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Abstract. On the basis of the Oseen approximation the three-dimensional flow of a

viscous incompressible fluid past a flat plate is studied. A system of two integral equations

for determining the drag and the lateral force on the plate and an integral equation for the

lift are obtained. The paper gives the asymptotic form of the integral equation for the lift,

for high Reynolds numbers. In the inviscid limit the integral equation of the lifting surface

theory is obtained. Lifting line theory and slender wing theory in weak viscous flow are

discussed. Viscosity corrections are given for some particular wings: elliptic wings of high

aspect ratio and slender delta wings.

1. Introduction. The steady flow of a viscous incompressible fluid past a body is one of

the fundamental subjects of fluid dynamics. The governing Navier-Stokes equations are

nonlinear and exact solutions have been obtained only for very specific problems. In this

situation many studies have been based on the linearized equations. Thus the Oseen

approximation replaces the convective (nonlinear) terms in the Navier-Stokes equations by

convection due to the uniform velocity at infinity. It is adequate at large distances where the

flow is almost uniform; for small Reynolds numbers it is also justified in the neighborhood

of the body due to the prevalence of the diffusion terms (retained exactly in linearized

equations) over the convection terms.

In the case of steady flow past a flat plate placed along the z = 0 plane and having a

small incidence angle, the correct momentum balance is also obtained from Oseen's equa-

tions at the surface of the plate, for all Reynolds numbers, because the no-slip condition

applies there. For these reasons Oseen's approximation may be expected to give some

correct results in the case of the flat plate even at high Reynolds numbers. For the lift things

are as we expected: in the limit case of an inviscid fluid and plane motion past a flat plate

the Oseen approximation furnishes correct values for the lift in subsonic as well as in

supersonic flow [3, 4]. Furthermore, in the subsonic case this theory provides a justification

for the Kutta-Joukowsky condition.

For the drag things are different: the value obtained by using Oseen's approximation is

different from the Blasius value [5], This has to be expected since the Oseen model does not

eliminate the paradox according to which the drag is the same irrespective of the direction

of the velocity at infinity [7]. Therefore in the study of fluid motion with a small incidence

angle past a flat plate placed along the z = 0 plane, the Oseen approximation supplies

corrections valid only for the lift in the limit case of the high Reynolds numbers.

* Received February 2, 1981.
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In this paper we determine the lift on a three-dimensional flat plate in the limit case of

vanishing viscosity. First we obtain a new representation formula for the velocity field in

the Oseen approximation. The boundary condition furnishes a system of two integral

equations for the derivation of the drag and lateral force on the plate and a single integral

equation for the lift. The main result of the paper is the asymptotic expansion of the kernel

of this integral equation, for high Reynolds numbers. The zeroth-order term in this ex-

pansion is just the kernel of the integral equation of the lifting surface theory in aerody-

namics; the next term is a correction due to viscosity which is important in wing theory in

aerodynamics as well as in hydrofoil hydrodynamics.

The last two sections give some applications: we have developed a "lifting line" theory

and a "slender wing" theory for weak viscous flow. The paper gives corrective coefficients

for the lift in these approximations for some specific wings. For very slender wings the

viscosity plays an important role in determining the lift since it appears in the leading term

in the asymptotic expansion.

2. Basic equations. We consider the steady motion of an incompressible viscous fluid

around a three-dimensional body. The fluid motion is governed by the Navier-Stokes

equations. The form of these equations has been deduced in [8]; in our case they are:

div V = 0, (2.1)

(V grad)V + - grad P - vAY = - T<5S. (2.2)
P P

Here \{VX, Vy, V.) is the fluid velocity, P is the pressure, p the density, and v the kinematic

viscosity. The term T(5S describes the body action on the fluid motion. Consequently the

resultant R and the resultant momentum M of the forces acting upon the body may be

expressed, taking into account the right-hand side of (2.1), by the relations

R = < — T<5S, 1>= -

M = < — x x T<5S, 1> = -

T da, (2.3)

x x T da. (2.4)

We denote by L the characteristic length of the body and by V0 the velocity of the uniform

flow at infinity upstream. The spatial coordinates x1? yu zj are taken so that V0 is in the

XjOjZj plane and makes a small angle 60 with the Oxj axes. Denoting by V', p' the velocity

and pressure perturbations respectively, we introduce the following dimensionless quan-

tities :

zi V' P' ♦ T n o
x = -r> y= T' Z = T> v = 77' P = ~T,2' t = —^72- (2-5)

L L L V0 pV20 pVl

By assuming small perturbations we shall linearize Eq. (2.2) about the undisturbed state

by neglecting the product of perturbations and the product of perturbations by sin d0. The

resulting equations are similar in form to Oseen's approximation:

div v = 0, (2.6)

^ + grad p - ^ Av = t<5s, (2.7)
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where

4 a = (2.8)

is the Reynolds number.

At infinity all the perturbations must vanish:

lim (v, p) = 0 (2.9)
x2 +y2 + z2 -* oo

and we consider the no-slip condition on the body

vx(x, y, z) = -1 (2.10)

vy(x, y, z) = 0 (xj,z)eS (2.11)

uz(x, y,z)= -0o. (2.12)

We now take the Fourier transform of the system (2.6), (2.7) with respect to all spatial

variables. The result is the system

ik • v = 0, (2.13)

k2\
ik i + — Jv + ikp = &[t <5S], (2.14)

where

v = &[v] v(x, y, z)exp{ — i(k1x + k2y + k3z)} dx dy dz

and similarly p = &[_p(x, y, z)]. The solution of the linear system (2.13), (2.14) is

ik

k
p =-^ f[tds], (2.15)

* = — in - k2 , \ W* • #-[t<5s]) + k^[tSs]}. (2.16)
-I1- —
ikt \k2 k2 + 4aikl

To determine the inverse transform of the solution we use the relations

1

k + 4<ti7c1

exp{2(r(x — | x |)}

4n |x I
(2.17)

r 3 exp{2^ - I x I)} _ _ 1 , / + , x _ ,x|)}. (2J8)
l-oa 8y 4711 x | ' 4n y2 + z

Finally we obtain

p(x, y,z) = j- -7—\ i + TT~] © 95s + J- T © hSs, (2.19)
dx 4n\x\ dy 4n \ x | dz 4n | x |

, „ exp{2a(x - |x|)} ^c , 8 1 - exp{2a(x - |x()} ^ rc
vx(x, y, z) = 4(7 ———- © fSs +   —— © fds

4n|x| ox 4tc|x|

, 3 1 - exp{2<r(x - | x |)} c ,8 1- exp{2<x(x - | x |)} ^
+ t -r~\—i © 9°s + "a —i © s'

dy 4?t | x | 8z 47t | x |

(2.20)
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, d 1 - exp{2<r(x - I x |)} ^ ^ s , „ exp{2a(x - | x |)} ^ c

y-z)"Jy 4^1 ® fS*+ 4" —Jiw— ® <*'

-iiy ('+jfi)1 ^ exp|2"<x ~1 x D>)} ®eh

-~kly+if])' "cMMx-|Xi),)} ® Ms' <2'2I)

, d 1 - exp{2<j(x — |XI)} ^
"*"■ '•2)=& 5^ ®/4s

1 d ^ + r-rV - exp{2cr0c - |xj)})| ©
471 dz (y + z \ | x

1 S ^ ^1 + r^T )(1 - exp{2<r(x - | x |)}) ̂  © hSs
4n dz (y + z \ | x

+ 4jexpp,(,-|x|))

471 I X I

We denote by © the convolution product with respect to all the spatial variables;

t =/' + 0j + ^k-
Formulae (2.19H2.22) are a representation for the solution of the Oseen system in the

case of an arbitrary body; the unknown densities /, g, h are just the quantities of interest in

most hydrodinamic problems. In order to determine these functions the boundary con-

ditions (2.10)—(2.12) will be used. They will furnish a system of three integral equations for

solving the problem.

3. Integral equations for the motion past a flat plate. Let us now study the motion of

the viscous fluid past a flat plate. We take the axes such that the Oxy plane coincides with

the plane of the plate and the velocity at infinity is in the Oxz plane. By taking z—>0 in

relations (2.20)-(2.22) we get

vx(x, y, 0) = | - ^3 (1 - exp{2<x(x - r)}) + ^ ^1 + ^exp{2<r(x - r)}j *f(x, y)

exp{2<x(x - r)} - (1 - exp{2<r(x - r)})j * g(x, y), (3.1)
2nr 4nr

vy(x, y, 0) = -J - —3 (1 - exp{2ff(x - r)}) + ~—2 exp{2<r(x - r)} \ */(x, y)

1
1 + - (1 - exp{2er(x - r)}) + -—3 (1 - exp{2ff(x - r)})

Any \ r J 4nr

o

+ 27tr 11 ~ 7 )exp{2(T(x -r)} r * £(*> y)> (3-2)

vz{x, y, 0) = I - ^1 + -J (1 - exp{2er(x - r)}) + — exp{2a(x - r)}| * h{x, y), (3.3)

where * is now the convolution product with respect to x and y andr = (x2 + y2)1/2. The
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unknown densities are nonvanishing only on the plate; hence all the convolution products

above exist.

Taking into account the relations (3.l)-(3.3) the boundary conditions become:

471
M, n) explff^ - R)}sinh{(7(X - R)} + ^ I 1 + j )exp{2a(X - R)} d£ drj

1
+ y

4n
9(i' 1) exp^X - R)}sinh{a(X - R)}

s

2a Y

~r}
+ ~nT exp{2(r(X - R)} \ d£dri= - 1, (x, y) e S, (3.4)

An
fit, t]) \ ̂  exp{<j(X - R)}sinh{<r(X - R)} + ^ exp{2a(X - R)} J> d'£ dr\

1
+ T~

471
g(L n)\ - exp{(T(X - R)}sinh{ff(X - R)} + ~ I 1 - j )exp{2<x(X - R)}

+ ^ exp{(j(Ar - R)} j d£ drj = e s (3.5)

47r
KL l) ^ exp{2a(X — R)} — exp{cr(X - R)}

sinh{cr(X — R)}
dq drj = -0o, (x, y) e S. (3.6)

a(X - R)

where X = x - Y = y - t], R = (X2 + Y2)1'2.

The relations (3.4), (3.5) are a system of integral equations for the densities f(x, y) and

g(x, y). The integral equation (3.6) determines the local lift h(x, y).

The kernels of all integral equations obtained have weak singularities. However, closed

analytical solutions cannot be obtained such that these equations must be solved numeri-

cally or asymptotically.

4. Asymptotic form of Eq. (3.6) for high Reynolds numbers. In order to obtain the

asymptotic form of Eq. (3.6) we shall consider its kernel as a distribution inS>'(R2) depend-

ing upon the parameter a [1], Let

= A exp{2c<» - 0) _ exp{2g(x - r)} - 1 \

\ r r(x-r) /
1(a)

We have

1(a) =
4a exp{2<r(x - r)} exp{2c(x — r)} — l\ , ,
  :    <p(x, y) dx dy

r r(x — r)

2 n

4(7 exp{ — 2ar(l — cos 0)}
o
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exp{ — 2cr(l — cos 9)} — 1

r(l — cos 9)
<p(r cos 9, r sin 9) dr d9. (4.2)

Let (j>(9) be an "unitary function" [6], i.e. a function of !3(R) such that^^L.^ 4>(9

— 2nn) = 1. We can write

1(a) =
— CO 0

, exp{ —2or(l — cos 9)} — 1
4a exp{ - 2ar( 1 - cos 9)} H   — 

r(l - cos 9)

(p(r cos 9, r sin 9)^(9) dr d9

4a exp{ — 2ac2} dc

exp{ — 2ac2} — 1

4>(9)<p(r cos 9, r sin 9)co

dc 4>{9)(p(r cos 9, r sin 9)m (4.3)
JG=c

\l/2where G(r, 9) = (r(l — cos 9)) 1 and a> is the differential form on the manifold G = c de-

fined by the equation dGu> = dr d9.

Let us define

J(c) = cj)(9)(p(r cos 6, r sin 9)a>. (4.4)

In order to obtain the asymptotic expansion of the function 1(a) we need the asymptotic

expansion of the function J(c) for small values of c. To get this expansion we first consider

the function

G(X) = <GA+ , Mr, 0)> = 0(1 - cos 9)Y'2 <p(r, 9) dr d9, iJ/(r, 9) e 3>(R2). (4.5)

G2 > 0

It is an analytic function of A, holomorphic for Re{A} > 0 and its singularities are intimately

related to the nature of the manifold G = 0.

Let M be a point on the submanifold r = 0 and \p(r, 9) = 0 outside some fixed small

neighborhood of M. We have

G(A) = ZXI2 d£ (t6)

Hence (4.6) has simple poles at A/2 = — 1, —2, — 3, ... and the residue of G(A) at A = — 2k

(k = 1, 2, 3, ...)is

1 f Jfc~if + 00/ £ \ dO 1
Residue{G(A), -2k} =   — T M ~ J,, 9 )   . (4.7)

(k-iy.[dC J_Q0 Vi-cos0 / cos 9)^ = 0

If now M is a point on the submanifold 0 = 0 and ip(r, 9) a function in <3(R2) with

support in an arbitrarily small neighborhood of this point, we can write:

G(A) =
r — ̂  \ 2 dr

n r>arccos —) (2r _ ^2)i/2' <4-8)

and consequently the function G(A) has simple poles at the points A = — 1, — 3, — 5, ... . We

also have
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2
Residue^),

r — £2N\ 2 dr

(2r — c2)' 4 = o

Finally, in a neighborhood of the point M(0, 0) we have

GU) =

ij/[ r, arccos —-— ) — . (4.9)

(2 -
iKZlt arccosd - £2)) ̂  (4.10)

and in polar coordinates £2 = p cos rj, ̂  = p sin r]

2\p(p sin r\, arccos(l — p2 cos2 tj))
C(/) = p(3A+2)/2

. .5/2 I ,3 0111 'h cuvvv/o^x P wo r//;

(sin ?/) ' | cos >71  . = dr/. (4.11)
^2 — p2 cos2 >/

Hence (4.11) has simple poles at the points Ak = —(2/c + 2)/3 (k = 1, 2, 3, ...). Its residue at

the pole Ak is

nri,llrL, 2* + 2] i v «'#(0,0) [■• suSKi dt2 - f2 if,)Resldue|GW,__j = _^__| ______ (4.12)

Here Y is the upper semicircle p = 1, the integral J* is the regularization of the correspond-

ing integral and ij/(p, >]) = ip(p sin r/, arccos(l — p2 cos2 rj)).

The above analysis shows that the function G(A) defined by (4.5) for Re{A} > 0 can be

continued to the entire plane A as a meromorphic function with poles at the points of the

above sequences; at the common points to the first and third sequences (i.e. A = —2k,

k = 1, 2, 3, ...) it has double poles and at the remaining singular points it has simple poles.

We consider now the function

H(a) = <G + , <p(0)<p(r cos 6, sin 0)>. (4.13)

We have

f2n* d6
ResiduejHU), -2} = <p(0, 0)

0 1 — cos
= 0, (4.14)

Residue jf/(A), — ~~y~l = 0, (4.15)

Residue{tf(A), -1} = ijl
<p(r, 0)

dr = al, (4.16)

Residue{//(/l), — 3} =

0 -J1

°°* (, PT d2<P(r> 0) 4 d<p(r, 0) , 2cp(r, 0)\ J

(4.17)

The function H(X) can be continued to a meromorphic function in all the complex plane

X. It has only simple poles at the points A = — 1, — 3, — 5, ... . Hence we can write

,4J8)

where H(A) is a holomorphic function in the domain Re{ A} > — 7 and, at the same time,

lim H(A1 + U2) = 0 f°r — 7<A1<0. (4.19)
| A 2 \->cd
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We can also write

ai = s+(x)S{y), (p(x, , (4.20)

a2 =(^2 J 2x 9+(x)S"(y) - ^ yy ' (4'21^

H(x) being the Heaviside function. We have

H(X) = cx dc
'o

{<p(d)(p(r cos 6, r sin 9)a> =
a=c

cxJ(c) dc (4.22)

Hence the function //(A) is the Mellin transform of the function cJ(c). We use the inversion

formula

1 /*<T + i 00

J(c) = — c-x~lH(l)dk, ff > 0. (4.23)
2^' J(T - i CO

Let —7 < — b < — 5. The residue theorem gives

2 1

J(c) = X Residue{c ~ A ~1 //(A), -(2k + 1)} + —
k = o 27ii

* - b + ioo

c~x~lH(X) dk. (4.24)
— b — i oo

The last integral in this relation has the order 0(cfr e), with e arbitrarily small. The

relation (4.24) gives the asymptotic expansion of the function J(c):

J(c) = ai + a2c2 + 0(c*). (4.25)

The asymptotic expansion of the first term in (4.3) can be obtained now by using Watson's

Lemma:

/1 =

0   j

4<t exp{ — 2ac2}J(c) dc = J2na + .— a2 + 0(<7~3/2) (4.26)
2^2 <7

For the second term we write

. exp{—2or2} — 1
12 = I  2  dc

*°° exp{-2fxc2} - 1
 2 (J(c) — aj dc + al

c
~ ' dc. (4.27)

0 c

Hence

h =
J(c) - a1

r20 6

exp{ —2oc } dc —
o

J(c) a I j  
 5 dc — al J2na

c

s/n
710 ~

2^J2o

°°* lie)
~^dc + 0( a'312). (4.28)

o c
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Finally the kernel of Eq. (3.6) has the asymptotic expansion

4a exp{2cr(x — r)} exp{2<r(x — r)} — 1

r r(x — r)

=" ? ('+;)+7? (2 -J*eM m (4-29)

Consequently Eq. (3.6) gives

__L ff. i)
47T

/ -2,1+ , =
- rif V V(x - £)2 + Jy - >/)2

1
+

TIG U

J')1 / J ^ "*■'=» JJ:2V* - « —gp~ dZ
x* h(Z,y)dt

2(x-tf<2
+ 0(a~312) = -60. (4.30)

The first term is well known in the theory of the lifting surface and the second one is a

correction due to viscosity for high Reynolds numbers. If in (4.30) the spatial variables are

replaced by dimensional ones then a' = 1 V0 stands for a.

5. Lifting line theory in the flow of a weak viscous fluid. Let now the surface S be a

plane wing of large aspect ratio. We denote by 2a the chord and by 2b the span of the wing

and perform the changes of variables

x = ax', £ = a£';

(5.1)
y — by', ri — brj'.

Again we denote by x, y, rj the independent variables, by S the domain resulting from

S by the transformation (5.1) and by h(x, y) the new unknown function. Eq. (4.30) becomes:

e

471

dh{^, r]) d£ dr\ 1

dr) y - n + 47t .

1
+

dh(£, rj) ye2(x - Q2 + (y - tj)

Sri (x - £)(y - ti)
s

diI dt]

W,y) d(
\sfnora I dy2 Jx_ 2(sjx — £)3

+ 0(g~3I2)= -90, (x, y) e S, (5.2)

where e = a/b. We consider now the asymptotic form for e 1, i.e. for large-aspect-ratio

wings. The first terms of the asymptotic expansion of the second integral in (5.2) are given in

[2], We obtain

471
WLy) d^_±

x-w * - £ 4n

f h(L r,)

yi

ijn&a Jx_w (y/x- £)'
d{ + 0(a ~3/2) + 0(s2 In e) = —90. (5.3)
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For cr'—> oo Eq. (5.3) coincides with the lifting line equation and for e—► 0 we obtain the

equation of plane motion in a weak viscous flow [3], We have

w , e x+(y)-x
h(x,y)~— / —

2k V x - x_(y) .

M>?) j „n x+(y)-x
  — = —20o / 7-;\l x — x_(}>)

l lx+(y) - x r*+(y) t - *-(>■) ( f' ^ (54)
4n^n7a V * ~ X-(y) Jx_(y) V ~ ( - £)i3 t — x

x +

where /i(_y) = h(£, y) d£ (5.5)
Jx-

and x + = x±(y). By integration with respect to x the integral equation (5.4) gives

h(rj)x+ - x-
h(y) - £ —-—

-i (y - nf
dti = —7t60(x+ — x_)

1
+

It — X_ ,
dt « (5.6)

A^/n&a Jx_ \l x+-t Jx_ (^/t-%)

Eqs. (5.4), (5.6) will be solved by the method of successive approximations. We consider

a' —* oo and determine the function h(y) as the solution of Eq. (5.6). It is just the solution for

the classical lifting line theory. By means of the function h(y) Eq. (5.4) with o' —► oo furnishes

the zero term of the asymptotic expansion of the solution. By using this solution in Eqs.

(5.6), (5.4) we determine the first-order term, and so on.

As an application let us consider the elliptic wing of large aspect ratio. We have

x±(y) = ±J\ - y2. (5.7)

The zero-order terms are

"»w =" •/rr7- <5S>

«*,,)= -TTTml^^r <58»1 + e{k/2) U + yi -y2J

Eq. (5.6) gives

*■<*-,5jo)

and hence

where

h(y) = - t 2^° m U-J1 -y2 + -—7=7= (5-H)1 + e(n/2) [ v AnJnTa 1

k{y)=[X+ h^-dt[' (5.12)
£-*- (v/T^)3'
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Thus the effect of the viscosity is a supplementary local lift. The function k(y) is plotted

in Fig. 1; note the elliptical form of the additional local lift. The overall lift is

Sg = _pV20 ab
1 + Z(n/2) [ 7j3 ̂ /na'a.

6. Wings of small aspect ratio. With the notation as in the beginning of Sec. 5 we

consider now the case of small aspect ratio wings, i.e., e > 1. Eq. (5.2) gives

d2h(Z, y)s ff dh(£, tj) 9+(x - £ , . e2 [x / -
X-  d£ dr] + r— ^
27t JJ dr\ y-tj ijna'a .x

dt
dy

+ 0(a il2) + 0(e 2 In e) = -Q0. (6.1)

To solve this integral equation we consider two limit cases when either the first or the

second term on the left-hand side of Eq. (6.1) is dominant.

i) The case a'a e2. We write Eq. (6.1) in the form

>+(*) drj

-(*> y-nj
KL rj)d£= - — y

*-<l> E

e

sjna'a

*Jx - £ dh^ ^ d£ + c(x) (6.2)

x-W ^

We shall solve this equation by successive approximations with respect to the small

parameter The first term of the asymptotic expansion of the solution is just the
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solution corresponding to the theory of small-aspect-ratio wings in aerodynamics. The

function c(x) will be determined from the condition that the solution h(x, y) have integrable

singularities only; note that it does not appear in the solution. We have

20
h0{£, y)d£= 2 J(y+ - y)(y - y.) (6.3)

x-(y) £

and hence

20 7)

M*> y) = - — ^ vW*) - y)(y - y M) • (6.4)

In order to obtain the next term in the asymptotic expansion of the function h(x, y) we

replace the function h0(x, y) for h(x, y) in the right-hand side of the relation (6.2). We get

y) d% = 2^-r V(y+ -y){y -y~)
X-(y) KG @

1 y+(£) + >>_(£) - 2ri d^\ 1 dri

y- x-w 4^x-Z J(y+{£) - - y _(<!;)) J y/(y+ - >l)(r] - >>_) ~ y

The lift on the wing, up to the section x = const., is given by the relation

L(x) = — pVq ab
y+

dy h(x, y) dx
x-(y)

r2 ab 60 jn 2 e
= 2 pV20 <j-(y+-y_)2 + —y-kiix)} (6.6)

yjlio a

where

2r, - y+{Q - yM) d$
M*) = - 2i-y- - y+ d

yftyl - i)(i - y~) n J,.,, vW£) - *\)(i - y-{£)) \A - £
■ (6.7)

We consider now the slender delta wing whose form is an isosceles triangle of small

aspect ratio. We have

y± = ±X. (6.8)

The formulae (6.6), (6.7) give

L(x) = npV20 x2 jl +—^=-y-j, (6.9)
6 I Tty/na'a Vx J

kl = 2
1 t2T dx 1 t dt

0 V7! - T Jo ~ t2)(l - r2f2)

~ 3.7. (6.10)

The second term in the brace is a correction in the lift due to viscosity for high Reynolds

numbers.

ii) The case a'a 4, s2. Let us now write Eq. (6.1) in the form

: - d2h(y) _ _ 2g0N/Wa _
V* Q 2 2

cy £ TIE

dh(£, rj) 6+(x - £) Jc J
—^ d£ dt]. (6. II)

orj y -rj
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We again consider the case of the slender delta wing of small aspect ratio (6.8). We have

d2h(£, y) 290yJna'a sjno'a f* dt] [x dh(£, >])/ t v y jz
vx - ^ a 2 =

|y| 3y2
dt. (6.12)

-x y — v Jitii Sri

We shall again determine the asymptotic expansion of the solution of Eq. (6.12) by suc-

cessive approximation. The zeroth-order term is given by the Abel-type integral equation

82h0(t, y) 200Jno'a
V* ~ i r2 "dt=-  . (6.13)

\y\ 8y e

Its solution is

and hence

d2h0(x, y) 80o Jntfa d2 / —
—Ti—=_  2 TiVx-l^l (6-14)

dy ne ox

1 \y\, ^ x W0Jna'a ( , — 1
h0(x, y) =   ^ L/x - | y | + -

ne \ 2 X
+ C1(x)y + C2(x) . (6.15)

The two arbitrary functions C^x), C2(x) will be determined by the condition that the

function h0(x, y) vanishes at the two lateral borders. This gives

M*> y)= - a fyx _ | y | - _L_ (x _ | y i)}. (616)
718 I \J

The lift on the wing is now

L = — pVo ab
90y^a

h(x, y) dx dy = pV^ab "uv "y-— + 0[ —f I (6.17)
3ke V £

a a

The next terms are obtained by substituting h0(x, y) for h{x, y) in the right-hand side of

Eq. (6.12). Unlike the previous case, here the influence of the viscosity on the lift is domi-

nant: now the Reynolds number enters the leading term of the asymptotic expansion in

formula (6.17).

References

[1] I. M. Gel'fand and G. E. Shilov, Generalized functions, Academic Press, New York and London, 1964

[2] D. Homentcovschi, On the deduction ofPrandtl's equation, Z.A.M.M. 57, 115-116(1977)

[3] D. Homentcovschi, Oseen flow of a compressible fluid past a flat plate, Quart. Appl. Math. 39, 221 (1981)

[4] K. Kusukawa, On the Kutta-Joukowski condition in magnetohydrodynamics, J. Phys. Soc. Japan 19, 1031-1041

(1964)
[5] J. A. Levis and G. F. Carrier, Some remarks on the flat plate boundary layer, Quart. Appl. Math. 7, 228-235

(1949)
[6] M. J. Lighthill, Introduction to Fourier analysis and generalised functions, University Press, Cambridge, 1958

[7] W. E. Olmstead and A. K. Gautesen, A new paradox in viscous hydrodynamics, Arch. Rational Mech. Anal. 29,

58-65(1968)
[8] L. Sirovich, Steady gasdynamic flows, Physics of Fluids 11, 1424-1439 (1968)


