w(a),

which is nothing other than (!'). Since for any t > t0 there exists an integer n such that
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1 < n < £ and f„ _ y < t < t„, we have by (11)

p(b(t)) = w(t0-bn_1(b(t))) f] (S(bj(b(t)))
j=o

= w(fo - b„(t)) "n fi(bJ+l(t)).
j — O

Hence,

P(t)p(b(t)) = (Mb0(t))w(t0 - bn(t)) J] /WO)
j= i

= Mfo - ^n(0) n amo) = p(ty
j = 0

Thus p satisfies (B') as well. Q.E.D.

Remark. It is clear from the explicit expression (S) with (14) and (15) of the solution that

/? > 0 and w > 0 imply v > 0. Furthermore, if we denote by v the unique solution of the

mixed problem (13) considered for k, w and ft in place of k, w and /?, respectively, such that

k < k,w < w and 0 < /? < ft, the inequality v < v holds.

We proceed now to regularity of the solution v of (13). The regularity of v is reduced by

the relation (S) to those of K and p. The regularity of K being obvious, we examine that of p.

In the following three propositions, we suppose that the assumptions in Theorem 1 remain

intact. From the expression (15), we have

Proposition 2. If /? is right-continuous and w left-continuous, then p is right-continuous.

Proposition 3. Let n be such that 1 < n < C and let /? be left-continuous at tj for all j such

that 1 <j < n — 1. Then w(0 + ) = P(t0)w(go) implies the left-continuity of p at t„^t. More-

over, when p(tj) 7^ 0 for 1 <7 < n — 1, the converse is also true. (When there exists

lim^jo f (a + h), this limit is denoted by f(a + ). Similarly we use the notation

f(a~) = limno/(a - h)-)
Proof. Forf„_2 < t < f„_!,wehave

n — 2

p(t) = w(r0 - b„ 1(f)) n P{bj(t)).
j=0

Hence,

P(tn- 1-) = W(0 + ) n P(bj(tn- l))-
7 = 0

On the other hand, we have

n-2

p(tn-i) = w(g0)P(t0) 11 P(bj(tn-i))-
j=0

These two formulas show the desired results. Q.E.D.
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Proposition 4. Let r be a non-negative integer and let both g and /? belong to

Cr[f0, oo) (i.e., the set of all real-valued functions of class Cr on the interval [t0, oo)).2 Then,

p e C [t-i, oo) if and only if the following two conditions are fulfilled:

(i) w e Cr(0, g0~],

(ii) w satisfies for 0 < i < r

(B.) w(i,(0 + ) = (-l)H\ i i (-l)kw%0) Z G(b, a),
v = 0 l' ~ VJ! k = 0 a e Av, t

where

Av,k — Soc = (oclt ... , av) | a,, ... ,av are non-negative integers

for 0 < k < v, and

such that Yj ~ ^ anc* Z 'ai = v
i=i i=i

ri, , A iG(b, a) = 11 — |—j- for a e Av<k.

Note that if v = 0 then (a!, ..., av) is a multi-index of length 0. Since there exists a unique

multi-index of length 0, A0 0 is a singleton and Zaex0 „ G(b, a) = 1, under the convention

that if a is the multi-index of length 0, then Z;v=i = 0, ZfV=i 'ai = 0 and G(fo, a) = 1. For

v > 1 we have Av 0 = (p and Z* 6 a,. 0G(b>a) = °-

Proof. By the formula (15), p e Cr[t_ l5 oo) if and only if

(i) w e Cr(0,gfo] and

(ii') p(i,(fn-i-) = p(,)(f„-i +)for 1 < n < (,0 < i < r.

The condition (ii') is equivalent to

P(i)(t0 -) = PW(to +) for 0 < i < r

by (B'). Since we have

p{t) = w(t0 - b(t))P(t) for t0 <t < ti,

we obtain, by Leibniz' formula concerning the derivative of the product of functions and

Faa di Bruno's formula concerning that of the composite function,

P%) = Z i z w(kXt0-b(t))G(-b, a)
v = 0 \^/ k = 0

for t0 < t < tx. Hence,

P<0(fo + )= Z Z G(b,a).
v = oO-v)! k = 0 xsAvk

When r is zero, it is nothing other than the set of all real-valued continuous functions on this interval.



172 AKIO YAMADA AND HIROUMI FUNAKOSHI

On the other hand, since

p(t) = w(t0 — t) for t_! < t < t0,

we have

p{i\t) = (-\yw{i)(t0 - t).

We obtain, therefore,

p%0-) = (— l)'w("(0 + ). Q.E.D.

Remark. We shall write down for the reader the concrete form of(Bj) when i = 0 and 1:

(B0) w(0 + ) = P(t0)w(g0),

(B i) w'(0 +) = P(t0)b\t0)w'(g0) - P'(t0)w(g0).

We obtain, by (S) and Proposition 4, the following

Corollary. Let r be a non-negative integer, g, /? e C[t0, oo) and k e Cr"1 [t0, oo). Then,

i; e Cr(Q) if and only if

(i) w e C(0,0O] and

(ii) w satisfies (B,) for 0 < i <r.

Remark. When r = 0, we suppose that k e C°[t0, oo), which is the basic assumption on

k throughout this paper.

2.3 Integrals of the type \aa] v(a, t) da. We use the same notation as in 2.1 and 2.2. If the

function p on [t_1; oo) defined by (15) is locally integrable, i.e. integrable in Lebesgue's

sense,3 on any bounded closed set contained in [t_i, oo), then we can consider the integral

P(t) = p(z) dz for t > r_!.

P is then a continuous function on [r_l5 oo). In this case, v(a, t) = K(t)p(t — a) is integrable

with respect to a on the interval (0, g(r)] for any fixed t > , and we have

v,{t)
gU)

v(a, t) da = K(t)
o

p(t) dx
Mo

= K(t){P(t) - P(b(t))}- (18)

Then is continuous on [t0, oo). When a constant C0 and a continuous function a on

[f0, oo) are given in addition, and we put

V2(t) = C0 +

then we have

a(x)V1(x) dx for t>t0,
to

V2 e Cl[t0, oo), | V2(t) = oWM, V2(t0) = Co.
dt

V(t) defined as V^t) + V2(t) is therefore a continuous function on [f0, oo).

If /? is right-continuous and w left-continuous, then p is right-continuous by Proposition
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2. Hence, P, if it exists, is right-differentiable and its right derivative D + P is equal to p,

which is verified by

"t + h

| p(t) — p(t) | dx for h > 0. (19)
P(t + h)-P(t)

~ ~ P(t)
1

< -
_ hh

If we assume, in addition, that g is right-differentiable, K, also is right-differentiable by (18):

D+Vi(t) = K^V^t) + K(t){p(t) — p(b(t))D + b(t)} for t>t0. (20)

We have, therefore,

D+ V(t) = {K(t) + (7(t)}^) + K(t){p(t) - p(b(t))D + b(t)}. (21)

Proposition 5. Let r > 1, g e C[f0, oo), p e C'~ '[fo, oo) and k e Cr_1[f0, oo). If

(i) w e Cr_1(0, go] and

(ii) w satisfies (B;) for 0 < i < r — 1,

then Vi e Cr [f0, oo).

Proof. By Proposition 4, p e Cr~1[t_u oo). Hence, p is locally integrable and P e

Cr [f _ i, oo). We have, therefore, the conclusion by (18). Q.E.D.

Hereafter we investigate the case in which g is right-differentiable and p = yD + b with a

suitable constant y.

Proposition 6. If g is right-differentiable, then the relation jS = yD+b implies

EI P(bj (0) = f D + b„(t) for 0 <n<C,t> tn.v
j-o

Proof. We prove this formula by mathematical induction on n. The case in which n = 0

is trivial under the convention (16). Let n be such that 1 < n < C and suppose that the

relation

Tf P(bJ(t)) = y"-1D + bn_l(t)
j=o

holds for f > t„ _ 2 • From the definition of bn, we have

D+bn(t) = D+bn^(b(t))- D+b(t) for t>tn_v

We obtain, therefore,

y"D + bn(t) = y"-1D + b„_l(b(t))-yD + b(t)

= \n P(bj(bm\m = Tl P(bj(t)). Q.E.D.
Lj = o ) j=o

Remark. We have in this situation

p(t) = y"w(t0-b„(t))D + bn(t) for 0 < n < £, tn_^ < t < t„. (22)

3 In this paper we always consider integrals in Lebesgue's sense. So we shall say simply "integrable" in the

following.
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Using the corollary to Proposition 4, we have the following

Corollary. Let r > 0, g e C + 1[r0, oo), = yDb (Db denotes the derivative of b) and

k e Cr~l\_t0, oo).4 Then the necessary and sufficient condition for v e C(£S) is that

(i) w e Cr(0, gf0] and

(ii) w satisfies (Bj for 0 < i < r.

Lemma 1. Let F be a continuous right-differentiable function defined on [s0, sj. IfD+F is

right-continuous and integrable on [s0, Sj), then we have

1D + F(t) dx = F(Sl) - F(s0).
SO

Proof. Since D + F is right-continuous and integrable,

H(s) = D + F(t) dx (s0 < s < Sj)

is a continuous right-differentiable function and we have, similarly to (19),

D + H = D + F.

H — F is, therefore, a continuous right-differentiable function defined on [s0, whose

right derivative vanishes. Hence H — F is constant:

H(Si) - F(sl) = H(s0) - F(s0) = - F(s0). Q.E.D.

Lemma 2. If F is a continuous, monotone increasing and right differentiable function

defined on [s0, st], then D + F is integrable on [s0, sj.

Proof. Since F is monotone increasing, it is differentiable almost everywhere and we

have

DF(x) dx < F(si) - F(s0),

where DF(t) denotes the differential coefficient at almost all t e [s0, sj (cf. [3]). We obtain,

therefore,

0< D + F(x) dx = DF(x) dx < cc. Q.E.D.
Jso Jso

If g is a positive continuous right-differentiable function on [f0, oo) such that the

conditions g(t0) = g0 and (1) hold and D + g is right-continuous, and /? is a function on

[f0, oo) and y is a constant such that (3 = yD + b where b(t) = t — g(t) for t > t0, and w is a

left-continuous integrable function on (0, g0~], then we say that the quadruple (g, /?, y, w)

satisfies the condition (R).

Lemma 3. Let (g, /?, y, w) satisfy the condition (R). Then p defined by (15) (hence by (22)) is

locally integrable and its integral on [f _ j, f) is given by

P(t) = p(x) dx = X yjW(g0) - y"W(t0 - b„{t)) for 0 < n < (, i < t < t„,
1 j = o

4 For the case in which r equals zero, under the same convention as in the remark on the corollary to

Proposition 4.
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where

W(a) = J w(Q d£, for 0 < a < g0.

Proof. We fix for the moment an integer n such that 0 < n < £ and put

F(t) = - W(t0 - bn(t)) for tn _ j < t < f„.

F is then a continuous right-differentiable function defined on [t„_ x, t„) and we have

D + F(t) = w(t0-bn(t))D + bn(t)

which is right-continuous by the assumptions on g and w. We put

W{a) = J | w(c) I for 0 <a<g0,

F(t) = - W(t0 - bn(t)) for

F is then continuous, montone increasing and right-differentiable, and we have

D + F{t) = | w(t0 - b„(t)) I D + bn(t) = \D + F{t) |.

If tn _ i < t < tn, then D + F is integrable on [f„ _,, t) by Lemma 2, and so is D + F. We obtain,

therefore, by Lemma 1

£> + F(t) dr = Fit) — F(fn_!) for t„_j < t < tn.

Hence p is integrable on [tn_ ls t) and

piz) dr = y"{Wig0) - Wit0 - bj[t))}-
1

When t„ is finite, we have F(f„ —) = F(t„ —) = 0 by ^(0 + ) = ^(0 + ) = 0. In this case,

therefore, we can define F(t„) = F(t„) = 0 and choose r„ as t in the above argument and

obtain

tn

pit) dz = ynWig0) for 0 < n < (.
'n- 1

Hence,

r„-i i-l

Pit) dz = Yj
t~l j-oJ

p(z) dz = X 7J^(So)-
<j-l J = 0

Thus we get an integral formula

P(t) = p(i) dz +
Jr-1

/j — 1

p(i) dz
r«-i

= X VJW(0o) + yn{W(0o)- W(fo - b„(0)} for Q.E.D.
j — 0

Theorem 2. Let ig, [S, y, w) satisfy the condition (R). Then via, t) given by the formula (S) is
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integrable with respect to a on (0, g(t)~\ for any fixed t > t0 and its integral is

"g(t)

(J) Kit) =

where

v(a, t) da = K(t)E(t),
o

E(t) = y" l{yW{g0) - (y - \)W(t0 - bn{t))} for 1 < n < £, < t < t„ (23)

(W is the same as in Lemma 3), and K is defined by (14).

Proof. We have, by (11) and Lemma 3,

P(b(t)) = "l yjW(g0) -y"~l W(t0 - bn(t)) for 1 < n < C, t„_ x < t < tn. (24)
3 = 0

Hence,

P(t) - P(b(t)) = y"W(g0) - (y" - y"~1)W(t0 - bn(t))-

We therefore have

E(t) = P(t) - P(b(t)) for t > t0. (25)

Combining (18) with (25), we obtain the formula (J). Q.E.D.

Remark. We have, using (9),

E(tn-i) = y"~lW(g0) for 1 < n < (. (26)

Especially, when n = 1,

E(t0) = W{g0), (27)

and

Vi(h) = mgo)- (28)

When t„ is finite, we have, by ^(0 + ) = 0,

E(tn~) = ynW(g0), (29)

which proves the continuity of E, together with (26).

Corollary. Let (g, p, y, w) satisfy the condition (R). Then E defined by (23) satisfies

E(t) = yE(b(t)) for t > tu (30)

and F, defined by (J) satisfies

Vi (£) = yVMtyexp k(x) dx for t>tv (31)
Mr)

E, Vx and V are right-differentiable and their right derivatives are right-continuous and the

following relations hold:

D + E(t) = p(t) - pib(t))D + b(t) = yn-\y - l)w(t0 - bn(t))D + bJit) (32)

for 1 < n < C, t„_j < t < f„,

D+VAt) = K(t)Fi(f) + K(t)D + E{t) for t>t0, (33)
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D+V(t)={K(t) + o(t)}Vl{t) +K(t)D + E(t) for t>t0, (34)

K(t)D +E{t): v{0, t) = D +E{t): p(t) = {y - 1): y for t >t0. (35)

If E(t) / 0, then

— D + Eft) = bMRlMl (36)
E(t) yW(g0) - (y - 1 )W(t0 - bn(t))

for 1 < n < C, t„-i < t < t„,

1 (7 ~ IMo ~ bn(t))D + bn(t)

Vi(t) 1 K yW(g0) - (y - 1 )W(t0 - b„(t))

for 1 < n < C, f„_i < t < tn.

If y / 1, then we have

da, t) = K(t)D + E(t - a) for (a, t) e Q. (38)
7 - 1

Proo/ (30) is an immediate consequence of (23). (30) is rewritten as (31) in terms of

(32) is obtained from (25) and (22). The expression (33) is obvious by (J). (33) implies (34). We

have, by (32) and(B'),

yD + E(t) = yp(t) - p{b(t))P(t) = (y - 1 )p{t),

which proves (35) with the aid of (S). (36) and (37) are easy to derive. (38) is shown by (S) and

(35). Q.E.D.

Proposition 7. Let r > 1, g e Cr[f0, cc), k e Cr 1 [t0, oo) and = yDb. If

(i) w e Cr l(O,0o] and

(ii) w satisfies (BJ for 0 < i < r — 1,

then Vt e C[t0 oo).

Proof. Since j?6Cr_1[fo, oo), one can apply Proposition 5. Q.E.D.

Proposition 8. Let (g, /?, y, w) satisfy the condition (R). Then the following integral formula

holds:

(B")

' h

v(a, t + h) da = y\ exp
o V

Ct + h

k(x) dx

git)

v(a, t) da
g(t + h)-h

for t > t0, 0 < h < g(t + h).

Proof. The left-hand side of (B") is equal to

K(t + h)p(t + h — a) da = K(t + h) p(z) dx

= K(t + h){P(t + h)- P(t)}.

On the other hand, the right-hand side of (B") is equal to

K(t + h)

K(t)

g(t)
K(t)p(t — a) da = yK(t -I- h)

!9(i + h) - h

Ht + h)

p(x) dx.
b«)

= yK(t + h){P(b(t + h)) - P(b(t))}.
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Since we have by (24)

P(t + h) — yP(b(t + h)) = W(g0) for t > t0 and h > 0,

we obtain

P(t + h)~ P(t) = y{P(b(t + h)) - P{b(t))}. Q.E.D.

Proposition 8 shows that the unique solution v of the mixed problem (F) (I) (B) satisfies

(B") under the condition (R). Conversely, we can show that, for any continuous function v

on Q, (B") implies (B). In fact, the implication is shown for a wider class of t>'s:

Proposition 9. Let v be a function defined on Q and fix a f > f0 ■ Assume that, for some

£ > 0, v restricted on

{(a, T)efi|0<a<T — t, t < x < t + s}

is continuous at (0, t) and integrable with respect to a on (0, t — t] for each fixed x e

[f, t + e) and that v(a, t) as a function of a is left-continuous at a — g(t) and integrable on (0,

g(t)]. Furthermore, we assume that g is right-differentiable at t. Under these assumptions, if

v satisfies (B"), then it also satisfies (B).

Proof. For 0 < h < e, we have

'h

v(a, t + h) da — u(0, f)
1

< -
~ h

fh

|u(a, t + h) — u(0, t) I da.

Hence, by the restricted continutiy of v at (0, f) as stated above,

h

v(a, t + h) da = u(0, t).lim |
MO " . o

On the other hand, we have,

9W «a,t)da = \ +
g(t + h) — h h

1

g(t) - {g(t + h) - h] .

Since v(a, t) is left-continuous with respect to a at g(t), we have

g(t)
v(a, t) da.

g(t + h)-h

lim -
hiO h »

g(t)

v(a, t) da = {1 - D + g(t)}v{g(t), t).
g{t + h)-h

We obtain, therefore, by (B")

v(0,t) = yD + b(t)- v(g(t), t). Q.E.D.

Remark. In this sense we can say that (B") is an integral version of the boundary

condition (B). Note that, under the condition (R), v defined by (S) satisfies the hypotheses in

Proposition 9, by Proposition 2. Thus, under the condition (R), (S) gives also a unique

solution of the problem (F) (I) (B").

2.4 Inverse problem. When b, W and y are given, E is determined by (23). In this section

we investigate this correspondence between b, W and E with a parameter y.
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Let b be a strictly increasing continuous function defined on [t0, oo) satisfying (3) and

(4). The procedure in Sec. 2.1 defines the sequence of numbers {f„} -1 =s„<^ and that of

functions {b„}0in<Let W be a function defined on (0,go] and y a constant. A function E

on [f0, oo) is then defined by the formula (23). We denote this relation by Y(b, W) = E. E

satisfies (26), (27), (29) and (30). If E is strictly increasing and W(g0) > 0, then we have

y > lby (26), because {t„} is strictly increasing. Moreover, if bx > t0, then W also is strictly

increasing. Conversely, if y > 1 and W is strictly increasing, then E is strictly increasing on

[?„_!, tn) for each n such that 1 < n < £. When t„ is finite and the limit VF(0 + ) exists, we

have

E(tn-) = y"-l{yW(go)-(y-l)W(0 + )}.

If we assume W(0 + ) > 0 in addition, then E is strictly increasing on the whole interval

[f0, oo). We have, therefore, proved

Proposition 10. Under the assumptions bx > t0 and W > 0, the following two conditions

are equivalent:

(i) y > 1 and W is strictly increasing,

(ii) E is strictly increasing.

Furthermore, when the above conditions are satisfied, E is continuous if and only if W is

continuous and 1^(0 + ) = 0.

Next, we consider an inverse problem: we seek a function b such that Y(b, W) = E when

W and E are given.

Theorem 3. Let g0 > 0 and y > 1. Suppose that W is a strictly increasing continuous

function defined on (0, g0~\ satisfying 1^(0 + ) = 0 and that £ is a strictly increasing con-

tinuous function defined on [t0, oo) satisfying E(t0) = W(g0). Then there exists a unique

solution b of the equation

Y(b, W) = E

such that (3) and (4) hold. The unique solution b is given by the formula

b(t) = t0- if t0 < t < f,
" (39)

= E~1y-E(t)J if t > t\,

where

ty = sup{t e [t0, co) | E(t) < yE(t0)}( < go). (40)

Proof. We show first that b defined by (39) gives a solution of Y(b, W) = E. Noting that,

for t > t0, t < fj is equivalent to E(t) < yE(t0), b given by (39) is a well-defined function on

[t0, oo) satisfying (3) and (4). It is clear that b is strictly increasing and continuous on both

of the intervals [t0, tt) and , oo). When tt is finite, we have

b(t1) = E~1(^ E(t\)j = t0,

b(ti ) = t0 — W
\( yE(tp) — E(tr)

{ 7-1
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b is therefore a strictly increasing continuous function on the whole interval [f0, oo). We

construct {f„} -i $„<; and {b„}0^n<i by the procedure in Sec. 2.1. We have then by (12)

t < tj <=> b(t) < t0 o t < f

Hence we obtain

ti = t\. (41)

Next we shall show by mathematical induction on n that

£(fn- i) = ynlE(t0) for 1 <n<l

It is trivial when n = 1. Let 2 < n < £ and suppose that E(tn^2) = y" 2E{t0). By (12), (41)

and the definition of b, if and only if (i) t < or (ii) f > and E '[(1/y) £(f)] <

tn _ 2. Hereupon we have

E't- E(t)J <t n-2oE(t)< yE(t„ _ 2) ~ E(t) < y" -1 E(t0)

by the induction hypothesis. We therefore obtain

E(tn_1) = y»~lE(t0),

which completes the induction. By mathematical induction again, we have

bn-i(t) = E(t)j for 1 < n < (, t > f„_j.

Since t0 < i(t) < fi for r„_j < r < r„, we have

, . ,„-i(yE{to)-E(bn-M
b„(t) = b{b„-i(t)) = t0-W ly ——  

Hence

W(tn-h(tW=

r-1 r y'
W(t0 - &„(t)) = ~ |y£(f0) - T^rr E(t)\.

We therefore obtain

E(t) = - (y - l)W(t0 - bn(t))}

for 1 < n < C, f„_i < t < tn,

which is nothing other than the relation Y(b, W) = E.

In order to prove the uniqueness of solution of Y(b, W) = E, suppose that b is an

arbitrary solution of Y(b, W) = E. b determines {f„}_ K><{ and {bb}oin<i by the procedure

in Sec. 2.1. We have E{t) < yE(t0) for t0 < t < tj by (23). When ti is finite, £(ti) = yE(t0).

Hence for t > t0

t < tx o E(t) < yE(t0)ot < tl.

This equivalence shows fx = tv We have, then,

E(t) = yW(g0) -(y - 1 )W(t0 - b(t)) for t0 < t < ir.
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Hence

We have by (30)

if t0 < t < ti.

b(t) = E~'(^E{t)J if t>t\. Q.E.D.

Remark 1. (41) shows that t\ defined by (40) equals tt determined by b through the
procedure in 2.1.

Remark 2. Since g and w correspond one-to-one to b and W, respectively, we can

consider the equation

Y(g, w) = E

similarly as Y(b, W) = E and obtain results parallel to those of Theorem 3.

3. Application to microbial population dynamics.

3.1. Main results in application of the abstract theory. We shall apply the theory in Sec. 2 to

the analysis of microbial growth in a batch culture.

Let t and a represent time and cell age, respectively. The age of a cell is defined as the

time having elapsed since the last division of the cell.

Generation time.

Assumption I. At any time t there exists a maximum value g(t) of the cell ages in the

culture. Each of the cells whose age has reached g(t) at time t divides into two equal sister

cells. The other cells do not divide at time f. g(t) satisfies the condition (1).

In the period of steady growth, g(t) does not depend upon t, being equal to the time

length between two successive divisions of a cell, that is, generation time. Indeed, g(t)

defined in Assumption I is a generalization of generation time into the case in which

generation time varies with the time. Assumption I means that all the cells in the culture

have the same generalized generation time g(t) at time t. (In this paper we shall simply call

g{t) generation time at time t.)

From the definition of g{t), g(t') — g(t) < t' — t for t0 < t < t', where t0 is the initial time.

Without the condition (1) in Sec. 2, it would be possible that the increase in generation time

would be equal to the lapse of time during the time interval [f, t'], i.e., g(z) = x + const.

(t < t < r'). In such a period there would be no cell whose age newly reaches g(x), and,

accordingly, no cell division would occur (cf. boundary condition (B)). We assume (1) as we

treat, for the present, only the period at each instant of which more or less cell divisions do

occur.

M'Kendrick-Von Foerster equation. The number of viable cells of age a between a! and

a2 at time t is expressed in terms of the density function u(a, t) of viable cell number with

respect to a at time t as

2

u(a, t) da.
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Assumption II. At any time t, all the viable cells of age a have the same biomass m(a, t).

u(a, t) and m(a, t) are defined on fi (cf. (2)) and supposed to be characteristically differ-

entiable (cf. Sec. 2.1.). This supposition is reasonable so far as there is no drastic environ-

mental change in the culture, because the growth trajectory of a cell is represented by a

characteristic line in the (a, t)-plane. The quantity

is the decreasing rate per unit time of number of the cells of age a at time t. In most cases it

is a function of a, t and u(a, t). We denote the function by A(a, t, u(a, f)) and call it the "loss

function". Then u satisfies the M'Kendrick-Von Foerster equation

(Fu) Dcu = — Xu on fi.

In the case of batch culture, / becomes death rate per unit time, because there is no decrease

(or increase) by migration in cell number. As the increase and the decrease in cell number

caused by cell division occur only at a = 0 and a = g(t), respectively, they will be formu-

lated as a boundary condition later. The expression

/ , Dc m(a, t)
m(a, t)

represents the biomass growth rate per unit time of a cell of age a at time t. In most cases it

is a function of a, t and m(a, t) (Moreover, it may seem very probable that the biomass

growth rate depends also on u(a, t). In the present paper, however, we assume that it is

independent of u(a, t).) We denote the function by /z(a, t, m(a, f)) and call it the "individual

growth function". Then m satisfies the M'Kendrick-Von Foerster equation

(FJ Dcm = /xm on Q.

Assumption III. X and fi are functions of only one variable t.

The integral \"a] m(a, t)u(a, t) da represents the total mass of the viable cells of age a

between at and a2 at time r. As we have

Dc{m(a, t)u(a, t)}
m{a, t)u(a, t)

Dc m{a, t) + —   Dc u(a, t)
m(a, t) u(a, t)

= fi(a, t, m(a, t)) — /(a, t, u(a, t)),

mu also satisfies the M'Kendrick-Von Foerster equation

(Fmu) Dc(mu) = (fi- X)mu on fi

under Assumption III.

Boundary condition. Let (a, t) e fi and h be a positive number such that (a + h, t + h) e fi.

Then

(Fu') u(a + h, t + h) — u{a, t)exP^ — -i(t) dt

J't+h
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This is an integral version of the equation (Fu). The cells which divide during the time

interval [f, t + h) are those which have at time t the age a such that g(t + h) — h < a < g(t)

and survive until their time of division. We divide [f, t + h) into sufficiently small intervals

[Tj-.j , Tj) (j = 1,... , n; t0 = t, t„ = t + h) and write an arbitrary point of [ij_ l, Xj) as Sj.

Denoting the ages at time f of the cells dividing at the times Xj- ! and xj by a,-_ i and aj,

respectively (Fig. 1), we consider the cells having at time t the age a such thata^ < a < flj-_ i.

Their number is expressed as

~aj-i

u(a, t) da.
•aj

The number of the cells which survive till Sj is

aj-l +sj-t

u(a, Sj) da.
•aj + Sj-t

It becomes

'aj- i

u(a + Sj — t,t + Sj — t) da
ai

by change of variable of integration from a to a — (Sj — t). It is equal to

aj-1 j r Sj

u(a, t) da ■ exp^ — A(t) dx

by the equation (Fu'). This number doubles by the division at time Sj, and the number of the

cells which survive till t + h is

'aj-i

u(a, t) da ■ exp{ —
Jaj

t)da ■ exp

t -f h ■

A(t) dx y.

Fig. 1. Relation between the time of division of a cell and its cell age at t.
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Summing up with regard to all the cells having at time t the age a such that g(t + h) —

h < a < g(t), we get

n aj-i

2 £ u(a, r)da • exp<j —
j=l Jaj

t + h

/.(z)dz

= 2
gti) f ft + h

u(a, t)da ■ exp
g(t + h)-h

{" f >lw4
As this is the number of the viable cells of age a between 0 and h at time t + h, we get the

following equation:

fh

u(a, t + h)da = 2
fs«)

u(a, t)da ■ exp<j —
g(t + h)-h

'l + fi

X(-c)dr J-.

This is the integral version (B") of the boundary condition (B) in the case in which v = u,

y = 2 and k = — X (cf. Sec. 2.3). Supposing that g(t) is right-differentiable and u(a, t) satisfies

the hypotheses of Proposition 9, we get the boundary condition:

(Bu) "(0, t) = 2{1 — D + g(t)}u(g(t), t)

= 2D + b(t) ■ u(g(t), t) for t > t0

applying Proposition 9. It follows from this derivation that the point (0, t) in the (a, r)-plane

belongs rather to the infinitesimal future of t than to t itself. If g(t) were supposed to be of

class C1, Vt(t) (corresponding to Ni(t) or M^t) in this section, cf. Table I) would also be of

class Cl, by Proposition 7, under the assumption that w(a) (corresponding to </>(a) or

iJ/(a)<f>(a) in this section) is continuous on (0, g0] and satisfies (B0). Hence, it would follow

that observed functions NJt) and/or Mx(j) not belonging to the class C1 could not be

treated in the theory. In practice, however, such data do exist, at least within the range of

precision of experiment (e.g., [6]). We have shown in Sec. 2 that such data can also be

treated in the theory if we loosen the restriction on g(t) and only suppose that it is a

right-differentiable continuous function whose right derivative is right-continuous.

The biomass of a cell with age g(t) at time t is m(g(t), t). From Assumption I, such a cell

divides into two equal sister cells of age 0 and we get the boundary condition:

(BJ m(0, t) = ^ m{g{t), t) for t > t0.

The boundary condition for the function m(a, t)u(a, t) is, each side of (Bu) being multiplied

by the corresponding side of (Bm),

(Bmu) m{0, t)u(0, t) = D + b{t) ■ t)u{g(t), t) for t > t0.

Initial condition.

(Iu) u(a, t0) = 0(a),

(IJ m(a, t0) = ip(a),

(Imu) m(a, t0)u(a, t0) = ip(a)ct)(a) for 0 < a < g0 = g(t0).
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As stated above in the derivation of the boundary condition (Bu), (0, t0) is considered a point

belonging to the infinitesimal future of t0, and so a = 0 is omitted from the range of a in the

initial condition. Since u and mu are density functions, a point in the range of variable may

be omitted when one considers their integrals. If 0 were included in the range of a, then we

would have from (Iu) and (Im),

0(0) = u(0, t0) = 2D + b(t0) ■ u(g0, t0) = 2D + b(t0) ■ <p(g0),

«A(0) = m(0, t0) = ^ m(g0, t0) = ^ ^(g0).

0(a) and i{/(a) could therefore no longer be arbitrary functions. These conditions for 0 and >//

are no other than the boundary condition (B0) in the corollary to Proposition 4, which

assures the continuity of the solutions w and m. If only a point a = 0 is omitted, any function

can be taken for 0(a). As for 0(a), we assume only the following.

Assumption IV. For any ax and a2 such that 0 < ay < a2 < go, the integral

*02

0(a) da
J a i

is positive.

Solution of the mixed problems. From the forms of the partial differential equations (Fu),

(Fm) and (Fmu), the boundary conditions (Bu), (Bm) and (Bmu), and the initial conditions (Iu),

and (Im) and (Imu) which u, m and mu satisfy, respectively, it is clear that Theorem 1 can be

applied to these mixed problems (F*) (I J (BJ (* = u, m or mu). The correspondence of the

notations involved in the application of Theorems 1 and/or 2 to each of these cases is shown

in Table I. y corresponds to the ratio of the quantity in question after a cell division to that

before the division. Treating division into two equal sister cells, we must choose y = 2 for u

and y = 1 for mu. The theory in Sec. 2 can be applied to the cases in which some other

values must be taken for y.

Thus, the assumptions and conclusions in the application of Theorem 1 to these cases

are summarized as follows:

Assumptions:

g is a positive, continuous and right-differentiable function defined on [t0, co) such that

t0 < t < t' => g(t') - g(t) <t' -t,

I and /i are real-valued continuous functions defined on [t0, co),

0 is a real-valued integrable function on (0, g0] which conforms to Assumption IV,

i// is an arbitrary real-valued function defined on (0, g0~].

Table I. Correspondence of the notations involved in the application.

k p y w W E V1 a C0 V2 V

u

m

mu

-X 2 D+b 2 <f) 0) Eu Nr X N2(t0) N2 N
H 2 lA

ti-iI D + b 1 ¥ £m„ A/, X M2(l0) M2 M
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Conclusions:

For (a, t) e fi„(0 < n < £) (cf. (2), (6) and Fig. 2),

(Su) u(a, t) = 2"D + b„(t - a) ■ <t>{t0 - bn(t - a))expj - | X(x) dx

(Sm) m(a, t) = y„ «A(fo - bn(t - a))exp| /i(t) dx.

Under Assumption IV, we have

0(a) > 0 almost everywhere.

For A, n and ij/, we are obliged to choose only non-negative functions from the biological

viewpoint.

Integrals and related formulas. Now we shall derive integral formulas of u and mu by

applying Theorem 2. If cj)(a) and \p(a)<f>(a) are left-continuous and integrable on (0,go]> and

D+g(t) is right-continuous, it is clear from Theorem 2 that u(a, t) and m(a, t)u(a, t) are

integrable with respect to a on (0, g(t)] for any fixed t > t0. Before we proceed to integral

Fig. 2. The domain fl as the disjoint union of {Q„}0 s n< c(cf. (6) and (7))(a case in which 6^ < tn_, < oo).
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formulas, a remark must be made on a property of the solution u(a, t). Since Assumption I

says that g(t) is defined as the maximum cell age in the culture, the solution u(a, t) must

satisfy
mg(t)

(L) u(a, t) da > 0
Jg(l) - £

for any t and e such that t > t0, 0 < e < g(t). Under Assumption IV the unique solution of

the mixed problem (Fu) (Iu) (Bu) satisfies (L).

The total number N^t) and the total biomass Mx(f) of the viable cells at time t are given

by

Afi(t) =

Putting

g(t)
u{a,t)da, Mi(t) =

o

"g( 0

m(a, t)u(a, t)da.
o

4>(a) =

and

T(a) =

4>(m (42)

MSWQdt, (43)

for 0 < a < g0, we get from (28)

iVi(to) = "H0O), Mt(t 0) = 4%0)-

If we put y = 2 and W = $ in (23), E(t) becomes

Eu(t) = 2" ~1 {2®(0O) - <D(fo - fc„(t))} for 1 < n < (, tn_ t < t < tn.

If we put y = 1 and W = T in (23), E(t) becomes

Emu(t) = T(^o) for t>t0.

The expression (J) in Theorem 2 implies

(JJ N iit) =* £„(t)exp| - | A(t) dt \

= 2""1{24)(0o) - «>(to - b„{t))}eM ~ A(t) dx> for r„ _ x < t < t„,

(Jmu) Mi W = ^(fi'o)exp

From the formula (31),

Ni(t) = 2JV1(b(f))exp<! -

{h(t) — A(t)}^t for t > t0.
to

A(t) dx J-,
6(1)

M^f) = M,(fr(t))exp — A(r)}dT
Jb(t)
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for t > t!. From the formula (37),

1 . <p(t0 - bn(t))D + bn(t)
D + N1( f) = ~ r77x - M t )

Ni(t) 2<D(3o) - O(f0 - K(t))

for 1 < n < C, tn _ i < t < tn,

D + M,(() = fi(f) - x(r) for t>t0. (44)
M,( t)

Suppose that r > l,g e Cr[f0, oo) and X, n e Cr '[fo, oo). If (i) (t>,ip(j> e Cr ^0, g0] and (ii)

cj) and ij/(p satisfy (BJ (0 < i < r — 1), then we have by Proposition 7

Ny, Mj e Cr[f0, CO).

From the relation (38), u is written in terms of X and Eu as follows:

u(a, t) = 2D Eu(t — a) ■ exp< — A(t) dx > for (a, t) e Q. (45)

We consider the number N2(t) and the biomass M2(f) of all the dead cells in the culture

at time t. In the definition of V2(t) in Sec. 2.3, if we put C0 = N2(t0), "10 = Mt) and

|/j(f) = Ni(t), then V2(t) becomes N2(t), and if we put C0 = M2(t0), a(t) = X(t) and

K,(r) = then V2(t) becomes M2(t). Hence we have

DN2(t) = mNM DM2(t) = Mt)MM (46)

The total number and biomass of the cells are

N(t) = NM + N2(t), (47)

M(t) = Mj(f) + MM (48)

respectively. Their right derivatives are

D + N(t) = D + N,(t) + A(t)N!(t)

D + M(t) = D + Mi(t) + X(t)Mi(t).

From the relations (32), (34) and (35), we get

A(t) dx > = ju(0, t),D + N(t) = 2"~lD + bn(t) ■ 4>(t0 - bn(t))e\p< -

D + M(t) = yV(g0)n(t)cxp {fi(x) - /(t)} dx. (49)

3.2 A method to determine the functions in Sec. 3.1 from experimental data. We can

perform the calculations to obtain the microbiological quantities in Sec. 3.1 from observed

data. As the optical density of a cell suspension for the light of an appropriate wavelength is

proportional to the biomass of the cells in unit volume, we can get M(t) from the optical

density measurement. N(t) is given by direct counting of the cells by means of a counting

chamber. Nt(t) can be obtained from viable count. In some cases, N(t), Nj(f) and N2(t) are

obtained simultaneously by counting after staining with methylene blue. Assuming that the
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initial functions (f>(a) and ip(a) are known and that M(f), N(t) and N,(r) are observed for

t > t0, we can calculate M^t), M2(t), N2(t), A(t), n(t), g{t), u(a, t) and m(a, t) by the following

procedure. (For the case in which (j)(a) and ij/(a) are the theoretical functions in logarithmic

phase and / = 0, we calculated, in [1], //, g{t), u(a, t) and m(a, t) for t0 < t < from the

observed data [6] of M{t) and N(t).)

We get N2(t) from N(t) and N^t) by (47) and obtain /(t) from (46). (Ju) implies

Eu(t) = AT,(f)exp /(t) dx. (50)

Thus Eu(t) can be calculated from the observed data. Then u(a, t) is obtained from (45).

From Theorem 3, we have for t > t0,

b(t) = t0 - O 1(2£„(f0) - Eu(t)) (t < t\)

= Eu\Eu(t)/2) (t>t\),

where

ti = sup{f e [t0, qo) | Eu(t) < 2Eu(t0)}.

g(t) is obtained from b(t). bn(t) is the n-fold composite function of b(t). From (49),

(51)

D + M(t) ■ exp

Integrating, we get

/(r) dx = Tfc/oMfjexp
fo

t

li(x) dx.
to

D M(s) ■ <jexp
ro

/l(r) d-c} ds = fig0)
to

MsKexp
v. JtQ

n(x) dx > ds

= T(g0H exp H(r) dx)-\> = exp ;.(t) dx{ — V(g0) (by (Jmu)).
to

Hence we obtain M,(() from M(t) by the following formula:

Mi(t) = *teo) + D M(s) ■ S exp /(t) dx > ds expl - Mx) dx >. (52)

Then n(t) is calculated from (44). Further, we get M2(t) from M(t) and Mj(t) by (48). m(a, t) is

calculated from b„, \jj and n through the use of (Sm). Fig. 3 shows a scheme of the calcu-

lation.

When the density function of the cell number with respect to cellular volume is observ-

able by means of a Coulter counter, one can check our theory by combining this density

function with u(a, t). Moreover, if cellular volume and cellular biomass have one-to-one

correspondence,5 the density function of the cell number with respect to cellular biomass m

at each instant will be known. It represents, however, the sum of the density functions of the

It is, for example, very probable that cellular biomass is approximately proportional to cellular volume.
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Fig. 3. A scheme for calculating the microbiological quantities in the text from experimental data. [ ] :

quantities assumed known at the initial time I 1: data observed for t > f0; |l l|: main microbiological

quantities to be obtained through calculation; ( ) : number of equation used for calculation.

viable and the dead cells, as the Coulter counter cannot distinguish the former from the

latter. We write the density function at time t as q(m, t). The similar functions for the viable

and the dead cells are also written as q^m, t) and q2(m, t), respectively. Then

q(m, t) = q^m, f) + q2(m, t). (53)

As A(f) is the death rate per unit time, the density function q^m, t) of the number of the

viable cells multiplied by A(t) is equal to the increasing rate of the density function q2(m, t) of



MIXED PROBLEM FOR THE M'KENDRICK-VON FOERSTER EQUATION 191

the number of the dead cells. Thus

0
— q2(m, t) = A(r)<ji(m, t),

d~*~ d*
~dt q{m' ̂  = ~dt q^m' ^ + ^

If qi{m, t) is a continuous right-differentiable function of t for any fixed m and q(m, t) is a

continuous monotone increasing right-differentiable function of t for any fixed m such that

(d+/dt)q(m, t) is right-continuous with respect to t, then we have

qi(m, t) = <?i (m, t0) + | ys l(m, s) ' ^exp /(t) d x f ds
to

• expj — A(t) dr j (54)

by Lemmas 1 and 2. Supposing that m(a, t) is a strictly increasing absolutely continuous

function of a at any fixed time t > t0 and that <?i(m, t) is locally integrable with respect to m,

we have
a2

u(a, t)da =
ai

m(a2, t)

<2i(m, t) dm
m(a i, r)

rJ a i

d
qi(m(a, t), t) — m(a, t) da

da

where (d/da)m(a, r) denotes the partial derivative of m(a, t) with respect to a for almost all

a e [a1( a2]. So we obtain

d
u(a, t) = qi(m(a, t), t) — m(a, t) (55)

oa

for almost all a. If <f)(a) and q^m, t0) are left-continuous with respect to a and m, respectively,

and il/(a) is a left-differentiable function such that D ^(a) is left-continuous, then we have,

putting t = t0 in (55),

0(a) = qi(>J/{a), t0)D'il/(a) (56)

for all a. Since q^m, t0) is locally integrable, (56) is written as

4>(a) = ^ {QM(a))},

where

Qi(m) =

Thus, if (/'(a) is continuous, we get

qi(m', t0)dm'.
l/.(0 + )

<t>(a) = QiUKa)) for 0 < a < g0.

Hence,

Ha) = Q;lma))
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provided that is strictly increasing. Hence, if qi(m, t0) is known, each of <f){a) and i//(a) can

be calculated from the other. When q^m, t0) is known and q(m, t) is observable fort > t0,

qi(m, t) can be calculated by means of (54). Then one can convert it into u(a, t) by (55), using

m{a, t) previously calculated from the data (i.e., known <p(a), \fj(a) and observed M(t), N(t),

N^t)). The result may be compared with previously obtained u(a, t) in order to check the

theory. A scheme of the calculation is shown in Fig. 4.

Fig. 4. A scheme for calculating u(a, t) from m(a, (), A(r) arid data observed by a Coulter counter. Legend as in

Fig. 3.
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