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Abstract. Free convection in a rectangular well of infinite depth at low Rayleigh

number is considered. A pair of opposite vertical walls are at different temperatures,

whereas the other walls are adiabatic. The three-dimensional Stokes flow regime is ana-

lyzed and the boundary-layer function for the adiabatic walls is determined.

1. Introduction. Problems of natural convection in enclosures have received renewed

and increasing attention in the last decade. This is mainly due to engineering and physical

applications, as, for example, the slow free convection in energy storage systems, solar

collectors, glass melting tanks, and pollution in basins.

From the point of view of applied mathematics, the problem of natural convection

taking place at low Rayleigh number in liquid-filled two-dimensional cavities and trenches

of different cross-sectional shapes has been analytically solved in a number of papers,

following the pioneering paper of Joseph and Sturges [1]. In all cases, a Stokes flow results

where, for sufficiently low Rayleigh number, conduction is the basic mode of heat transfer

between two walls at different temperatures [2],

In this paper, an analytical solution is obtained for the flow field in a well of rectangular

cross-section and of infinite depth, in the presence of a free surface, when two vertical

opposite walls are kept at different temperatures and the other two walls are adiabatic.

After determining the solution in this situation, an interesting singular perturbation

problem arises, i.e. to express the solution of the present three-dimensional configuration, as

the distance between the adiabatic walls tends to infinity, in terms of the solution to the

resulting two-dimensional problem and of a boundary-layer function.

In the following, it is assumed that the viscosity and the heat conductivity of the

medium above the free surface can be neglected in comparison with the analogous quan-

tities of the liquid in the cavity. The Rayleigh number being small, the free surface will, in

this circumstance, deviate only negligibly from the horizontal plane.

2. Basic equations. With reference to Fig. 1, a system of Cartesian axes is considered,

with the z = 0 plane containing the free surface and the z-axis pointing positively upward.

All the distances are made non-dimensional with respect to the semi-width of the well, 1/2a.

For the present problem it is easy to show that the velocity component along y vanishes
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Fig. 1. A sketch of the cavity.

everywhere. Therefore, a stream function ¥ can be introduced and the set of basic equa-

tions in the Oberbeck-Boussinesq approximation is given by [3]:

A30 = O, (1)

&m = A22V + A2Vyy = 6x, (2)

where has been made dimensionless with respect to pgaa3/16/i, with p, a, and n represen-

ting the density, thermal expansion coefficient, and viscosity of the fluid, respectively, and

with g the acceleration of gravity. In Eq. (1), 9 — (T — 7,_1)/(T1 — T _x), where T is the

temperature and the indices — 1 and 1 refer to the walls at x = — 1 and x = 1 respectively.

Furthermore, A3 = ( )xx + ( )yy + ( )„ and A2 = ( )xx + ( )«.

The pertinent boundary conditions are

d(-1, y, z) = 0; 0(1, y, z) = 1; 6y(x, -L, z) = 6y(x, L, z) = 9z(x, y, 0)

= 6z{x, y, -oo) = 0 (3)

and

¥(± 1, y, z) = VJ± 1, y, z) = Vx(x, y,- oo) = V(x, y, 0) = ^2Z(x, y, 0) = 0 (4a)

and ^(x, y, — oo) bounded,

¥(x, ± L, z) = 0. (4b)

Since the solution of Eq. 1 subject to the conditions (3) is simply

6 = x + 1/2, (5)

Eq. (2) can be written as

<?m = i (6)

with the associated conditions (4), and the stream function can be expanded into the
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Fourier series

¥(x, y,z)=f V/x, z)cos(A,<5y) (7)
i=o

where

Xjd = n{2j + 1)/2L (8)

and d = LT1, kj = n(2j + l)/2.
Expression (7) satisfies the conditions (4b) and can be introduced into Eq. (6), so that

00

X cos(Xj5y)Xm = 1 (9)
j=o

with ^j[ ] s Aj(-) - A? <52A( •).

Standard operations lead to the equations for the Vj

j?m = (-iy2Mj, a = o,i,2...) (io)

subject to

Vj = (± 1, Z) = ^,x(± 1, z) = *P/x, -00)

= 2(x, - oo) = %.(x, 0) = Tj „(x, 0) = 0. (11)

3. Solution. The solution to Eqs. (10) can be expressed in the form

¥,{x, z) = P/x) + VHj(x, z) (12)

where the particular integral *?/>, is given by

Tp/x) = [(-ly/A] <52][—x2 + 2 cosh Xjdx + XjS sinh Aj S

- 2 cosh Aj S)/(;.j S sinh Aj(5)] (13)

and VHj(x, z) is the general integral of the homogeneous equation

A2VHj-Ajd2AVHj = 0 (14)

with

± 1, z) = Jt ± 1, z) = VHj, «(x, 0) = Th/x, - oo) = 2(x, - oo) = 0,

VHj(x, 0) = -4>P/x). (15)

Following Smith's approach [4] as in [1], one can evaluate the solution to Eq. (14) in

the form of a Papkovich-Fadle series

VhjU, z) = Cf exp[sjr'zl^xVsJ02 (16)

where

= s{")2[cos cos(4n)x) — cos slf cos (^n)x)] (17)

with

lif = (sf)2 - Xjd2)112.
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In order to satisfy the boundary conditions at the lateral walls, thesj"' are the solutions

of the transcendental equation

[sin(s + /i)]/(s + n) = - [sin(s - /i)]/(s - n) (18)

where ^ = (s2 — A<5)1/2.

The coefficients C'"1 are evaluated by imposing the conditions at the free surface and

their expression is given by

Cf = Wf/Kf (19)

with

wf = | • a

K$"> = 1 till ■ A

0

.-%>

4,00-

M1.

dx,

dx,

and

A =
"0 -f

J 2_

<t>2j(x) = — s\n)2 COS iif* cos(sfx) + COS s'j"} COSfji^x),

<p\n)j(x) = jl{")2 COS H("] cos(sfx) — s(")2 cos sf cos(fl\"}x),

4>(2n)j(x) =

Omitting the lengthy but straightforward algebra, one has

K'f = )2 c)2[.Sj",2(cos2 s'f — cos2 /ij">) + (A2 S2s(jn)/n'")2)sin s'"* cos sjn) cos2 /i1,"'] (20)

and

wy = (- 1 y( — A).j82/s(jn)/ij",2)sin sf cos ^n). (21)

Remark 1. The solution (16) is bounded for any y e (0, — oo), provided that the roots

sfy of Eq. (18) are the real positive and the complex conjugate roots in the first and fourth

quadrants. The number of real positive s$n) depends upon Tj = hjd and, in particular, there

exists a denumerable infinity {T*} of values of Ty for which Eq. (18) admits a pair of real

coincident roots, yf. As an indication one can verify that:

yf r*
2-7984 3 0447
6 1213 6-2377
9-3179 9-3948

On the basis of Remark 1, the solution (16) can be put into the form

OO

2)= I exp{s^z}<t>\"](x)/s^ (22)
n = 1

where a'"' = 1, for /[Sj"1] = 0; a{f = 2 for =£ 0.
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Remark 2. From Eq. (22) it is easy to see that

lim "Fh/x, z) = 0
Z~* ~ 00

for any positive integer j.

4. The flow field. The distribution of iso-*F lines at some selected y = const planes has

been evaluated in a number of cases. Figs. 2a and 2b correspond to the values L = 0.2 and

L = 1 (square cross-section). In each case, as expected, the maximum value of the stream

function in each plane y = const decreases regularly with increasing y. Furthermore, if

^max, o denotes the maximum of *F in the plane y = 0, this value decreases with L, as can be

easily realized from a physical point of view.

Fig. 3 shows the behavior of *PmaXi 0 versus L. For L = 0, ¥max 0 = 0, whereas, as

L -> go, Tmax o tends to the maximum value of the stream function for the trench of infinite

length (2/31 as in [1]).
The convergence of the Fourier series (7) and of the Papkovich-Fadle series (22) proved

to be faster at smaller L for a given truncation error of 10 ~4. The analytical solution

presented here can, if required, immediately allow the evaluation of the vorticity distri-

bution in the field as, for example, in the estimate of the initial guess for the iterative

solution of the full Oberbeck-Boussinesq equations (for the plane case, this procedure was

followed in [5]).

Fig. 2a. Iso-T lines at y = 0 (broken lines) and Fig. 2b. Iso-T lines at y = 0 (broken lines) and

y = 0.1 (solid lines), for L = 0.2. y = 0.5 (solid lines), for L = 1.
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Fig. 3. The behavior of vfmax 0 versus L. The dashed line corresponds to the maximum value of the stream

function for the two-dimensional trench of infinite length.

5. The singular perturbation problem. The operator if [^(x, y, z)], after introducing the

new variable t = 1 — y/L, can be written

2V¥(x, y, z)] = if*[¥*(x, t, z)] = 1 (23)

where if* = Af + 52A2(d2/dt2). The boundary conditions for (23) are easily obtained from

(4.a, b).

A classical problem of small parameter arises from Eq. (23) as <5-> 0. In principle one

might think of expressing ij/*, which is known at this point, as a function of the solution of

the biharmonic operator, obtained from if* by putting 6 = 0, and of a boundary layer

function plus a function representing the error. However, the solution to the biharmonic

equation for the rectangular domain considered, cannot be obtained explicitly by variable

separation [7],

As the solution to the biharmonic equation cannot be expressed in terms of elementary

functions, it would be cumbersome to face the boundary-layer problem in its generality,
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Fig. 4. The solution along the symmetry axis 4* (0, 0, z) at various L.

and the lengthy algorithm, which is straightforward in principle, would obscure the physi-

cal meaning of the procedure.

In order to make the problem more tractable without loss of generality, the following

considerations can be discussed. When the behavior of the solution (7) is taken into account

at increasing depth z, the contribution given by the terms containing the Papkovich-Fadle

series becomes rapidly negligible (in this respect one should recall Remark 2). To this

purpose one can observe Fig. 4, showing how the solution evaluated in the symmetry plane

of the trench, x = 0, at y = 0 varies with z. It can be realized that, at different L, the

particular integral can be considered instead of the general solution, with relative errors

rapidly decreasing at increasing | z |. This is even more evident when the solution at high

values of x and y is evaluated.

Therefore, our goal is to show that the solution of Eq. (23) at infinite depth z = — oo, i.e.

(p(x, t) = 4"*(x, t, — oo), can be written as the sum of the analogous solution of the bihar-

monic problem at z = — oo and of a boundary-layer function, plus a function representing

the error made when (f>(x, t) is represented by the only first two terms of the sum.

The equation for cf)(x, t) is

,e(0-1) ,24>
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with
/5W> rlrh

= 0. (25)
8<p dd>

= 0, ct>(x, 0) = 0;
(±1,0 M (x, 1)

When the technique of matched composite asymptotic expansion (MCAE) is adopted [6], a

first approximation of the solution to Eqs. (24,25) can be written in the form

(1   00 cos IcTtx  1
(f)0(x, t, S) = ——— + 2 (- i)*  exp( - knt/6) (26)

Note that (f>0(x, t, <5) —»(p(x, t) as S—> 0, uniformly. Furthermore, from Eq. (26) and Eqs. (12,

13,16) one can prove that

4
sup | (p(x, t) - 4>0(x, t, (5) | < ^ e\p( — n/d) = E (27)

-1<x<1
OSISl

n
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Fig. 5. The boundary layer function t versus the normalized coordinate y/L, for various L, at x = 0.

uo(0) = 0.0417.
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Fig. 6. The true solution (solid lines) and the composite asymptotic solution APP (dots) versus the normalized

coordinate y/L for various L, at x = 0.

where E is the maximum error. Therefore, for sufficiently high \z\, one can put

t, — oo) = u0(x) + t(x, y, d) + E (28)

where u0(x) is the solution for the problem of the trench of infinite length, (1 — x2)/24,

whereas z(x, y, (5) is a boundary-layer function such that, for y = ± L

t(x, ±L,S)= -u0(x)

and

00 COS IcTZX — 1
t(x, y, S) = 2 X (- If -rn, exp{ - Ml - I y 18)1 &)■ (29)

<c=l K 71

Fig. 5 shows the behavior of the boundary-layer function versus \y\/L at several

L = <5~1 and for x = 0. Fig. 6 gives the exact solution and the approximate solution "Papp.
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(26) at x = 0 for different L. As one can see, the comparison between the two solutions is

excellent even for values of L a little higher than unity. For x > 0, numerical computations

show that the agreement improves, as can be easily understood.

Expression (29) clearly indicates how the boundary-layer function, as <5 —► 0, contributes

negligibly everywhere to the solution, with the exception of the narrow regions close to the

walls, where y is of the order of magnitude <5 ~i. In any case, the order of magnitude of the

maximum error is a function of <5 and is given through Eq. (27). On the other hand, the

thickness of the boundary layer exponentially decreases with S, as shown by expression (29)

and Fig. 5.

6. Conclusion. In this work the problem of the Stokes flow taking place in a rectangu-

lar well of infinite depth under the action of buoyancy forces has been analyzed. The

three-dimensional solution has been analytically given in terms of a Papkovich-Fadle series

and the characteristics of the flow field have been discussed. The singular perturbation

problem arising when the length of the well becomes infinite has been approached by means

of the matched composite asymptotic expansion, and the properties of the boundary-layer

function and boundary-layer thickness have been considered.
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