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Abstract. The viscous and viscoplastic stress fields in three families of plane irrota-

tional flows are determined by using the properties of complex analytic functions. In these

flows the slip line fields are defined by the continuation of an orthogonal pair of characteris-

tics that are straight lines, logarithmic spirals or Cornu's spirals, respectively. The three

families of solutions comprise all plane flows which, when subjected to changes in the time

scale, continue to satisfy the dynamical equations of a viscoplastic continuum in the sense

of Bingham.

I. Introduction. In a previous work [1], we obtained the class of all plane irrotational

motions satisfying the dynamical equations of a rigid-perfectly plastic body when the body

force is conservative or absent. Such plane motions are characterized by the property that

the angles of inclination of their slip-lines fields—the Hencky-Prandtl nets—are plane

harmonic functions. The motions in this class also possess the following physical

significances:

(i) They are exact solutions of incompressible linearly viscous materials and of vis-

coplastic materials (in the sense of Bingham).

(ii) Under conservative body forces, these motions continue to satisfy the dynamical

equations of viscous or viscoplastic bodies when they proceed at varied rates, i.e., when the

time variable is monotonically reparameterized.

We remark that the irrotational property of the flows follows necessarily from condition

(ii), according to a kinematical theorem valid for general incompressible bodies [2],

Let u(x, y) and v(x, y) denote the rectangular components of the velocity field. The

complex velocities w = u — iv of the flows in our class can be represented in one of the

following ways:

Family 1: w = C1z + C2, (1)

Family 2: w = C3/z + C4, (2)

Family 3: z = z0 + (C/m)1/2 erf £,

w = H'0 - i'(mC) 1/2 erf(;'C). (3)
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Here z = x + iy, £ is a complex parameter and the complex error function is defined by

erf C = (4/tt)1/2 P exp(-t2) dt. (4)

Also, m is a real constant and z0, w0, C and Ct to C4 are complex constants. Generally,

these constants may all depend on time.

The first two families include certain familiar flows in hydrodynamics and viscous flow

theory. The flows of Eq. (1) have constant velocity gradients. The velocity fields of Eq. (2)

are obtained by superposing uniform flows over a flow with a source, a sink (of either the

radial or spiral pattern) or an irrotational vortex at the origin. On the other hand, Family 3

consists entirely of new solutions of viscous and plastic bodies. The geometry of their

velocity fields may be described by introducing an orthogonal net of parametric curves

(defined by constant real or imaginary parts of the complex parameter (2), and the nature

and positions of flow singularities and stagnation points may be determined [1].

In the present paper, the stress field in the three families of flows will be solved analyti-

cally for a linearly viscous or rigid-viscoplastic body. As is well known, in an incompressible

body the deformation history and the constitutive equation determine the deviatoric stress

but not the hydrostatic pressure. We first obtain the deviatoric stress in Sec. 2 and then

determine the hydrostatic pressure in Sec. 3.

When the viscosity effect is absent, the results of our analysis belong to the well-

developed plane-strain theory of rigid-perfectly plastic bodies. This theory uses characteris-

tics and Riemann functions as standard tools of solution [3, pp. 349-367], However, the

present approach to irrotational flows and the corresponding stress fields is based mianly

on the properties of analytic functions. Certain symmetry properties of the complex error

function facilitate the representation and visualization of the flow and stress fields associ-

ated with Eq. (3). The orthogonal nets of slip lines obtained by this approach are then

re-examined from the viewpoint of the characteristic initial-value problem for the slip line

equation.

2. The deviatoric stress. Familiar flows of Families 1 and 2 will be considered first. The

flow described by Eq. (1) has a constant stretching tensor. Hence for viscous and vis-

coplastic bodies the stress field is constant and the slip lines are orthogonal straight lines.

The stretching tensor of the flow described by Eq. (2) has the following components in a

polar coordinate system:

Drg

Dro Dee

ICJ
r

— cos(arg Ct) sin(arg Ct)

sin(arg C:) cos(arg CJ

Hence the polar components of the viscous stress are independent of 6 and those of

the plastic stress are independent of position. The principal stress trajectories (isostatics)

intersect the radial lines and concentric circles at constant angles, — (arg CJ/2 and

(n — arg C,)/2, respectively. They are orthogonal logarithmic spirals. The principal values

of the viscous stress S1? = 2^D are inversely proportional to the radial coordinate r, while

those of the plastic stress Sp = (k/D)D are of course independent of position. Here k denotes

the yield stress in pure shear and n is the Newtonian viscosity. Since the slip line fields bisect

the isostatics, their trajectories also form a net of orthogonal logarithmic spirals. This slip

line pattern is known in the literature and is shown with the corresponding streamlines in

Figure 16 of [3].
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Next we consider the new flows described by Eq. (3). These flows are geometrically

similar to a model flow defined by the parametric representation

z(0 = erf (, iw(Q = erf(i'(). (5)

In fact, every flow described by Eq. (3) appears, at any instant of time and to an appropri-

ately oriented observer with suitable units of length and time, as a uniform flow superposed

on the model flow (5). Consequently, in the following analysis the stress field will first be

obtained for this model flow.

Let D and ¥ be the modulus and argument, respectively, of the complex velocity

gradient g. From Eqs. (4) and (5) we obtain

g = De™ = ^ = e2?2 = e2a(cos + i sin 2P). (6)

Hence the deviatoric stress in a Bingham viscoplastic material has the components

[S] = {k + 2ne2*)
cos 2p —sin 2/3

-sin 2p —cos 2/?_
(7)

It follows that the principal values ±(k + 2/ie2lx) depend only on the parameter a, and the

principal directions of stress e~and el(n!2 depend only on the other parameter /i. This

allows complete determination of the deviatoric stress field from the following orthogonal

net of curves in the z-plane:

Re £2 = a = constant, Im £2 = p = constant. (8)

According to Eq. (5a) the conformal mappings from the complex variables £ and£2 to z

are defined by the inverse error function

C = ^ + iri = inverf z, (9)

£2 = a + ip = (inverf z)2. (10)

The complex inverse error function has branch points of infinite order at z = +1. This

function is the analytical continuation of the real inverse error function (defined on the

interval — 1 < x < 1) continued around the two branch points in both the clockwise and

the counterclockwise directions. The two families of orthogonal curves of Eq. (8) are

illustrated in Fig. 1 for the principal branch of the z-plane. We call these curves a-lines and

P-lines respectively. The a-lines defined by a = 0 is the well-known Cornu spiral [4],

In photoelasticity an isochromatic is a curve along which the principal stress difference

has a constant value. An isocline is the locus of points with the same principal directions of

stress. Since in the model flow the principal stresses depend only on a and the principal

directions depend only on p, each a-line is an isochromatic and each /Mine is an isocline.

From the family of isoclines (/Mines) we may construct the isostatics and the slip lines by

the usual graphical procedure. Since (4), (5), (9), and (10) yield

dz = s/2/ne~t'2 arg(dz) = —p + arg(d£ + i drj), (11)

it is clear that if d^ = 0 or dr] = 0 then dz is parallel to a principal direction,el{nl2 ore~'e.

Hence the isostatics coincide with the curves £ = constant and rj = constant in the z-plane.
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The analytical expressions for the various families of curves may be summarized as follows

Isostatics: Re(inverf z) = £ = const,

Im(inverf z) = rj = const,

Isochromatics: Re{(inverf z)2} = a = £2 — rj2 = const,

Isoclines: Im{(inverf z)2} = /? = 2^t] = const.

Along a /Mine (/? = const) Eq. (lib) reduces to

arg(dz) = -p - arctanj^l + (jj ~ = ~P ~ i arctan(J?/a). (12)

Hence the tangent vector of the /Mine changes from e~'(Kl4' + ll) at its intersection

with Cornu's spiral (a = 0) to e ^ and e~'W2 + P\ respectively, as the branch point z = 1

(oc = + oo) and the point at infinity (a = — oo) are approached. Hence one family of iso-

statics near the branch point have a radial pattern. At large distances away from the branch

point, the tangents of a- and /Mines also approach the principal axes of stress. Along

Cornu's spiral the tangential direction e,inl4~P) agrees with a slip line direction. Hence this

curve is a slip line.

Geometrically, a Cornu spiral is characterized by the proportionality of the curvature

and the arc length. In the main branch of the z-plane there are two Cornu spirals £ = ± rj

intersecting orthogonally at the origin, where they have zero curvature. With these two

curves as characteristics, the characteristic initial-value problem associated with the differ-

ential equation of slip line fields has a unique solution in terms of Riemann's function [3, p.

361; 5, p. 155], Writing = — /? + 4n, the slip line field equation is

(2 sin 26)xy + (cos 2d)xx — (cos 20)yy = 0. (13)

This unique continuation from initial characteristics (Cornu's spirals) defines the slip line

field in the model flow. Similarly, the system of orthogonal rectilinear slip lines of the flow

(1) is the continuation from two perpendicular rectilinear slip lines, and the slip line field of

the flow (2) is the continuation from two logarithmic spirals making constant angles arg Cx

and arg Ct — n/2 with the radial vectors. Thus, from the point of view of the characteristic

initial-value problem for Eq. (13), the slip line fields in plane irrotational flows of a rigid-

perfectly plastic or viscoplastic body are defined by three types of initial characteristics: a

pair of orthogonal straight lines, logarithmic spirals or Cornu's spirals.

As mentioned earlier, general flows in Family 3 are geometrically similar to the model

flow (5), except possibly for differences in the length and time scales and the orientation of

the coordinate axes. At each instant, the slip line field of a flow defined by Eq. (3) has a

pattern geometrically similar to that obtained in Fig. 1, but the origin of the a — ̂  net and

the branch point are located at the points z0 andz0 + (C/m)1/2, respectively. The shearing

stress in the slip direction has the value k + (2/xe27| C \).

3. The mean pressure. Having obtained the deviatoric stress S, we next consider the

mean stress — p. This may be obtained by integrating the momentum equation

pi/ = — grad p + div S + pb.
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Let O be the velocity potential and x be the potential of the body force b. Then we have

( d® ,, i>\
p = P\X ~ ~ 2\w\ J + q, (14)

where q is that part of the pressure needed to balance the deviatoric stress:

grad q = div S = div Sp = k div(D/D). (15)

For the model flow we have

dC2 d
= — (a + iff) = + iftx,

dz dz

dz d
~2\ = ^7727 (x + '» = -xa + iy* = yp - iXp,

d(C) dg2)

where the subscripts indicate partial derivatives. Since the viscous stress is self-

equilibrating, Eqs. (7) and (15) yield

q, = ({(COS ?(h, - (sin 2/,'|,] - -2(;[(sin 2f)f, + (cos 2/))//,] - -21: Re(<r"'

q,--2k

q* = qxx* + qyyx = -2k Re

qp = qx*p + qyyp = -2k im

From Eq.(lib) we obtain

.-i2pd^( dz

dz J

,-npdrm
dz \d(C)2J_

dz

d&)

so that

ar§ ~^7T\ = arctan(/?/a),

_i2lidt; ( dz

dz Kd(02,-^~i^P

= exp( — i2/?)exp

-a arg(lk/j

/ 2/3 + arctan -
B\

— exp( i arctan - I,

qa= —2k cos^arctan = — 2fca(oe2 + /?2) 1/2,

qp = —2k sin^arctan = — 2/c/?(a2 + ji2)'1'2.

Integrating and substituting the result

q = — 2fc(a2 + P2)112
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into (14), we obtain

P = p[ 1 - 2 | w |2 ) - 2k(a2 + £2)1/2. (16)

For the special case of steady flow under vanishing body force the term p(x — (dQ>/dt))

reduces to a constant. Furthermore, according to the following symmetry properties of the

complex error function

erf ( = — erf( —C) = erf(0,

the velocity field w of the model flow satisfies

w(£ + it]) = i erf(i(£ + irjj) = -i erf(t] + i£). (17)

Any pair of points in the z-plane of the form

z = erf(<^ + irj) and z* = erf(r] + i£)

can be located in Fig. 1 by starting from the Cornu spiral and following a /Mine (/? = 2£t/) in

the two opposite directions until the tangent vector of the /?-line has turned, respectively,

through equal but opposite angles. Eq. (17) implies that

w(z) = — iz*. (18)

| grad <I> |2 = | w(z) |2 = | z* |2,

Consequently,

/3-37T/4

Fig. I. a — p net and the slip line fields of flow (5). The fields remain constant along each curve [i = constant and

are tangential or normal to the curve a = 0 (Cornu's spiral).
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and for a steady flow under vanishing body force Eq. (16) yields

P= —p\ z* |2/2 — 2/c(a2 + /?2)1/2 + p0,

where p0 is the pressure at the origin of the main branch of the z-plane (i.e. at a = /? = 0).

This expression allows the pressure field p in the successive branches of the analytical

continuation of the model flow to be completely known from the orthogonal net of a- and

/Mines (shown in Fig. 1).

Eq. (18) also implies that z* = erf(»?„ + = 0 at a stagnation point z„ = erf(£„ + irjn).

Since the zeros of the complex error function are tabulated [6], the position of stagnation

points can be obtained from the table of complex error function. At each stagnation point z„

of the successive branches of flow continuation the pressure in the model flow is given by

P = -2/c(cc2 + £2)1/2 + px,

and the principal directions of stress are

exp( - //?„), exp[i(7r/2 - /?„)],

which agree with the tangential directions of the orthogonal streamlines at the stagnation

point.

Although Eq. (16) was derived for the model flow (5), it also yields the correct mean

pressure for general flows of Eq. (3) provided that the parameters a and /? are, respectively,

identified with the real and imaginary parts of {inverf[(m/C)1/2(z — z0)]}2.

Finally, we have <7 = 0 for the flows of Family 1 and

q = - rpri Re(C3 log z)
I L3|

for Family-2 flows defined by Eq. (2). By substituting into Eq. (14), the pressure p in steady

flow is easily obtained.
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