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SOME UNIQUENESS THEOREMS FOR LINEAR WATER WAVES*

By SHIH-LIANG WEN and M. S. K. SASTRY (Ohio University, Athens)

Abstract. Uniqueness theorems, under less restrictive conditions at infinity, for water

of uniform finite depth, for the cliff problem and for waves on uniform sloping beaches are

proved using the Phragmen-Lindelof principle.

1. Introduction. The uniqueness theory of the solutions for some linearized water

wave problems has been investigated by many researchers using various methods. In

particular, the uniqueness of solutions for two-dimensional water of uniform finite depth

under the condition of boundedness at infinity was first proved by Weinstein [1] by an

eigenvalue method. A similar theory for the three-dimensional case based on the assump-

tion that the waves have cylindrical symmetry was given by Stoker [2], For the problem of

three-dimensional waves against a vertical cliff, a uniqueness theorem was obtained by

Weinstein [3], again using the eigenvalue method. For the more interesting problem of

progressing waves over uniform sloping beaches, Lewy [4], employing the method of

complex variables treated the case of two-dimensional waves for sloping angles

Co = (p/2n)n, with p an odd integer and n any integer such that 0 < p < n. Stoker [5]

proved, essentially by using Liouville's theorem, uniqueness for a> = n/2n with n an integer.

The most general three-dimensional case of periodic waves on sloping beach at any angle

was first solved by Peters [6] and Roseau [7], who made use of a certain functional

equation derived from a representation of the solution by a Laplace integral. In all the

theorems cited above the solutions and their derivatives involved are assumed to be uni-

formly bounded at infinity. We shall prove, in this paper, uniqueness theorems under

weaker conditions at infinity for water of uniform finite depth (two- and three-dimensional),

for waves against a vertical cliff (three-dimensional) and for water waves on uniform sloping

beach at an arbitrary angle (two- and three-dimensional). In the case of water of uniform

finite depth, we have also derived explicit solutions. In fact, dock problems can also be

handled in a similar way. Our proofs will be based on the application of the

Phragmen-Lindelof principle given in the book by Protter and Weinberger [8], This tech-

nique has been used by Wen [9] to establish a uniqueness theorem for a water wave of

infinite depth. It is to be noted that since all the boundary-value problems involved are

homogeneous, by a unique solution we mean a non-trivial solution within a constant

multiplying factor.

Phragmen-Lindelof principle. Since we will repeatedly apply the Phragmen-Lindelof

(P—L) principle we state it here [8].

Let L be a uniformly elliptic second-order operator and D be a domain, bounded or
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unbounded, and let u satisfy

£>[;<] > 0 in D, u < 0 in T,

where T is a subset of 5D. Suppose that there is an increasing sequence of domains {Dk}

with the properties:

(i) DtcD.Vfc;
(ii) Vx e D there is an integer N such that x e DN (hence x e Dk, Vfc > N);

(iii) SDk = rt u T'k, where r4 c r and c D.

Let {wt} be a sequence of functions such that

wk(x) > 0 on Dk u 8Dk , (2.1)

L[wt]< 0 in Dk. (2.2)

Assume that there exists a function w with the property that at each point x of D the

inequality wk(x) < w(x) holds for k above a certain integer Nx. If u(x) satisfies the growth

condition

lim inf
k~* co

u(x)
SUP —T

Lisr, vv(x)_
< 0 (2.3)

then u < 0 in D.

3. Simple harmonic motion in water of constant depth. First we shall consider the

two-dimensional problem. In the theory of small oscillations for water of uniformly finite

depth the velocity potential e""<p(x, y) satisfies [2]:

V2(/> = 0 in D = {(x, y): — oo < x < oo, — h < y < 0}, (3.1)

<Py - W2lg)<t> = 0 on y = 0, (3.2)

(j)y = 0 on y = — h, (3.3)

where a, g and h are positive constants. At infinity we assume that

</> = 0(x"), (j>y = 0(x") for | x | —> oo (3.4)

with 0 < a < 1. We also assume that cj)yy is uniformly bounded in some strip S with fixed

width r], i.e. there is a constant M such that

14>yy(x, y)\< M for (x, y) e S (3.5)

where

S = {(x, y)\ —oo < x < oo, —h < y < —h + r]}. (3.6)

2D Theorem: The solution 4>(x, y) of the boundary-value problem (3.1H3.5) is unique and

is of the form

(p = cos(mx + 0)cosh m{y + h) (3.7)

where 9 is a constant and m satisfies

a2/g = m tanh mh. (3.8)



NOTES 95

Proof. Let

iA = 0 sech m(y + h),

0> = sech m(y + h)[cpy — m tanh m(y +

If L is the elliptic operator defined by

r[/] = V2/ + 2m tanh m(y + h)fy + m2[ 1 + 2 sech2 m(y + h)]f

then it can be verified that

L<P = 0 in D, ^3.9)

<5 = 0 on y = 0, (3.10)

<P = 0 on y = —h. (3.11)

We will apply the P-L principle to the boundary-value problem (3.9H3.11). Choose

Dk = {(x, y)\ |x| < k, -h < y < 0} (k = 1,2, 3,...),

wk = w = sech m(y + h){2(y + h + 1) + m tanh m(y + h)

■ [x2 + (h + 2)2 ~(y + h+ l)2]} (k= 1,2,3,...),

8Dk = u rjj,

where rt is the union of the horizontal edges of Dk and the union of the two vertical

edges of Dk.

It is easily verified that wk > 0 on Dk u 8Dk and Lwk = 0 in Dk. So (2.1) and (2.2) are

satisfied. We need to show that (2.3) is also satisfied. To this end, we let

Ak = j(x, y):\x\ = k, -h + ^ < y < oj,

Bk = j(x, y)-\x\ = k, -h < y <h + ^

Then = Ak u Bk. If k is sufficiently large, i.e. k > l//j, we have on Ak

(Mt + mM2)k"

mk2 tanh(m/k)

where use has been made of (3.4), and iW, and M2 are constants. Since

limj.,^ k tanh (m/k) = m and 0 < a < 1, we get

lim inf
fc-» OO

= 0 on Ak

By (3.5), | (py | < M | y + h \ < M/k on Bk, and using (3.4) we have for large k (i.e. k > l/rj)

® M i 1*1 ,M , M^
wk 2 k2 2k k2

Hence lim inffc_ ̂ 13>/wk | < 0 on Bk. It then follows that

(
lim inf sup — <0

It-00 V IV wk/
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which establishes (2.3). Then, by the P-L principle, <I> < 0 in D. Since — <I> also satisfies

(3.9>—(3.11), we get 0 > 0 in D, Since <I> = 0 in D, i.e.

<py — m tanh m(y + h)<t> s 0 in D.

Solving this, we get </> = ,4(x)cosh m(y + h). But V2(f) = 0; this implies A"(x) + m2A(x) = 0.

So A(x) = cos(mx + 9), for some constants m and 9. Therefore

(j> = cos (mx + 0)cosh m(y + h)

For the three-dimensional case, the formulation is the same except now D in (3.1) is

replaced by

D = {(x, y, z): — oo < x < oo, — oo < z < oo, —h<y< 0}

and S in (3.6) is

S = {(x, y, z): — oo < x < oo, — oo < z < oo, —h<y<h + r]}.

Also we replace x in (3.4) by r = (x2 + z2)1/2 and note that V2 in (3.1) is now a three-

dimensional Laplace operator.

3D Theorem. The solution <£(x, y, z) of the boundary-value problem (3.1)—(3.5), with D and

S as indicated above, is unique and of the form:

(j) = cosh m(y + h)cos,(xx/>n2 — k2 + 0j)cos(/cz + 92) (k2 < m2)

where and d2 are constants and m is given by (3.8).

Proof. Since all the equations are the same, the proof is similar to that given for the

two-dimensional case except now the Dk are rectangular boxes instead of rectangles. It

suffices just to indicate how to construct wk. It can be seen that

xvk = sech m(y + h){2(y + h + 1) — m[(y + h + l)2 — i(x2 + z2) — h + 2)2]tanh m(y + h)}

will work.

It is worth noting that in cylindrical coordinates (r = (x2 + x2)1/2, 9 = tan_1(z/x)), if (j)

is independent of 9 the unique solution is of the form

(p = cosh m(y + h)J0(mr)

where J0 is the Bessel function of the first kind of order zero.

4. Water waves against a vertical cliff. The problem of three-dimensional waves

against a vertical cliff can be formulated by seeking solutions of velocity potential in the

form exp{i((Tt + kz + P)}<j)(x, y), with </> satisfying the following non-dimensionalized

boundary-value problem [2]:

V(2Xi y)<f> - k24> = 0 in D = {(x, y)\ x > 0, y < 0}, (4.1)

(j)y — <t> = 0 on y = 0, x > 0, (4.2)

(px = 0 on x = 0, y < 0, (4.3)
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0 = 0 log r + 4> for r = x + y 1, (4.4)

0 = 0(r*), cpx = 0{r"\ (j)xy = 0(r*) as r—> oo, (4.5)

where k and a are constants with 0 < k < 1 and 0 < a < 1, and 0 and 0 are certain given

bounded functions with bounded first and second derivatives in a neighborhood of the

origin. The conditions (4.5) we have at infinity are weaker than those imposed by Weinstein

[3] and Stoker [2], They required | 0 \ + \ (px \ + | (j>xy \ < M for large r.

Theorem. The solution of the boundary-value problem (4.1)—(4.5) is unique.

Proof. Suppose 0i ar>d 4>2 are two solutions of (4.1)—(4.5). Let 0 = 0X — (j)2. Then 0

satisfies (4.1)—(4.3) and 0 = 0 near and at the origin and it also satisfies (4.5). Now let

1\> = dldx(d/dy — 1)0; then

(V2 - k2)ip = 0 in D, (4.6)

i/y = 0 on y = 0, x > 0, (4.7)

\p = 0 on x = 0, y < 0, (4.8)

\p = 0 for r ^ 1, (4.9)

11/ = 0(r") as r—> 00. (4.10)

We will apply the P-L principle to show that 1/^ = 0 in D. Choose an increasing sequence

{R„} of integers such that Rn —> 00 as n —> 00. Let 9 = tan ~1(x/ — y) and

Dn = {(r, 9): 0 < r < Rn, 0 < 9 < tt/2};

then dD„ is the boundary of Dn, T„ is the ray of the sector D„ where 0 = 0 and 9 = n/2, and

r; is the circular arc of Dn (r = R„). Let

w„ = 1 + (2/tz)R„ tan_1[2/?„r cos 9/(R2n - r2)].

Note that w„ = 1 + Rn on Y'n and w„ > 0 in Dn. Also lim„^x wn = 1 + (4/7r)r cos 9.

Choose w = 2 + (4/n)r cos 9. Then w > w„ for sufficiently large n. So

<A/w„ < MR'Jd + Rn) onr;

for large n. But this implies

>A'
lim inf sup

L r„/
< 0.

Hence by the P-L principle ip < 0 in D. Since — 1j/ also satisfies (4.6)—(4.10), we can repeat

the above argument with — ip and get —ip<0in D. Therefore, we conclude that ip = 0 in

D, i.e.

|-(|-}M0 i„B.

This means that <p = F(y) + eyA(x) for arbitrary functions F and A. The conditions

v20 — /c20 = 0, 0X = 0 on x = 0, 0j, — 0 = 0 on y = 0, 0 = 0(r") as r—* 00 and 0 = 0 in a

neighborhood of the origin imply 0 = 0 in D. Hence 0, = 02 in D.
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5. Waves on sloping beaches. We consider first the problem of two-dimensional pro-

gressive waves over a uniformly sloping beach at an angle or with 0 < co < k/2. We have

found it advantageous to employ polar coordinates. Let (r, 9) be any point in

D = {(x, y)\ x > 0. —x tan co < y < 0} where r = (x2 + y2)1/2 and the angle 9 is measured

from the position x-axis and increased in the clockwise sense, i.e. x — r cos 9,y — — r sin 9.

The beach problem can be formulated in terms of the velocity potential e""(p(x, y) =

e""4>(r, 9) (the formulation in Cartesian coordinates can be found in [2]):

V20 = 0 in D = {(r, 9): r > 0, 0 < 9 < co}, (5.1)

~(j)e — 4> = 0 on 9 = 0, (5.2)

<j)0 = 0 on 0 = co, (5.3)

(f> = (j> log r + c(> for r 1, (5.4)

cf, = 0(r"), fa = 0(r") with 0 < a < 1, (5.5)

where </>, 0 are given bounded functions with bounded first and second derivatives in a

neighborhood of the origin. It is well known that in order to allow a physically important

class of solutions with singularities at the origin some kind of singularity is assumed at the

origin. Here we follow Stoker by assuming it has a logarithmic singularity at the origin.

Theorem. The solution of the boundary-value problem (5.1H5.5) is unique.

Proof. Let 0, and (j)2 be two solutions of (5.1H5.5). Let 0 = (pi — </>2 • Then 0 satisfies

(5.1)—(5.3) and (5.5), and <f> = 0 in a neighborhood of the origin.

Let ® = sech m(co — 9)\_(pg + m tanh m(co — 0)0], where m is the positive root of

m tanh mco = 1. Then

2 ffi
L<t> = V20 — — tanh m(co — 0)<t>e + —r [2 sech2 in(a> — 9) + 11<5 = 0 in D, (5.6)

r r

<p = 0 on 9 = 0, (5.7)

0 = 0 on 9 = co, (5.8)

cD = 0 for r <4 1, (5.9)

<J) = 0(r") as r—> oo. (5.10)

We shall apply the P-L principle to (5.6)—(5.10).

Let Dk = {(r, 9): l/k < r < k, 0 < 9 < co}, Tk be the union of the two rays ofD^ andTJ,

be the two circular arcs of Dk. Let

wk = w = r sech m(co - 0)[cos 9 + m sin 9 tanh m(co — 0)]. (5.11)

It can be verified that wk > 0 on Dk ana

L[wk] = 0 in Dk. (5.12)

In view of (5.2) we see that there exists a S > 0 such that

< for 0 < 9 < 6.
2 r
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For S < 9 < co we have

<D

wk

< | 08 | \4>\ < | 00 | 1 0 |
— r cos 9 r sin 9 ~ r cos co r sin <5

It follows then that

lim inf
k-+ oo

0)
sup —
. rv wk.

< 0.

Hence by the P-L principle we get <I> < 0 in D. Similarly, repeating the above procedure

with — d> in place of <I>, we get — $ < 0 in D. Therefore <l> = 0 in D. This implies that

(j)e + m tanh m(a> — 6)(j) = 0 in D, or (f> = /l(r)cosh m(co — 9) in D.

But V20 = 0. This implies r2A" + rA' + m2A = 0, so

<p = cosh m(a> — 0)[Ci cos(m log r) + c2 sin(m log r)].

Since 0 s 0 for r \,Ci = c2 = 0. Hence (p = 0 in D, or = 4>2 in D.

In the corresponding three-dimensional beach problem we seek a velocity potential of

the form exp{i(<rf + kz)}(f)(x, y) with 0(x, y) satisfying:

V2<t> — k2(j) = 0 in D = {(r, 9): r > 0, 0 < 9 < co}, (5.13)

— 0e — 0 = 0 on 9 = 0, (5.14)

0e = 0 on 9 = o), (5.15)

0 = 0 log r + cj) for r 1, (5.16)

0 = 0(rx), (p = 0(r*) with 0 < a < 1, (5.17)

where 0 < k < 1 and we have adopted the same set of polar coordinates as we have just

used. We note that the only difference between the two-dimensional case and the three-

dimensional case is that between (5.1) and (5.13): one extra term —k2(f) appears in (5.13). We

can prove uniqueness of solutions for (5.13)—(5.17) by following exactly the same procedure

as was used in the two-dimensional proof, only now in (5.6) there is an extra term — fc2<5, i.e.

in place of L<S we have (L — k2)<t>. If we use the same wk in (5.11) then in place of (5.12) we

have (L — k2)wk = —k2wk < 0 in Dk, since wk > 0. The condition (2.2) in the P-L principle

is still satisfied. Therefore, we have proved the following theorem.

Theorem. The solution of the boundary-value problem consisting of (5.13H5.17) is unique.

It should be noted that our approach, in fact, allows much weaker conditions at infinity

for beaches of small sloping angle a>. Since

wk = r" sech m(to — d)\_n cos n9 + m sin n9 tanh m(co — 0)], n = 1, 2, 3, ...

is positive in Dk and Lwk = 0 in Dk, it satisfies (5.11) and (5.12) or (2.1) and (2.2) when

0 < 9 < co < n/2n. In this way the uniqueness theorem is still valid by only requiring in (5.5)

that
0 = 0{rp) and <pe = O(r^) as r—> oo,

with 0 < P < n. We should also point out that the dock problems can be handled in a

similar way by constructing suitable wk functions. As a final remark we mention that

explicit solutions for the cliff and beach problems can be found in Stoker [2],
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