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0. Introduction. In this paper we study the nonexistence of global smooth solutions of

one-dimensional motions for nonlinear viscoelastic fluids and solids by the method of

Rozhdestvenskii [1], This method has been applied to prove the nonexistence of global

smooth solutions for the shearing motions in an elastic circular tube in [2].

It is well known that the quasilinear hyperbolic equation

V„ = °(vx)x (0.1)

exhibits the breakdown of smooth solutions in finite time for a certain class of initial data of

arbitrary smoothness, no matter how small. This breakdown of smooth solutions is usually

associated with the formation of a propagating singular surface often called a Shockwave.

The absence of some dissipative or damping mechanism in the above equation causes this

rather unrealistic result.

Nishida [3] and Slemrod [4] have studied the equation

v„ = o<vx)x - ocv, (0.2)

which includes the effect of first-order linear damping which is not present in (0.1). For (0.2)

Nishida showed the existence of a global smooth solution for the small initial data. Slemrod

showed the breakdown of smooth solutions for large initial data. His motivation for study-

ing (0.2) was based on his model equation for shearing perturbations of steady shearing

flows in a nonlinear, isotropic, incompressible, viscoelastic fluid, in the absence of an

applied driving force. In experiments the analysis of the plane Poiseuille flow is more

common. In Sec. 11 shall discuss the plane Poiseuille flow of the above fluid.

MacCamy [6] considered the equation

v„ = a(0)ff(vx)x + a(t - z)a(vx)x dz+f (0.3)

showed the existence of a global smooth solution for small initial data, and conjectured the

breakdown of smooth solutions for large initial data. The effect of fading memory for elastic

materials causing a dissipative mechanism is included in this model as the stress functional

in the stress-strain relation. I shall show the breakdown of smooth solutions in this problem

in Sec. 2.
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Rensselaer Polytechnic Institute. The author is grateful to Prof. Marshall Slemrod for his helpful suggestions,

discussion and encouragement.
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1. One-dimensional viscoelastic fluid. We consider the plane Poiseuille flow of non-

linear, isotropic, incompressible, viscoelastic fluid. Two parallel plates are located at x = 0

and x = 1. We assume the flow is a rectilinear shearing flow, namely

vx = 0, vy = v(x, t), vz = 0. (1.1)

Here v = (vx, vy, vz) is the velocity of the fluid. Following the arguments of Slemrod [4], we

obtain the equation of conservation of linear momentum in the y-direction:

pv,(x, t) = a( e~tsvx(x, t — t) ds] - (i, (1.2)
VJo J x

where fi (>0) is the applied driving force which we assume constant. In the following

arguments we assume p = 1. The incompressibility condition div v = 0 is automatically

satisfied. On the boundary we require no-slip conditions

v(0, t) = r(l, t) = 0. (1.3)

Defining w{x, t) and u(x, t) by

w(x, t) =
Jo

M)"Ie ""vx(x, t — s) ds, u(x, t) = I e *svt(x, t — s) ds, (1.4)

we obtain the following first-order system:

w, = ux, u, = (j(w)x — au — P, (1.5)

with boundary conditions

u(0, t) = u(l, t) = 0, (1.6)

and initial conditions

u(x, 0) = u0W. 0 < x < 1,

w(x, 0) = w0(x). (1.7)

The values of u0(x) and w0(x) are obtained from their respective definitions by inserting the

given velocity history v0(x, t), — oo < x < 0.

We require some conditions on a in order that the system (1.5) be hyperbolic and

nonlinear. For the hyperbolicity we require that the matrix

0 1

a' 0
(1.8)

possesses real distinct eigenvalues. This strict hyperbolicity is equivalent to the condition

a' > 0. (1.9)

For the nonlinearity of the constitutive relation we impose

<t"« o) + o (1.10)

for some real number £0.

Now we write the system (1.5)—(1.7) in terms of the Riemann invariants. The characteris-

tic curves of the system (1.5) are

dx/dt = ± ^/a'iw), (1-11)
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and the Riemann invariants of the system can be taken as

— u ± </>(w), (112)

where

<p(w) = y/a'(w) dw. (1-13)

The transformation given by (1.12) from (u, w) e IR2 to (r, s) e IK2 is one-to-one. The Rie-

mann invariants satisfy the diagonal system

rt-fox= ~^(r + s)~P, s, +lsx=-^{r + s)-P, (1.14)

where

A = J&(r - s). (1.15)

The initial data r{x, 0) = r0(x) and s(x, 0) = s0(x) are taken to be smooth functions. In the

following argument from (1.10) we assume

ct'W > e > 0 for | £ - £01 < <5. (1.16)

(The case where <j"(£) < — e < 0 is similar.) Then (1.16) is equivalent to the following

condition

A'(r — s) > e > 0 for | r — s — £01 < (S. (1.17)

The analysis of the system (1.14) in the absence of applied driving force (p = 0) has been

done by Nishida [3] and Slemrod [4], Slemrod showed the breakdown of smooth solutions

for t > 0 in the case where u0x and are sufficiently large. He formulated the initial

boundary problem as an initial-value problem on R, and extended Lax's argument [5] to

show the breakdown of smooth solutions. The presence of a constant driving force term,

however, prevents us from using his argument. Instead we employ the method of Rozhdest-

venskii to show the breakdown of smooth solutions in the domain of influence of initial

data. The proof is based on studying the two adjacent characteristic curves of the same

family. First we assume the existence of global smooth solutions for arbitrary initial data.

Then we choose appropriate initial data so that those two characteristic curves intersect (or

impinge) and r(x(t), t) has different values on each characteristic curve, hence contradicting

the assumption.

Before proving Theorem 1.1 we need an a priori estimate.

Lemma 1.1. Let | r01 = max0^x< j | r0(x) |, | s0 \ = max0^x5 x | s0(x) |. Then in the domain of

influence of initial data as long as smooth solutions exist we have

4 B
| r(x, t) | + | s(x, t) | r01 + | s01 + — .

a

Proof. This proof proceeds in almost the same way as in Slemrod [4], We introduce the
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characteristic curves

X] = xs(f, d) = S — Xdx, <5 e [0, 1],
o

x2 = x2(t, n) = n +

Then (1.14) becomes

t
X dx, fj. e [0, 1].

jt jrfxjfc <5), t) + ^ j^x^t, <5), 0 + ^j + ^(x^f, <5), t) + P

Jt |s(x2(t, n), t) + @\= - ^\(r(x2(t, n), t) + H + fs(x2(r, n), t) + ^

Integrating the above equations along each characteristic curve, we have

"(V(x,(r, <5), t) + ~j = r0(d) + ^ j | e
Pjx/2)(/ r(v (, | _ rj%\ _u — _ - I eial2)\s(xi(x, S), t) + —J dx,

eM2),( s(x2(t, n), t) + -] = s0(/z) + - - ^
1 a/ a 2

e(a/2)r( r(x2(r, fi), x) + - I dr.
a

(1.18)

Define

B
= S(t),max e<a/2)t

X6G,(()

max eixl2)t

X 6 Gl(l)

B
s(x, t) + -

a

B
r(x, t) +-

a
K(t),

where G^t) is the x line segment which belongs to the domain of influence of initial data at

fixed t. Then (1.18) implies

eW2), r(Xi(t, S), t) + -
a

B
s{x2(t, n), t) + -

a

Since for each t we can find xu x2 such that

i i P a
— ro + ~~ + o

a 2
S(t) dx,

< | s01 + - + ;r I R(x) dx.

g(«/2)r P
r(xu t) + -

a
= R(t), e'

.2 + |fia 2 Jo

s(x2, t) + -
a

5(0,

and we can always trace backwards along characteristic curves to find S, n so that

xt = x^r, <5), x2 = x2(t, n) (because G^f) for each fixed t belongs to the domain of influence

of initial data), we obtain

R(t) < | r0 | + — + - S(z) dx, S(t) < | s01 + - + ^
a 2a 2 __

Adding these inequalities we have

W(t) di,

R(t) dt.

o /?
W(f) < | r0 | 4- | s0 | 4- + -

a 2
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where W(t) = R(t) + S(t). The Gronwall inequality implies

W(t) < (j r01 + | s01 +

so that

2 p6
r(x, t) + -

a
+ s(x, t) + —

a
< Ko + so +

a

Hence, | r(x, t) | + | s(x, t) \ < \ r0 \ + \ s0 \ + (4/?/a).

Now we shall give the following nonexistence proof of smooth solutions.

Theorem 1.1. Suppose the condition (1.17) is satisfied. Then for appropriate smooth initial

data the breakdown of smooth solution in the system (1.14) and (1.15) will occur in finite

time.

Proof. The proof is done by contradiction. We assume there exist global smooth sol-

utions for all choices of initial data. Now, we choose points (x?, 0) and(x°, 0) on the initial

line such that x? = 0.5, x° = x? + y, where y is small positive constant which is determined

later in this proof. On the initial line we give the smooth data s0(x) and r0(x) which take the

values

n _ A r „ - A r
r0(xi) = ro - y . >o(x2) = r0 + y ,

s0(x) = s0, xe[ij, 1-f/], (1.19)

where r0, s0, t] (> 0), Ar (> 0) are constants and satisfy

i i <5
I r0(x) - s0(x) — Co | < - , x e Irj, 1 - tj'],

ro (x) — s0(x) = 0 at x = 0, 1. (1-20)

We define the following values. Set

a

\r + s| ^ Mo

■ , , - Ap
Mo — \ r0 + s0 M" — » Mj = max

a
2 (r + s) + 0

M2= max \k\r — s)|, M3= max |/l(r —s)|. (1-21)
|r + s|<Mo |r-s|^Afo

We notice that in the domain of influence of initial data we have

| r(x, t) — s(x, t) | < | r(x, t) | + | -s(x5 t) \ < M0.

We also define the set G0. Set

G0 = {{r, s): \ r - s - £0| < ^},

where £0 and <5 are defined by (1.17). Since we assume the existence of global smooth

solutions for arbitrary initial data, there exists the domain D = {(x, t);0<x<l,t>0

such that r(x, t) and s(x, t) stay in G0}- We consider the values of r along the r-characteristic

curves dx/dt = — A(r — s) through (x?, 0) and (x°, 0). We denote the r-characteristic curves

through (x?, 0) and (x°, 0) by x^f) and x2(t), respectively, and the values of r and s along
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Xi(t) and X2(t) by r^t) = r(xi(t), t), r2(t) = r(x2(t), t), st(t) = sfx^l), t), and s2(0 = s(x2(f), t).

Since two /--characteristic curves Xj(f) and x2(t) are continuous, if we find small positive

such that

rt(t) < r2(t) (0 < t < ti), (1.22)

*2('i) < *i('i) (1-23)

are satisfied in the domain D, then, since x? < x2, we can find £2(0 < f2 < t,) such that

(1.24) and (1.25) are satisfied:

ri(t2) < r2(t2), (1.24)

x2(t2) = x,(t2). (1.25)

But this will contradict the fact that we assume the existence of smooth solutions for

arbitrary initial data.

For this purpose we first estimate the domain D. Consider the s-characteristic curve

which starts at x = rj on the initial line and the r-characteristic curve which starts at

x = 1 — t] on the initial line. These two characteristic curves stays inside the domain of

influence of initial data at least until they cross each other. Since r and s characteristic

curves satisfy

f =-A> -M„ (1.26)

| = A<M3, (1.27)

the domain surrounded by the following two straight lines

x — r\ = M31 (1-28)

x-(l -r,)=-M3t (1.29)

and the initial line give an estimate for the domain of influence of the initial data. The above

straight lines cross each other at t = (1 /M3)(j — t]), so that t0 = (1/2M3)(j — r,j) gives a lower

bound for the time until which r-characteristic curves x,(f) and x2(t) stay inside the domain

of influence of initial data (see Fig. 1.1). Denote the domain surrounded by (1.28), (1.29), the

initial line, and t = (1/2M3X2 — l) by D0. Then we see that ifx^t) andx2(t) are inZ)0, Xj(f)

and x2(t) are in the domain of influence of initial data.

From (1.14) we have the following inequality on s along the s-characteristic curves

dx/dt = A:

s0 — Mxt < s(x(f), t) < s0 + Mit (1.30)

This inequality holds for arbitrary x(t), provided that x(t) is in the domain D0.

Thus, we can replace x(t) by x,(f) or x2(t) in (1.30), and estimate the values of r and s

along the r-characteristic curves Xj(t) and x2(f). From (1.19) we have the following inequa-

lities for 0 < t < t0. Along x^f) we have

ri(t) = r0 - y + j ( - ^ (r + s) - /?j dt, (1.31)
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x

Fig. 1. (1) The domain of influence of initial data; (2) The s-characteristic curve which starts at (>/, 0); (3) The

/•-characteristic curve which starts at (1 — ij, 0); (4) The straight line x = M}t + t\\ (5) The straight line x =

— M3t+(l—r/); (6) The straight line t = (l/2M3Xi — »/); (7) The straight line x = iW3f + 0.5; (8) The r-

characteristic curve xt(t); (9) The /--characteristic curve x2(r); (10) The domain D0; (11) The straight line

t = min((l/2Af3Xi - l),(<5/4M,)). If(l/2M3X| - if) < (-5/4M,),D0 = Dv If(«/4M,) < (1/2MJ& - q),Dt < D0.

r0 - y - Mit < rt(t) < r0 - y + (1.32)

s0 — Mjl < s^J) < s0 + A/^, (1-33)

Xi(t) = x?

And along x2(t) we see that

^"i — Si) dt. (1-34)

r0 + y - < r2(t) < r0 + y + Mj, (1.35)

s0 — Mjt < s2(t) < s0 + M^t, (1.36)

x2(t) = x°2- X(r2 - s2) dt. (1.37)

From (1.32), (1.33), (1.35), and (1.36) we have the following inequality:

- - A r
r0 - s0 - y - 2Mjt - £0 < n(t) - s,(f) - £0

< r"0 - s"o + y + 2M,t - £0 (i = 1, 2). (1.38)
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Since | r0 ± (Ar/2) — s0 — £0| ^ (<5/2), if t < (<5/4Mi),

_ _ A r
— S<r0 — s0 — — 2Mjf - £0 < n(0 ~ Si(t) - £0

Ar
<r0 - s0 + y + 2AV - £0 < <5 (i — 1, 2).

So we see that | r((f) — s,(t) — £01 < <5 (i = 1,2) if f < (<5/4A/1). Set

• MA \ <5
fo = mln TTT" ~ - 1

\2M3 \2 J' 4Mt

Then if we define Z>! to be the domain surrounded by the initial line, (1.28), (1.29), and

t = t0, we see that Dl < D.

Now we will pick tj such that it is less than t0 and satisfies (1.22) and (1.23). From (1.32)

and (1.35) the condition (1.22) is satisfied if the following inequality holds:

2Myt < Ar. (1.39)

To find a sufficient condition for (1.23) we subtract (1.34) from (1.37), then we have

x2(t) - xM = x°2 - ,x?

- v° _ v° _— a2 Aj

{Mr2 - s2) - Mri - sj} dt

?-'(i,)(r2 - r, + sj - s2) dt,

where ^ is between (r2 — s2) and (rx — S[), and 0 < t < t0. If (r2 — s2) and (rx — st) satisfy

| rt — st — £01 < 6 (i = 1, 2), £ satisfies | £ — | ^ <5- The condition (1.23) is equivalent to

t

X\Z\r2 - rx + s, - s2) dt > x°2 - x? = y
I

for t = tl. We evaluate the above integral. From (1.17), (1.19), (1.32), and (1.35),

*'«X»2 - 'i) > £(Ar - 2Mlt),

and from (1.19), (1.33), and (1.36)

A'(«si -s2)>2M1M2f,

thus,

{A'(«?)(r2 - n) + ^'(£)(si - s2)} > {e(Ar - 2AM - 2MxM2t}

= £ Arf — (eMi + MlM2)t2

for 0 < t < t0. Hence if the inequality

e Art — Mi(e + M2)t2 > y (1-40)

is satisfied at t = t1( it will give a sufficient condition for (1.23).

Set to = min(rQ, Ar/2M x); then we can find tx and y which satisfy (1.36). If

t'0 > b Ar^M^e + M2), set tx = e Ar/2Mj(e + M2) and choose y such that 0 < y < e Ar/

4 MJe + M2). If to < e A r/2Mj(e + M2), set fj = r'0 and choose 7 such thatO <y < (s A rtj



SOLUTIONS IN HYPERBOLIC EQUATIONS 121

— Mj(e + M2)f?). Since the a priori estimate of Lemma 1.1 depends only on the

and | s01 of initial data, we can change initial data, namely y,maximum absolute values

without changing | r0 | and

2. One-dimensional nonlinear viscoelasticity. In this section we consider the one-

dimensional motion of an elastic bar. The effect of fading memory appears in the constitu-

tive relation in a different manner from that of the previous section. Suppose x + v(x, t) is

the position of a section at time t which is at position x in the unstretched configuration.

Then v is the displacement. MacCamy [6] and Dafermos and Nohel [7] considered the

constitutive relation

*r

T = a(vx) + a'(t — x)a(vx(x, t)) dx, (2.1)
Jo

where T is the stress, and analysed the problem

v,t = a(vx)x +

with the fixed boundary conditions

a'(t - x)a(vx)x dx + g(x, t) (2.2)

u(0, t) = d(1, t) = 0, (2.3)

and with the initial conditions

v(x, 0) = t>0(x), v,(x, 0) = ^(x). (2.4)

We require the same conditions for initial data and g(x, t) as in MacCamy [6]:

MO) = ®,(1) = f"(0) = ifll) = 0 i = 0,1, (2.5)

3(0, t) = g(l, t) = gxx{0, t) = gxx( 1, t) = 0. (2.6)

These conditions allow us to extend v0, vu and g smoothly to periodic functions on

— oo < x < oo, so that the above initial boundary value problem becomes a pure initial

value problem. In both papers the existence of a unique smooth solution for small initial

data was shown (although by different methods). Dafermos and Nohel changed (2.2) into a
more convenient form, namely,

v„(x, t) + k(0)v,(x, t) = a'(vx(x, t))vxx(x, t) - J k'(t — r)v,(x, t) dx + <J>(x, t). (2.7)

Here, <l>(x, t) = g(x, t) + fc(t)y1(x) + }'0 k'(t — x)g(x, t) dx, and k(t) is related to a(t) via the

equation

k(t) + a'(t — x)k(x) dx = —a'(t), 0 < t < oo.

In the following argument for simplicity we assume <5(x, t) and k'(t) are bounded, and set

O0 = sup | <I>(x, t) |, k0 = sup | k'(t) |.
0 < r < GO , 1 0 ^ f < GO

By defining w = vx and u = v,, we write (2.5) as a first-order system

u, = o'(w)wx + — k(0)u — k'(t — x)u(x, x) dx, (2.8)
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with initial conditions

w(x, 0) = v0x(x), u(x, 0) = ^(x).

Here w(x, 0) and u(x, 0) are even and odd functions respectively and satisfy

u(x, 0) = uxx(x, 0) = w^x, 0) = 0 at x = 0, +1, ±2,... .

As in the previous section we require cr' > 0 and

a'Uo) + 0 (2.9)

for some real number £0. We write (2.6) in the Riemann-invariant form. Define

+ u ±

■V

s/o'(w) dw, (2.10)

/ = Ja'(r - s). (2.11)

Then (2.8) becomes

r, - /.r, = - ^ (r + s) + 4>

s, + (r + s) + 1-

ky _ t„

_ t)| (2 l2)

Initial conditions are taken to be smooth and periodic and satisfy

r(x, 0) + s(x, 0) = 0, (r{x, 0) + s(x, 0))xx = 0,

(r(x, 0) — s(x, 0))x = 0, x = 0, ±l, ±2,(2.13)

so that they are compatible with (2.5). From (2.9), as in the previous section, we assume

X'(r — s) > e > 0 for | r — s — £01 < <5. (2.14)

(The case where a < — e < 0 is similar.)

We give an a priori estimate to prove Theorem 2.1.

Lemma 2.1. Suppose | r0 | = sup* 6 u \ r0(x) j, | s01 = sup* 6 R | s0(x) |. Then as long as smooth

solutions exist we have

| r(x, t) | + | s(x, t) | < r01 + | s01 + ~~)(2 + at + k0 t2)exp(^j t2,

where a. = k(0) (> 0).

Proof. We introduce the characteristic curves in the same way as in Lemma 1.1:

Xi = Xi(r, y) = y - I / dpi, y e R,

x2 = x2(t, >i) = ri + X dn, rj e IR.
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Then (2.12) becomes

£ r(xi(i, y), t) = ~ {r(Xi(T, y), t) + s(x,(t, y), t)} + y), t)

^ ~ ^ (K*i(t, V), H) + s(Xi(T, y), p.)) dp,
) Z

^ s(x2(t, ^), t) = - ^ {r(x2(i, >/), t) + s(x2(t, >;), i)} + <I>(x2(t, y), t)

1

 r (r{x2(r, rj), p) + s(x2(t, ?/), p)) dp.
JO z

Integrating the above equations along each characteristic curve we have

a
e^Mxj)T, y), T) = r(y) - - e("/2)"s(x1f/i, y), ji) dp +

0

e<l/2)''<J)(x1(^, y), /;) dji

eM2)n

eu/2)ts(x2(t, /?), t) = s(/y) - ^

(Kxi(/u, y), p) + s(Xl(n, y), p)) dp dn,
0 z

e<*l2»*r(x2(n, rj), p) dp + eM2)"<J>(x2(p, rj), p) dp
0

,(<x/2)n
P   p)

(r(x2(p, t]), p) + s(x2(n, ri), p)) dp dp.
2

Since we assume the existence of smooth solutions, by means of the mean value theorem for

integrals we have

a
e(<t/2)tr(*i(t, y), t) = /-(y) = ^ e(a/2)"s(x1(/z, y), p) dp +

0

eM2)"Q>(Xl(n, y), p) dp

kiH (r{Xl(n, y), ̂ (p)) + s(Xi(/j, y), c^p)) rf/i

e(a/2)rs(x2T, /?), t) = s(^) — ̂  e(a/2),V(x2(/i, f/), /i) dp +
2 Jo

e(a/2)"<D(x2(/i, >7), /i) dp.

e{a'2)y k^ (r(x2(p, ri), Z2(p)) + s(x2(/i, >?), £2(/i)) dp.

where 0 < ^(/i) < p, 0 < <i;2(^) < p. Define

Kx^t, y), t) = max e("/2)t | Kx^t, y), t) |,
O^r^r

s(x2(t, r\), f) = max e(tl/2)t | r(x2(t, rj), t) |.

Then we obtain

rix^t, y), 0 = max
0«t«r

r(y) — ? I e<<r/2)"s(x)(/i, y), ju) dp + y), /i) d/i

I
2 Jo

e("l2)lip(K*i(^ y). ̂ i(^)) + v)» Ci(m)) dp
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< | r01 + max e(l/2)" | sfx^/A y), n) \ dp + eixl2)fl | y), n) \ dn
o^x^t Jo Jo

+ j* ewDy 1^ {| r(x,(/i, y), ̂ (ji))\ + |s(Xi(/i, y), £i(/*))|} dfi

|s(Xi([i, y), fi)\d(i + 0)0j*eM2)>l dn
i i ot

< k01 +

2

ft
eW2)tl |

+ V f V eM2)"{\rix^n, y), <f!(//)) | + \s(xi{n, y), £,(/*)) |} d/i,
2 Jo

s[x2(t, ri), t) < I So I + ^ e^2'" | r(x2(fi, t]\ fi) \ dfi + <D0
^ Jo

+ T

(a/2)" dfi

H eM2)"{ | r(x2(li, t]), Z2{n))\ + \s(x2(fi, tj), £2(j"))|} dfi.

Define

R{t) = sup e{a!2)x | r(x, r) |, S(r) = sup eM2)z \ s(x, t) |.
xeK.O^r^i xeR.O^t^r

Then the above inequalities imply that

r(*i(t, y), t) < | r0 | + ^

s{x2(t, rj), t) < | s01 + 3

S(n) dfi + -iD0 eM2)' + f n(R(n) + S(n) dfi,
i « 2 Jo

/?(/*) dn + - <J>0 eixl2)' + ~ | n(R(n) + S(/i) dfi.
i a 2 Jo2

Since r, s are periodic in x, for each t there are characteristic curves x,(r, y), x2(t, rf) so that

rlx^t, y), t) = R(t), s(x2(f, if), t) = S(t).

If we choose this y, tj for each f, we obtain

R(t) < | r01 + - <t0 eM2)' + ^ f S(n) dn + ^ f n(R([i) + S(n)) dfi
a 2.o 2 Jo

dfi + ^r
I

H(R(H) + S(/z)) dfi.
Jo

S(t) < | s01 + - <D0 eM2)< + ^
a 2

Adding these two inequalities, we have

W(t) < | r01 + | s01 + ^ 4>0 eM2)' + J + k0 fi^W(n) dfi,

where W(t) — R(t) + S(t). Using the generalized Gronwall inequality we obtain

W(t) < | r01 + | s01 + ^ d)e(^t/2,, + exp^ t + ^ t2

Jo + ^ ' + ' S°' + a 4>e<°,/2)")exp(_ dV<

< | r01 + | s01 + ^ "I>o e(a/2)' + i(at + fc0 f2)f| | + | s01 + ^ O0\xp^ t + y t2 ).
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Hence we have

| r(x, t) | + | s(x, t) | < (| r01 + | s01 )e~M2)t

4 1/ 4 \ f k0
+ - + r I r01 + I s01 + - $0 (af + k0 f2)exp

^ i (I ro| + | s01 + - <S>0 )(2 + at + k0 f2)exp{ ̂  t2\ ' U 1 "U 1 - U l\ '   ' ■ *U *• 7 r A

\ a / \ 2

Now we state the theorem.

Theorem 2.1. Suppose a" satisfies (2.9); then the breakdown of smooth solution in (2.10)

and (2.11) will take place in finite time for certain smooth initial data.

Proof. The proof of the breakdown of smooth solution is basically the same as in

Theorem 1.1 except that we have to handle the integral term. We assume the existence of

global smooth solutions for arbitrary initial data.

As in Theorem 1.1, we choose points (x?, 0) and (x°, 0) on the initial line such that

x° = 0.5, x° = x° + y, and we give the smooth initial data r0(x) and s0(x) which take the

values

^(x?) = r0 - y , r0(x°2) = ro + y ,

s0(x) = s0, x e [t], \ - rj'], (2.15)

and satisfy

i i <5
I r0M - s0(x) - £o | < - , x e [»/, 1 - »/],

r(x, 0) + s(x, 0) = 0, (r(x, 0) + s(x, 0))^ = 0, (2.16)

(r(x, 0) — s(x, 0))x = 0, x = 0, + 1, + 2,...,

where r0, s0, and Ar (> 0) are constant, and t] is a small positive constant. We can extend

the above initial data smoothly and periodically to — oo < x < oo, so that Lemma 2.1

applies.

By making use of a priori estimate we define

U\.. I . I. I , 4^ ^ Ao,= - (J r0 I + I s0 | + - <P0J(2 + ocT + k0 T2)exp^y T

where T is a positive number. We also define the following values:

M j - max
|r + s| ^ Mo

a / x
-jfr + J) + Oo, M2 = max | A'(r — s)

|r — s| < Afo

k
M3= max |A(r — s)|, MA= max ~~|>" + s|, (2.17)

\r-s\^Mo |r-s|^Mo ^

and the set

G0 = {(r, s): | r — s — <^o | < (5},
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where £0 and (5 are defined by (2.14). We choose T so that it satisfies

1 11

M3\2~V<T'

which is always possible. (The number (1 /M3)(j — rj) is obtained in the same was as in

Theorem 1.1).

Although this is a pure initial value problem we restrict our argument to between

0 < x < 1. We proceed in the same way as in Theorem 1.1. In the domain D0 (obtained in

the same way as in Theorem 1.1) we obtain the following inequalities along r-characteristic

curves Xj(0 and x2(f) (x^O) = x° < x2(0) = x°2). Along Xj(r) we have

MO = r0 - y + j j- ^ (<" + s) + di

- t) (**■ '» + **• 'A d, dt, (2.18)
0 0

r0 ~ ~ - -yt2< rt( t) < r0 - y + Myt + y1 t2, (2.19)

So - Mit - ^ f2 < Sj(f) < s0 + Mlt + y1 t2, (2.20)

x4(t) = x? — A(r, — sj dt. (2.21)

And along x2(f) we see that

Ar Ma , Ar M± ,
r0 + y - Myt - — t2 < r2(t) < r0 + y + Mit + — t2, (2.22)

— Ma — Ma
s0 — Mxf — -y- t2 < s2(r) < s0 + Mjt H—— t2> (2.23)

x2(t) = *2 - A(r2 - s2) dt. (2.24)

The above inequalities correspond to (1.31)—(1.34) and (1.35H1.37). From (2.19), (2.20),

(2.22) and (2.23) we have

- - Ar ,
r0 - s0 - — ~ 2- MAt2 - £0 < r,(f) - s,(f) - £0

< r0 - s"0 + y + 2M.f + M412 - £0 0 = 1, 2). (2.25)

Since | r0 ± (Ar/2) - s0 - £01 < (<5/2), if

2Mxt + MAt2 <-, (2.26)

j r,(f) — s,(f) — <501 ^ <5 is satisfied for /' = 1, 2. This means if t < (1/2M3)(^ — ̂ ) and (2.26)
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are satisfied, r, s on r-characteristic curves x^t), x2{t) stay in G0. From (2.19) and (2.22), if

2M1f + M4f2<Ar (2.27)

(1.22) is satisfied. And from (2.21) and (2.24), if the inequality

£ Art — Mt(e + M2)t2 — %M4(e + M2)t3 > — x? = y (2.28)

is satisfied for t = tu (1.23) is satisfied. The above inequalities (2.25), (2.27), (2.28) correspond

to (1.38), (1.39) and (1.40). Of course we can easily findfj (<(1/2 M3)(j — jj)) and y such that

they satisfy (2.26), (2.27), and (2.28).
From (2.28) we see that the integral term in (2.12) gives the third-order correction in

time to the original method of Rozhdestvenskii.
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