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A SHARPENING OF MASLOV'S METHOD OF CHARACTERISTICS
TO GIVE THE FULL ASYMPTOTIC SERIES*

By A. GORMAN and R. WELLS (Pennsylvania State University)

1. Introduction. Maslov's method of characteristics uses a certain Hamiltonian flow to

determine the first term in the asymptotic series solution of linear partial differential equa-

tions near turning points. In [1] an associated non-Hamiltonian flow was introduced to

determine the full asymptotic series of the reduced Helmholtz equation. Here we note the

same sharpening of Maslov's method extends to a much more general setting. We describe

the sharpening for two independent space variables for all possible positions of the La-

grange manifold. For the case in which the Lagrange manifold cannot be parametrized by

either space or momentum variables separately, another auxiliary flow is required to obtain

the full asymptotic expansion. We determine this flow, then relate the each position of the

Lagrange manifold to either the classical technique or a refined Maslov technique.

2. We assume that the wave-type equation

2 _ d2i1/ J; _ d2ip 2 _ d\b 3, _ dnil/
I'm + W + £<**> jr + irn = o (i)

has an asymptotic solution—for brevity, near turning points of the highest order—of the

form

ip(x) — exp{nt} A(x, p, x) exp{rr(x' • p - S(p))}dp = 0(x co) (2)

where x is a large parameter and S(p) is such that x — Vp S(p) = 0 determines the Lagrange

manifold of Maslov near the turning point [2]. Essentially, the Lagrange manifold is the set

of points (jc, p) at which is concentrated all the contribution to the asymptotic series of the

integral. Notice that the integral alone is a full asymptotic solution of the "associated

Helmholtz equation."

Carrying the differentiation (1) across the integral (2) determines

I aiP] + I bjpj + d2
Lj= l j

Adp exp{it(x • p - S(p))} <j(ir)2

+ (it)
j~i " ' °xj 7 ' cxj 1

r)2 A   r) A ~I1
= o(r-n (3)

^ , 8A 8A „I 2ajPj ̂ 7 + I bJ 77 + S cjPj A + diA
j=i cxj j txj j

v d2A 5A
LajJ^ + Lcj-^- + doA

L j u'Kj j vxj
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The coefficient of (it)2 is Maslov's Hamiltonian (and hence is zero) on the manifold [3,

Chapter II], Expanding the Hamiltonian

Z aj(x)pj + £ bj(x)Pj + d2(x) = £ aj(\7pS)Pj + Z bj(VpS)

where

•1

D = Vx H(t(x - Vp S(p)) + Vp S(p), p)dt.
Jo

with H being Maslov's Hamiltonian. Substituting into (3), noting

• [exp{iT(x ■ p - S(p))}AD}]dp

exp{ii(x ■ p - S(p))}{hA(x - VpS(p)) ■ D + D ■ VpA + AVp ■ D}dp, (4)

and taking the surface integral over a sufficiently large radius so that it vanishes, (3)

becomes

v- ^ dA r a SDj <> SA yr L 5A

A   r) A

+ to? + ? c> H, + d°A\' °^"1- <4)

dp exp{it(x • p - S(p))} <(it)

+ Z ciPjA + diA
j

Requiring

v dA „ 8Dj „ 8A ~ dA „
J^T? ^ + ? + ?h,^J + ^c,p'A + d'A

1 d2A ^ dA ]

+ ^{?^ + ?C^ + do^} = ° (5)

in a neighborhood of the Lagrange manifold leads to a transport equation if we introduce

the flow

x'j = 2aj{x)pj + bj(x), p'j = — Dj, (6)

where the primes indicate time derivatives [4], Specifically, (5) holds in such a neighbor-

hood if we allow the asymptotic series

00

A(x, p, t) = Z Mx, P)(ir)~k (7)
k = 0

to evolve according to the transport equation

Ak +Ak ~
L J

Z ( Cj{x)Pj - ^ ) + d,

~ / d2Ak_i
0. (8)
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For example, applying the above to the Tricomi equation

y ax2 + ^2 '

we obtain the flow

2

3

Px = Px( 0), Py = -Pxi 0)t2 + 2pi0).

x = - ^ px(0)3t3 + 2px(0)py(0)t2 + 2y(0)px(0)t + x(0), y = -px(0)2t2 + 2py(0)t + >'(0),

Depending on 'emitter conditions', that is, on the Lagrange manifold, the transport equa-

tions have many different solutions; one particularly neat family of solutions is given by

Ak = constant for all k, leading to a full asymptotic solution to the Tricomi equation of the

form

= e\p{h(xpx + ypy + py/3p2x)}<x(px, py)dpxdpy

where a(p) is any smooth function with compact support. The solution may be multiplied

by a constant asymptotic series.

3. While the above treatment suffices for most wave-type equations, in some cases a

mixed coordinate-momentum space Lagrange manifold is required. A simple but useful

example is the Helmholtz equation

dV , dV 4 d2i1/
(xTT + TT + (x + y) !>77 ~~ (9)

with emitter conditions (x, y, px, py) = (6, 92, d2, 6). Analogous to (2) we assume an asymp-■y•
totic solution of the form

i//(x) — exp{/Tf} A(x, y, py, z]exp{h(ypy - S(py, x))}dpy = 0(z ) (10)

where A(x, y, py, r) and all its derivatives are bounded, which determines the Lagrange

manifold

y = dS/8py, px = —dS/dx. (11)

Carrying the differentiation (9) across the integral in (10) obtains

dpy exp{k(ypy - S(py, x))} < (it)
SS 2

P^(yx) -(** + ,)

+ IT
SA SS 8A d2S

dy 8x dx dx2
+

d2A 82A

dx1 + dy2
(12)

In this case Maslov's Hamiltonian becomes
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Expanding, we get

+(I)' - +»=+(I)2 - (*4+B+(> - i)D - {>■- £ i°

where

D =
IT. . 8S\ 8S 8S

o 8y 8pJ +8py'8x'P>] L

Now substituting into (12) and noting

exp{h(ypy - S)}A (y - ~ )d dp
\ dPyJ " '

[_e\p{iz(ypy - S)}AD]dpy exp{i'r(ypy - 5)}
8A 8D

D ^ I" A T~
8py 8py

dpy

exp{it(ypy - S)}

(12) becomes

dp, exp(ix(ypy - S(py, x))}

8A 8D
D — + A —

8py 8py
dpy, (13)

. , ^ 8A 8D „ 8A 8S 8A 82S \ 82A 82A

iT' 8py 8py+ Py 8y~ 8x 8x~ 8x2 )+ 8x2 + 8y2

Then introducing the flow

8S
x'=-2 —, y' = 2py, p'x= - 4x3, p'y= —D, (14)

leads to the transport equation

, 1 (S2Ak_ i 32Ak_l ] n

dt 8py dx2 it \ dx2 8y2 ' (15)

More generally, for wave-type equations (1) requiring a Lagrange manifold as in (11), the

flow

0 s
x'l = b j(x) - (2ax(x) + Cj(x)) —, y\ = b2(x) - (2a2(x) + c2(x))p2,

(16)
p\ = -dH/dxu p'2 = —D

determines the transport equation

1 (_ T 82A 8A~\
+ d0(x)A y = 0.

dA 8D / 82S , , 1

lF-Asf!-","sP, + ,<xl +
32<4 3/1

(17)
For those cases requiring the Lagrange manifold

xi = 8S/8pu p2 = —8S/8x2,
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e.g., emitter conditions (x, y, px, py) = (9, 92, 9, 92), the subscripts on the coordinates and

momenta in (16) and (17) are interchanged.

4. For a given linear hyperbolic differential equation, different 'emitter conditions'

generate different Lagrange manifolds. While the classical technique often suffices, near

turning points of the Lagrange manifold some version of Maslov's technique is required.

For a particular problem, let L be the Lagrange manifold and (x°, y°, p°u p°) e L be a

turning point of the manifold. Because L is a smooth two-dimensional manifold, there must

exist two smooth functions, e.g.,/and g, such thatzj =/(z3, z4) andz2 = g(z3, z4), where

zu z2, z3, z4 is a suitable permutation of x1; x2, pi, p2 ■ Since L is a Lagrange manifold,

the form dxx A dpl + dx2 A dp2 restricted to the tangent space of L must vanish. Thus we

obtain a finite list of cases, namely:

1) px = f(x), p2 = g(x). In this case /(x)dx, + g(x)dx2 is exact and the point is not a

turning point—in the vicinity the classical technique applies [2, 3].

2) Xi — f(p), x2 = g(p). In this castf(p)dpl + g(p)dp2 is exact. In this case we may apply

the procedure of Sec. 2.

3) *i = f(x2, pi), p2 = g(x2, Pi). In this case f(x2, pi)dpi — g(x2, p^dx2 is exact. In

this case we may apply the procedure of Sec. 3.

4) = f{xu pj, p2 = g(xu p^. In this case the Poisson bracket {f g} = — 1. It follows

from a straight forward calculation that already (1), (2), or (3) holds.

Thus the extended Maslov technique applies to all possible cases of the second-order linear

hyperbolic equation in two space and one time variables.
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