# ON TRANSVERSELY ISOTROPIC FUNCTIONS OF VECTORS, SYMMETRIC SECOND-ORDER TENSORS AND SKEWSYMMETRIC SECOND-ORDER TENSORS* 

By<br>G. F. SMITH<br>Lehigh University

1. Introduction. There are five groups $T_{1}, \ldots, T_{5}$ which define the symmetry properties of materials which are referred to as being transversely isotropic. We define these groups by listing the matrices which generate the groups:

$$
\begin{align*}
& T_{1}: \mathbf{Q}(\theta), \\
& T_{2}: \mathbf{Q}(\theta), \mathbf{R}_{1}=\operatorname{diag}(-1,1,1), \\
& T_{3}: \mathbf{Q}(\theta), \mathbf{R}_{3}=\operatorname{diag}(1,1,-1),  \tag{1.1}\\
& T_{4}: \mathbf{Q}(\theta), \mathbf{R}_{1}=\operatorname{diag}(-1,1,1), \mathbf{R}_{3}=\operatorname{diag}(1,1,-1), \\
& T_{5}: \mathbf{Q}(\theta), \mathbf{D}_{2}=\operatorname{diag}(-1,1,-1) .
\end{align*}
$$

In (1.1), $\mathbf{Q}(\theta)$ denotes the matrix

$$
\mathbf{Q}(\theta)=\left\|\begin{array}{rcc}
\cos \theta, & \sin \theta, & 0  \tag{1.2}\\
-\sin \theta, & \cos \theta, & 0 \\
0, & 0, & 1
\end{array}\right\| .
$$

$\mathbf{Q}(\theta)$ corresponds to a rotation about the $x_{3}$ axis. $\mathbf{R}_{1}$ and $\mathbf{R}_{3}$ correspond to reflections in planes perpendicular to the $x_{1}$ axis and the $x_{3}$ axis respectively. $\mathbf{D}_{2}$ corresponds to a rotation through 180 degrees about the $x_{2}$ axis.

In this paper, we determine integrity bases for polynomial functions $F\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{N}\right.$, $\mathbf{V}_{1}, \ldots, \mathbf{V}_{\mathcal{M}}, \mathbf{W}_{1}, \ldots, \mathbf{W}_{P}$ ) of $N$ three-dimensional second-order symmetric tensors $\mathbf{A}_{p}=\left\|A_{i j}^{P_{i j}}\right\|(p=1, \ldots, N), M$ three-dimensional vectors $\mathbf{V}_{q}=V_{q}^{q}(q=1, \ldots, M)$ and $P$ three-dimensional second-order skew-symmetric tensors $\mathbf{W}_{r}=\left\|W_{i j}^{r}\right\|(r=1, \ldots, P)$ which are invariant under any given group chosen from $T_{1}, \ldots, T_{5}$. Adkins $[1,2]$ has considered the problem of determining integrity bases for functions $F\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{N}, \mathbf{V}_{1}, \ldots, \mathbf{V}_{M}\right)$ which are invariant under the group $T_{1}$ and for functions $F\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{N}, \mathbf{V}_{1}, \ldots, \mathbf{V}_{M}\right)$ which are invariant under the group $T_{2}$. Long and McIntire [3] have considered the problem of determining an integrity basis for functions $F\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{N}, \mathbf{V}_{1}, \ldots, \mathbf{V}_{M}, \mathbf{W}_{1}, \ldots, \mathbf{W}_{P}\right)$ which are invariant under the group $T_{4}$. The results obtained here for this case differ from those given in [3].

[^0]2. An integrity basis for functions invariant under $T_{1}$. Let us employ the notation
\[

$$
\begin{align*}
& B_{\alpha}^{i}=A_{3 \alpha}^{i} \quad(\alpha=1,2 ; i=1, \ldots, N), \\
& B_{\alpha}^{N+j}=V_{\alpha}^{j} \quad(\alpha=1,2 ; j=1, \ldots, M),  \tag{2.1}\\
& B_{\alpha}^{N+M+k}=W_{3 \alpha}^{k} \quad(\alpha=1,2 ; k=1, \ldots, P) .
\end{align*}
$$
\]

It is readily seen that the problem of determining the form of a polynomial function $F\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{N}, \mathbf{V}_{1}, \ldots, \mathbf{V}_{M}, \mathbf{W}_{1}, \ldots, \mathbf{W}_{P}\right)$ which is invariant under the group $T_{1}$ is equivalent to that of determining the form of a polynomial function $G\left(A_{33}^{i}, \ldots, B_{1}^{r}-\imath B_{2}^{r}\right)$ which is subject to the restrictions that

$$
\begin{gather*}
G\left(A_{33}^{i}, A_{11}^{i}+A_{22}^{i}, A_{11}^{i}-A_{22}^{i}+2 \imath A_{12}^{i}, A_{11}^{i}-A_{22}^{i}-2 \imath A_{12}^{i}, V_{3}^{p},\right. \\
\left.W_{12}^{m}, B_{1}^{r}+\imath B_{2}^{r}, B_{1}^{r}-\imath B_{2}^{r}\right)=G\left(A_{33}^{i}, A_{11}^{i}+A_{22}^{i},\left(A_{11}^{i}-A_{22}^{i}+2 \imath A_{12}^{i}\right) e^{-2 \imath \theta},\right.  \tag{2.2}\\
\left.\left(A_{11}^{i}-A_{22}^{i}-2 \imath A_{12}^{i}\right) e^{2 \imath \theta}, V_{3}^{p}, W_{12}^{m},\left(B_{1}^{r}+{ }_{\imath} B_{2}^{r}\right) e^{-\imath \theta},\left(B_{1}^{r}-{ }_{l} B_{2}^{r}\right) e^{\imath \theta}\right)
\end{gather*}
$$

shall hold for $0 \leq \theta \leq 2 \pi$. In (2.2), $l^{2}=-1$ and $i=1, \ldots, N ; p=1, \ldots, M ; m=1, \ldots, P$; $r=1, \ldots, N+M+P$. It is immediately seen that $G\left(A_{33}^{i}, \ldots\right)$ is expressible as a polynomial in the quantities (2.3) listed below which then form an integrity basis for functions $F\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{N}, \mathbf{V}_{1}, \ldots, \mathbf{V}_{M}, \mathbf{W}_{1}, \ldots, \mathbf{W}_{P}\right)$ which are invariant under $T_{1}$.

$$
\begin{align*}
& A_{33}^{i}, A_{11}^{i}+A_{22}^{i}, V_{3}^{p}, W_{12}^{m}, \\
& \left(A_{11}^{i}-A_{22}^{i}\right)\left(A_{11}^{j}-A_{22}^{j}\right)+4 A_{12}^{i} A_{12}^{j} \quad(i \leq j), \\
& \left(A_{11}^{i}-A_{22}^{i}\right) A_{12}^{j}-\left(A_{11}^{j}-A_{22}^{j}\right) A_{12}^{i} \quad(i<j), \\
& B_{1}^{r} B_{1}^{s}+B_{2}^{r} B_{2}^{s} \quad(r \leq s), \quad B_{1}^{r} B_{2}^{s}-B_{2}^{r} B_{1}^{s} \quad(r<s),  \tag{2.3}\\
& \left(A_{11}^{i}-A_{22}^{i}\right)\left(B_{1}^{r} B_{1}^{s}-B_{2}^{r} B_{2}^{s}\right)+2 A_{12}^{i}\left(B_{1}^{r} B_{2}^{s}+B_{2}^{r} B_{1}^{s}\right) \quad(r \leq s), \\
& \left(A_{11}^{i}-A_{22}^{i}\right)\left(B_{1}^{r} B_{2}^{s}+B_{2}^{r} B_{1}^{s}\right)-2 A_{12}^{i}\left(B_{1}^{r} B_{1}^{s}-B_{2}^{r} B_{2}^{s}\right) \quad(r \leq s) .
\end{align*}
$$

In (2.3), $i, j=1, \ldots, N ; p=1, \ldots, M ; m=1, \ldots, P ; r, s=1, \ldots, N+M+P$ subject to the restrictions indicated. We observe from (2.3) that the integrity basis for functions $F\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{N}, \mathbf{V}_{1}, \ldots, \mathbf{V}_{M}\right)$ invariant under $T_{1}$ given by Adkins [1,2] contains redundant terms.
3. An integrity basis for functions invariant under $T_{2}$. The group $T_{2}$ is generated by the matrices $\mathbf{Q}(\theta)$ and $\mathbf{R}_{1}$. We have seen in Sec. 2 that any polynomial function $F\left(\mathbf{A}_{1}, \ldots\right.$, $\left.\mathbf{A}_{N}, \mathbf{V}_{1}, \ldots, \mathbf{V}_{M}, \mathbf{W}_{1}, \ldots, \mathbf{W}_{P}\right)$ which is invariant under the group $T_{1}$ generated by $\mathbf{Q}(\theta)$ is expressible as a polynomial in the quantities (2.3). In order to determine the general form of the function $F\left(\mathbf{A}_{1}, \ldots, \mathbf{W}_{P}\right)$ which is invariant under $T_{2}$, we need only determine the general form of a polynomial function of the quantities (2.3) which is invariant under $\mathbf{R}_{1}$. The elements of (2.3) either remain invariant under $\mathbf{R}_{1}$ or change sign under $\mathbf{R}_{1}$. Let
$I_{1}, \ldots, I_{a}$ and $J_{1}, \ldots, J_{b}$ denote the elements of (2.3) which remain invariant under $\mathbf{R}_{1}$ and which change sign under $\mathbf{R}_{1}$ respectively. With (2.3), we see that the $J_{1}, \ldots, J_{b}$ are given by

$$
\begin{align*}
& W_{12}^{m},\left(A_{11}^{i}-A_{22}^{i}\right) A_{12}^{j}-\left(A_{11}^{j}-A_{22}^{j}\right) A_{12}^{i}(i<j), \quad B_{1}^{r} B_{2}^{s}-B_{2}^{r} B_{1}^{s} \quad(r<s),  \tag{3.1}\\
&\left(A_{11}^{i}-A_{22}^{i}\right)\left(B_{1}^{r} B_{2}^{s}+B_{2}^{r} B_{1}^{s}\right)-2 A_{12}^{i}\left(B_{1}^{r} B_{1}^{s}-B_{2}^{r} B_{2}^{s}\right) \quad(r \leq s)
\end{align*}
$$

where $i, j=1, \ldots, N ; m=1, \ldots, P ; r, s=1, \ldots, N+M+P$ subject to the restrictions indicated. The $I_{1}, \ldots, I_{a}$ are the elements of (2.3) not listed in (3.1). An integrity basis for functions $F\left(\mathbf{A}_{1}, \ldots, \mathbf{W}_{P}\right)$ which are invariant under $T_{2}$ is then given by $I_{1}, \ldots, I_{a}$ and $J_{p} J_{q}$ $(p, q=1, \ldots, b ; p \leq q)$.

After eliminating the redundant elements from the set $J_{p} J_{q}$, we obtain the result that an integrity basis for functions $F\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{N}, \mathbf{V}_{1}, \ldots, \mathbf{V}_{M}, \mathbf{W}_{1}, \ldots, \mathbf{W}_{P}\right)$ which are invariant under $T_{2}$ is given by
$A_{33}^{i}, A_{11}^{i}+A_{22}^{i}, V_{3}^{p},\left(A_{11}^{i}-A_{22}^{i}\right)\left(A_{11}^{j}-A_{22}^{j}\right)+4 A_{12}^{i} A_{12}^{j} \quad(i \leq j)$,
$B_{1}^{r} B_{1}^{s}+B_{2}^{r} B_{2}^{s} \quad(r \leq s)$,
$\left(A_{11}^{i}-A_{22}^{i}\right)\left(B_{1}^{r} B_{1}^{s}-B_{2}^{r} B_{2}^{s}\right)+2 A_{12}^{i}\left(B_{1}^{r} B_{2}^{s}+B_{2}^{r} B_{1}^{s}\right) \quad(r \leq s)$,
$W_{12}^{m} W_{12}^{n} \quad(m \leq n), \quad W_{12}^{m}\left(A_{11}^{i}-A_{22}^{i}\right) A_{12}^{j}-W_{12}^{m}\left(A_{11}^{j}-A_{22}^{j}\right) A_{12}^{i} \quad(i<j)$,
$W_{12}^{m}\left(B_{1}^{r} B_{2}^{s}-B_{2}^{r} B_{1}^{s}\right) \quad(r<s)$,
$W_{12}^{m}\left(A_{11}^{i}-A_{22}^{i}\right)\left(B_{1}^{r} B_{2}^{s}+B_{2}^{r} B_{1}^{s}\right)-2 W_{12}^{m} A_{12}^{i}\left(B_{1}^{r} B_{1}^{s}-B_{2}^{r} B_{2}^{s}\right) \quad(r \leq s)$,
$\left(\left(A_{11}^{i}-A_{22}^{i}\right) A_{12}^{j}-\left(A_{11}^{j}-A_{22}^{j}\right) A_{12}^{i}\right)\left(B_{1}^{r} B_{2}^{s}-B_{2}^{r} B_{1}^{s}\right) \quad(i<j, r<s)$
where $i, j=1, \ldots, N ; p=1, \ldots, M ; m, n=1, \ldots, P ; r, s=1, \ldots, N+M+P$ subject to the restrictions indicated. The quantities $B_{\alpha}^{r}(\alpha=1,2 ; r=1, \ldots, N+M+P)$ are defined by (2.1). If we set the $W_{12}^{m}, W_{31}^{m}, W_{23}^{m}(m=1, \ldots, P)$ appearing in (3.2) equal to zero, we obtain an integrity basis for functions $F\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{N}, \mathbf{V}_{1}, \ldots, \mathbf{V}_{M}\right)$ which are invariant under $T_{2}$. The integrity basis so obtained contains fewer terms than that given by Adkins [2], which would indicate the presence of redundant terms in the basis listed in [2].
4. An integrity basis for functions invariant under $T_{3}$. The group $T_{3}$ is generated by the matrices $\mathbf{Q}(\theta)$ and $\mathbf{R}_{3}$. We have seen in Sec. 2 that any polynomial function $F\left(\mathbf{A}_{1}, \ldots\right.$, $\left.\mathbf{A}_{N}, \mathbf{V}_{1}, \ldots, \mathbf{V}_{M}, \mathbf{W}_{1}, \ldots, \mathbf{W}_{P}\right)$ which is invariant under the group $T_{1}$ generated by $Q(\theta)$ is expressible as a polynomial in the quantities (2.3). In order to determine the general form of the function $F\left(\mathbf{A}_{1}, \ldots, \mathbf{W}_{P}\right)$ which is invariant under $T_{3}$, we need only determine the general form of a polynomial function of the quantities (2.3) which is invariant under $\mathbf{R}_{3}$. The elements of (2.3) either remain invariant under $\mathbf{R}_{3}$ or change sign under $\mathbf{R}_{3}$. Let $K_{1}, \ldots, K_{c}$ and $L_{1}, \ldots, L_{d}$ denote the elements of (2.3) which remain invariant under $\mathbf{R}_{3}$ and which change sign under $\mathbf{R}_{3}$ respectively. Let

$$
\begin{equation*}
C_{\alpha}^{i}=A_{3 \alpha}^{i} \quad(\alpha=1,2 ; i=1, \ldots, N), \quad C_{\alpha}^{N+j}=W_{3 \alpha}^{j} \quad(\alpha=1,2 ; j=1, \ldots, P) . \tag{4.1}
\end{equation*}
$$

With (2.3) and (4.1), we see that the elements $K_{1}, \ldots, K_{c}$ of (2.3) which remain invariant under $\mathbf{R}_{3}$ are given by

$$
\begin{align*}
& A_{33}^{i}, A_{11}^{i}+A_{22}^{i}, W_{12}^{m},\left(A_{11}^{i}-A_{22}^{i}\right)\left(A_{11}^{j}-A_{22}^{j}\right)+4 A_{12}^{i} A_{12}^{j} \quad(i \leq j), \\
& \left(A_{11}^{i}-A_{22}^{i}\right) A_{12}^{j}-\left(A_{11}^{j}-A_{22}^{j}\right) A_{12}^{i} \quad(i<j), \quad C_{1}^{r} C_{1}^{s}+C_{2}^{r} C_{2}^{s} \quad(r \leq s), \\
& C_{1}^{r} C_{2}^{s}-C_{2}^{r} C_{1}^{s} \quad(r<s), \quad V_{1}^{p} V_{1}^{q}+V_{2}^{p} V_{2}^{q} \quad(p \leq q), \\
& V_{1}^{p} V_{2}^{q}-V_{2}^{p} V_{1}^{q} \quad(p<q),  \tag{4.2}\\
& \left(A_{11}^{i}-A_{22}^{i}\right)\left(C_{1}^{r} C_{1}^{s}-C_{2}^{r} C_{2}^{s}\right)+2 A_{12}^{i}\left(C_{1}^{r} C_{2}^{s}+C_{2}^{r} C_{1}^{s}\right) \quad(r \leq s), \\
& \left(A_{11}^{i}-A_{22}^{i}\right)\left(V_{1}^{p} V_{1}^{q}-V_{2}^{p} V_{2}^{q}\right)+2 A_{12}^{i}\left(V_{1}^{p} V_{2}^{q}+V_{2}^{p} V_{1}^{q}\right) \\
& \left(A_{11}^{i}-A_{22}^{i}\right)\left(C_{1}^{r} C_{2}^{s}+C_{2}^{r} C_{1}^{s}\right)-2 A_{12}^{i}\left(C_{1}^{r} C_{1}^{s}-C_{2}^{r} C_{2}^{s}\right) \\
& \left(A_{11}^{i}-A_{22}^{i}\right)\left(V_{1}^{p} V_{2}^{q}+V_{2}^{p} V_{1}^{q}\right)-2 A_{12}^{i}\left(V_{1}^{p} V_{1}^{q}-V_{2}^{p} V_{2}^{q}\right) \\
& (p \leq q),
\end{align*}
$$

where $i, j=1, \ldots, N ; p, q=1, \ldots, M ; m=1, \ldots, P ; r, s=1, \ldots, N+P$ subject to the restrictions indicated. With (2.3) and (4.1), we see that the elements $L_{1}, \ldots, L_{d}$ of (2.3) which change sign under $\mathbf{R}_{\mathbf{3}}$ are given by

$$
\begin{align*}
& V_{3}^{p}, C_{1}^{r} V_{1}^{p}+C_{2}^{r} V_{2}^{p}, C_{1}^{r} V_{2}^{p}-C_{2}^{r} V_{1}^{p}, \\
& \left(A_{11}^{i}-A_{22}^{i}\right)\left(C_{1}^{r} V_{1}^{p}-C_{2}^{r} V_{2}^{p}\right)+2 A_{12}^{i}\left(C_{1}^{r} V_{2}^{p}+C_{2}^{r} V_{1}^{p}\right),  \tag{4.3}\\
& \left(A_{11}^{i}-A_{22}^{i}\right)\left(C_{1}^{r} V_{2}^{p}+C_{2}^{r} V_{1}^{p}\right)-2 A_{12}^{i}\left(C_{1}^{r} V_{1}^{p}-C_{2}^{r} V_{2}^{p}\right)
\end{align*}
$$

where $i=1, \ldots, N ; p=1, \ldots, M ; r=1, \ldots, N+P$. An integrity basis for functions $F\left(\mathbf{A}_{1}\right.$, $\ldots, \mathbf{W}_{P}$ ) which are invariant under $T_{3}$ is then given by the quantities $K_{1}, \ldots, K_{c}$ and $L_{p} L_{q}$ ( $p, q=1, \ldots, d ; p \leq q$ ). After eliminating the redundant terms from the set of invariants $L_{p} L_{q}$, we obtain the result that an integrity basis for functions $F\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{N}, \mathbf{V}_{1}, \ldots, \mathbf{V}_{M}\right.$, $\mathbf{W}_{1}, \ldots, \mathbf{W}_{P}$ ) which are invariant under $T_{3}$ is given by

$$
\begin{aligned}
& A_{33}^{i}, A_{11}^{i}+A_{22}^{i}, W_{12}^{m},\left(A_{11}^{i}-A_{22}^{i}\right)\left(A_{11}^{j}-A_{22}^{j}\right)+4 A_{12}^{i} A_{12}^{j} \quad(i \leq j), \\
& \left(A_{11}^{i}-A_{22}^{i}\right) A_{12}^{j}-\left(A_{11}^{j}-A_{22}^{j}\right) A_{12}^{i} \quad(i<j), \\
& C_{1}^{r} C_{1}^{s}+C_{2}^{r} C_{2}^{s} \quad(r \leq s), \\
& C_{1}^{r} C_{2}^{s}-C_{2}^{r} C_{1}^{s} \quad(r<s), \quad V_{1}^{p} V_{1}^{q}+V_{2}^{p} V_{2}^{q} \quad(p \leq q), \\
& V_{1}^{p} V_{2}^{q}-V_{2}^{p} V_{1}^{q} \quad(p<q),
\end{aligned}
$$

$$
V_{3}^{p} V_{3}^{q} \quad(p \leq q), \quad\left(A_{11}^{i}-A_{22}^{i}\right)\left(C_{1}^{r} C_{1}^{s}-C_{2}^{r} C_{2}^{s}\right)
$$

$$
+2 A_{12}^{i}\left(C_{1}^{r} C_{2}^{s}+C_{2}^{r} C_{1}^{s}\right) \quad(r \leq s)
$$

$$
\left(A_{11}^{i}-A_{22}^{i}\right)\left(C_{1}^{r} C_{2}^{s}+C_{2}^{r} C_{1}^{s}\right)-2 A_{12}^{i}\left(C_{1}^{r} C_{1}^{s}-C_{2}^{r} C_{2}^{s}\right) \quad(r \leq s)
$$

$$
\begin{equation*}
\left(A_{11}^{i}-A_{22}^{i}\right)\left(V_{1}^{p} V_{1}^{q}-V_{2}^{p} V_{2}^{q}\right)+2 A_{12}^{i}\left(V_{1}^{p} V_{2}^{q}+V_{2}^{p} V_{1}^{q}\right) \quad(p \leq q) \tag{4.4}
\end{equation*}
$$

$$
\left(A_{11}^{i}-A_{22}^{i}\right)\left(V_{1}^{p} V_{2}^{q}+V_{2}^{p} V_{1}^{q}\right)-2 A_{12}^{i}\left(V_{1}^{p} V_{1}^{q}-V_{2}^{p} V_{2}^{q}\right) \quad(p \leq q)
$$

$$
V_{3}^{p}\left(C_{1}^{r} V_{1}^{q}+C_{2}^{r} V_{2}^{q}\right), \quad V_{3}^{p}\left(C_{1}^{r} V^{q}-C_{2}^{r} V_{1}^{q}\right),
$$

$$
V_{3}^{p}\left(A_{11}^{i}-A_{22}^{i}\right)\left(C_{1}^{r} V_{1}^{q}-C_{2}^{r} V_{2}^{q}\right)+2 V_{3}^{p} A_{12}^{i}\left(C_{1}^{r} V_{2}^{q}+C_{2}^{r} V_{1}^{q}\right),
$$

$$
\begin{array}{ll}
V_{3}^{p}\left(A_{11}^{i}-A_{22}^{i}\right)\left(C_{1}^{r} V_{2}^{q}+C_{2}^{r} V_{1}^{q}\right)-2 V_{3}^{p} A_{12}^{i}\left(C_{1}^{r} V_{1}^{q}-C_{2}^{r} V_{2}^{q}\right), \\
\left(C_{1}^{r} C_{1}^{s}-C_{2}^{r} C_{2}^{s}\right)\left(V_{1}^{p} V_{1}^{q}-V_{2}^{p} V_{2}^{q}\right) & \\
\quad+\left(C_{1}^{r} C_{2}^{s}+C_{2}^{r} C_{1}^{s}\right)\left(V_{1}^{p} V_{2}^{q}+V_{2}^{p} V_{1}^{q}\right) & (r \leq s, p \leq q), \\
\left(C_{1}^{r} C_{1}^{s}-C_{2}^{r} C_{2}^{s}\right)\left(V_{1}^{p} V_{2}^{q}+V_{2}^{p} V_{1}^{q}\right) & \\
\quad-\left(C_{1}^{r} C_{2}^{s}+C_{2}^{r} C_{1}^{s}\right)\left(V_{1}^{p} V_{1}^{q}-V_{2}^{p} V_{2}^{q}\right) & (r \leq s, p \leq q)
\end{array}
$$

where $i, j=1, \ldots, N ; p, q=1, \ldots, M ; m=1, \ldots, P ; r, s=1, \ldots, N+P$ subject to the restrictions indicated. The quantities $C_{\alpha}^{r}(\alpha=1,2 ; r=1, \ldots, N+P)$ are defined by (4.1).
5. An integrity basis for functions invariant under $T_{4}$. The group $T_{4}$ is generated by the matrices $\mathbf{Q}(\theta), \mathbf{R}_{1}$ and $\mathbf{R}_{3}$. We have seen in Sec. 3 that any polynomial function $F\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{N}, \mathbf{V}_{1}, \ldots, \mathbf{V}_{M}, \mathbf{W}_{1}, \ldots, \mathbf{W}_{P}\right)$ which is invariant under the group $T_{2}$ generated by $Q(\theta)$ and $\mathbf{R}_{1}$ is expressible as a polynomial in the quantities (3.2). In order to determine the general form of a function $F\left(\mathbf{A}_{1}, \ldots, \mathbf{W}_{P}\right)$ which is invariant under $T_{4}$, we need only determine the general form of a polynomial function of the quantities (3.2) which is invariant under $\mathbf{R}_{\mathbf{3}}$. We observe that the elements of (3.2) either remain invariant under $\mathbf{R}_{\mathbf{3}}$ or change sign under $\mathbf{R}_{\mathbf{3}}$. Let

$$
\begin{equation*}
C_{\alpha}^{i}=A_{3 \alpha}^{i} \quad(\alpha=1,2 ; i=1, \ldots, N), \quad C_{\alpha}^{N+j}=W_{3 \alpha}^{j} \quad(\alpha=1,2 ; j=1, \ldots, P) . \tag{5.1}
\end{equation*}
$$

With (3.2) and (5.1), we see that the elements $M_{1}, \ldots, M_{e}$ of (3.2) which remain invariant under $R_{3}$ are given by

$$
\begin{align*}
& A_{33}^{i}, A_{11}^{i}+A_{22}^{i},\left(A_{11}^{i}-A_{22}^{i}\right)\left(A_{11}^{j}-A_{22}^{j}\right)+4 A_{12}^{i} A_{12}^{j} \quad(i \leq j), \\
& C_{1}^{r} C_{1}^{s}+C_{2}^{r} C_{2}^{s} \quad(r \leq s), \quad V_{1}^{p} V_{1}^{q}+V_{2}^{p} V_{2}^{q} \quad(p \leq q), \\
& W_{12}^{m} W_{12}^{n} \quad(m \leq n), \\
& \left(A_{11}^{i}-A_{22}^{i}\right)\left(C_{1}^{r} C_{1}^{s}-C_{2}^{r} C_{2}^{s}\right)+2 A_{12}^{i}\left(C_{1}^{r} C_{2}^{s}+C_{2}^{r} C_{1}^{s}\right) \quad(r \leq s), \\
& \left(\left(A_{11}^{i}-A_{22}^{i}\right) A_{12}^{j}-\left(A_{11}^{j}-A_{22}^{j}\right) A_{12}^{i}\right)\left(C_{1}^{r} C_{2}^{s}-C_{2}^{r} C_{1}^{s}\right) \quad(i<j, r<s), \\
& \left(A_{11}^{i}-A_{22}^{i}\right)\left(V_{1}^{p} V_{1}^{q}-V_{2}^{p} V_{2}^{q}\right)+2 A_{12}^{i}\left(V_{1}^{p} V_{2}^{q}+V_{2}^{p} V_{1}^{q}\right)  \tag{5.2}\\
& \left(\left(A_{11}^{i}-A_{22}^{i}\right) A_{12}^{j}-\left(A_{11}^{j}-A_{22}^{j}\right) A_{12}^{i}\right)\left(V_{1}^{p} V_{2}^{q}-V_{2}^{p} V_{1}^{q}\right) \\
& W_{12}^{m}\left(A_{11}^{i}-A_{22}^{i}\right) A_{12}^{j}-W_{12}^{m}(i<j, p<q), \\
& \left.W_{12}^{m}\left(C_{11}^{r} C_{2}^{s}-C_{2}^{r} C_{22}^{j}\right) A_{12}^{i}\right) \quad(i<j), \\
& W_{12}^{m}\left(V_{1}^{p} V_{2}^{q}-V_{2}^{p} V_{1}^{q}\right) \quad(r<s), \\
& W_{12}^{m}\left(A_{11}^{i}-A_{22}^{i}\right)\left(C_{1}^{r} C_{2}^{s}+C_{2}^{r} C_{1}^{s}\right)-2 W_{12}^{m} A_{12}^{i}\left(C_{1}^{r} C_{1}^{s}-C_{2}^{r} C_{2}^{s}\right) \\
& W_{12}^{m}\left(A_{11}^{i}-A_{22}^{i}\right)\left(V_{1}^{p} V_{2}^{q}+V_{2}^{p} V_{1}^{q}\right)-2 W_{12}^{m} A_{12}^{i}\left(V_{1}^{p} V_{1}^{q}-V_{2}^{p} V_{2}^{q}\right) \\
& (p \leq s), \\
& (p \leq q)
\end{align*}
$$

where $i, j=1, \ldots, N ; p, q=1, \ldots, M ; m, n=1, \ldots, P ; r, s=1, \ldots, N+P$ subject to the restrictions indicated. With (3.2) and (5.1), we see that the elements $N_{1}, \ldots, N_{f}$ of (3.2)
which change sign under $\mathbf{R}_{3}$ are given by

$$
\begin{align*}
& V_{3}^{p}, C_{1}^{r} V_{1}^{p}+C_{2}^{r} V_{2}^{p}, W_{12}^{m}\left(C_{1}^{r} V_{2}^{p}-C_{2}^{r} V_{1}^{p}\right), \\
& \left(A_{11}^{i}-A_{22}^{i}\right)\left(C_{1}^{r} V_{1}^{p}-C_{2}^{r} V_{2}^{p}\right)+2 A_{12}^{i}\left(C_{1}^{r} V_{2}^{p}+C_{2}^{r} V_{1}^{p}\right), \\
& W_{12}^{m}\left(A_{11}^{i}-A_{22}^{i}\right)\left(C_{1}^{r} V_{2}^{p}+C_{2}^{r} V_{1}^{p}\right)-2 W_{12}^{m} A_{12}^{i}\left(C_{1}^{r} V_{1}^{p}-C_{2}^{r} V_{2}^{p}\right),  \tag{5.3}\\
& \left(\left(A_{11}^{i}-A_{22}^{i}\right) A_{12}^{j}-\left(A_{11}^{j}-A_{22}^{j}\right) A_{12}^{i}\right)\left(C_{1}^{r} V_{2}^{p}-C_{2}^{r} V_{1}^{p}\right) \quad(i<j)
\end{align*}
$$

where $i, j=1, \ldots, N ; p=1, \ldots, M ; m=1, \ldots, P ; r=1, \ldots, N+P$ subject to the restrictions indicated. An integrity basis for functions $F\left(\mathbf{A}_{1}, \ldots, \mathbf{W}_{P}\right)$ which are invariant under $T_{4}$ is then given by $M_{1}, \ldots, M_{e}$ and $N_{p} N_{q}(p, q=1, \ldots, f ; p \leq q)$. After eliminating the redundant elements from the set of invariants $N_{p} N_{q}$, we obtain the result that an integrity basis for functions $F\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{N}, \mathbf{V}_{1}, \ldots, \mathbf{V}_{M}, \mathbf{W}_{1}, \ldots, \mathbf{W}_{P}\right)$ which are invariant under $T_{4}$ is given by

$$
\begin{align*}
& A_{33}^{i}, A_{11}^{i}+A_{22}^{i},\left(A_{11}^{i}-A_{22}^{i}\right)\left(A_{11}^{j}-A_{22}^{j}\right)+4 A_{12}^{i} A_{12}^{j} \quad(i \leq j) \text {, } \\
& C_{1}^{r} C_{1}^{s}+C_{2}^{r} C_{2}^{s} \quad(r \leq s), \quad V_{1}^{p} V_{1}^{q}+V_{2}^{p} V_{2}^{q} \quad(p \leq q), \\
& V_{3}^{p} V_{3}^{q} \quad(p \leq q), \quad W_{12}^{m} W_{12}^{n} \quad(m \leq n), \\
& \left(A_{11}^{i}-A_{22}^{i}\right)\left(C_{1}^{r} C_{1}^{s}-C_{2}^{r} C_{2}^{s}\right)+2 A_{12}^{i}\left(C_{1}^{r} C_{2}^{s}+C_{2}^{r} C_{1}^{s}\right) \quad(r \leq s), \\
& \left(\left(A_{11}^{i}-A_{22}^{i}\right) A_{12}^{j}-\left(A_{11}^{j}-A_{22}^{j}\right) A_{12}^{i}\right)\left(C_{1}^{r} C_{2}^{s}-C_{2}^{r} C_{1}^{s}\right) \quad(i<j, r<s), \\
& \left(A_{11}^{i}-A_{22}^{i}\right)\left(V_{1}^{p} V_{1}^{q}-V_{2}^{p} V_{2}^{q}\right)+2 A_{12}^{i}\left(V_{1}^{p} V_{2}^{q}+V_{2}^{p} V_{1}^{q}\right) \quad(p \leq q), \\
& \left(\left(A_{11}^{i}-A_{22}^{i}\right) A_{12}^{j}-\left(A_{11}^{j}-A_{22}^{j}\right) A_{12}^{i}\right)\left(V_{1}^{p} V_{2}^{q}-V_{2}^{p} V_{1}^{q}\right) \quad(i<j, p<q), \\
& W_{12}^{m}\left(A_{11}^{i}-A_{22}^{i}\right) A_{12}^{j}-W_{12}^{m}\left(A_{11}^{j}-A_{22}^{j}\right) A_{12}^{i} \quad(i<j), \\
& \left(C_{1}^{r} C_{1}^{s}-C_{2}^{r} C_{2}^{s}\right)\left(V_{1}^{p} V_{1}^{q}-V_{2}^{p} V_{2}^{q}\right) \\
& +\left(C_{1}^{r} C_{2}^{s}+C_{2}^{r} C_{1}^{s}\right)\left(V_{1}^{p} V_{2}^{q}+V_{2}^{p} V_{1}^{q}\right) \quad(r \leq s, p \leq q), \\
& \left(C_{1}^{r} C_{2}^{s}-C_{2}^{r} C_{1}^{s}\right)\left(V_{1}^{p} V_{2}^{q}-V_{2}^{p} V_{1}^{q}\right) \quad(r<s, p<q), \\
& V_{3}^{p}\left(C_{1}^{r} V_{1}^{q}+C_{2}^{r} V_{2}^{q}\right), W_{12}^{m}\left(C_{1}^{r} C_{2}^{s}-C_{2}^{r} C_{1}^{s}\right) \quad(r<s),  \tag{5.4}\\
& W_{12}^{m}\left(V_{1}^{p} V_{2}^{q}-V_{2}^{p} V_{1}^{q}\right) \quad(p<q), \\
& \left(\left(A_{11}^{i}-A_{22}^{i}\right)\left(C_{1}^{r} C_{2}^{s}+C_{2}^{r} C_{1}^{s}\right)\right. \\
& -2 A_{12}^{i}\left(C_{1}^{r} C_{1}^{s}-C_{2}^{r} C_{2}^{s}\right)\left(V_{1}^{p} V_{2}^{q}-V_{2}^{p} V_{1}^{q}\right) \quad(r \leq s, p<q), \\
& \left(\left(A_{11}^{i}-A_{22}^{i}\right)\left(V_{1}^{p} V_{2}^{q}+V_{2}^{p} V_{1}^{q}\right)\right. \\
& \left.-2 A_{12}^{i}\left(V_{1}^{p} V_{1}^{q}-V_{2}^{p} V_{2}^{q}\right)\right)\left(C_{1}^{r} C_{2}^{s}-C_{2}^{r} C_{1}^{s}\right) \quad(p \leq q, r<s), \\
& W_{12}^{m}\left(A_{11}^{i}-A_{22}^{i}\right)\left(C_{1}^{r} C_{2}^{s}+C_{2}^{r} C_{1}^{s}\right)-2 W_{12}^{m} A_{12}^{i}\left(C_{1}^{r} C_{1}^{s}-C_{2}^{r} C_{2}^{s}\right) \quad(r \leq s), \\
& W_{12}^{m}\left(A_{11}^{i}-A_{22}^{i}\right)\left(V_{1}^{p} V_{2}^{q}+V_{2}^{p} V_{1}^{q}\right)-2 W_{12}^{m} A_{12}^{i}\left(V_{1}^{p} V_{1}^{q}-V_{2}^{p} V_{2}^{q}\right) \quad(p \leq q),
\end{align*}
$$

$$
\begin{aligned}
& W_{12}^{m}\left(C_{1}^{r} C_{1}^{s}-C_{2}^{r} C_{2}^{s}\right)\left(V_{1}^{p} V_{2}^{q}+V_{2}^{p} V_{1}^{q}\right) \\
& \quad-W_{12}^{m}\left(C_{1}^{r} C_{2}^{s}+C_{2}^{r} C_{1}^{s}\right)\left(V_{1}^{p} V_{1}^{q}-V_{2}^{p} V_{2}^{q}\right) \quad(r \leq s, p \leq q), \\
& V_{3}^{p}\left(A_{11}^{i}-A_{22}^{i}\right)\left(C_{1}^{r} V_{1}^{q}-C_{2}^{r} V_{2}^{q}\right)+2 V_{3}^{p} A_{12}^{i}\left(C_{1}^{r} V_{2}^{q}+C_{2}^{r} V_{1}^{q}\right), \\
& V_{3}^{p}\left(\left(A_{11}^{i}-A_{22}^{i}\right) A_{12}^{j}-\left(A_{11}^{j}-A_{22}^{j}\right) A_{12}^{i}\right)\left(C_{1}^{r} V_{2}^{q}-C_{2}^{r} V_{1}^{q}\right) \quad(i<j), \\
& V_{3}^{p} W_{12}^{m}\left(C_{1}^{r} V_{2}^{q}-C_{2}^{r} V_{1}^{q}\right), \\
& V_{3}^{p} W_{12}^{m}\left(A_{11}^{i}-A_{22}^{i}\right)\left(C_{1}^{r} V_{2}^{q}+C_{2}^{r} V_{1}^{q}\right)-2 V_{3}^{p} W_{12}^{m} A_{12}^{i}\left(C_{1}^{r} V_{1}^{q}-C_{2}^{r} V_{2}^{q}\right)
\end{aligned}
$$

where $i, j=1, \ldots, N ; p, q=1, \ldots, M ; m, n=1, \ldots, P ; r, s=1, \ldots, N+P$ subject to the restrictions indicated. The quantities $C_{\alpha}^{r}(\alpha=1,2 ; r=1, \ldots, N+P)$ are defined by (5.1).
6. An integrity basis for functions invariant under $T_{5}$. The group $T_{5}$ is generated by the matrices $\mathbf{Q}(\theta)$ and $\mathbf{D}_{2}$. We have seen in Sec. 2 that any polynomial function $F\left(\mathbf{A}_{1}, \ldots\right.$, $\left.\mathbf{A}_{N}, \mathbf{V}_{1}, \ldots, \mathbf{V}_{M}, \mathbf{W}_{1}, \ldots, \mathbf{W}_{P}\right)$ which is invariant under the group $T_{1}$ generated by $\mathbf{Q}(\theta)$ is expressible as a polynomial in the quantities (2.3). In order to determine the general form of the function $F\left(\mathbf{A}_{1}, \ldots, \mathbf{W}_{P}\right)$ which is invariant under $T_{5}$, we need only determine the general form of a polynomial function of the quantities (2.3) which is invariant under $\mathbf{D}_{2}$. The elements of (2.3) either remain invariant under $\mathbf{D}_{2}$ or change sign under $\mathbf{D}_{2}$. Let

$$
\begin{equation*}
C_{\alpha}^{i}=A_{3 \alpha}^{i} \quad(\alpha=1,2 ; i=1, \ldots, N), \quad C_{\alpha}^{N+j}=W_{3 \alpha}^{j} \quad(\alpha=1,2 ; j=1, \ldots, P) . \tag{6.1}
\end{equation*}
$$

With (2.3) and (6.1), we see that the elements $P_{1}, \ldots, P_{g}$ of (2.3) which remain invariant under $\mathbf{D}_{2}$ are given by

$$
\begin{align*}
& A_{33}^{i}, A_{11}^{i}+A_{22}^{i},\left(A_{11}^{i}-A_{22}^{i}\right)\left(A_{11}^{j}-A_{22}^{j}\right)+4 A_{12}^{i} A_{12}^{j} \quad(i \leq j), \\
& C_{1}^{s} C_{1}^{t}+C_{2}^{s} C_{2}^{t} \quad(s \leq t), \quad V_{1}^{p} V_{1}^{q}+V_{2}^{p} V_{2}^{q} \quad(p \leq q), \quad C_{1}^{s} V_{2}^{p}-C_{2}^{s} V_{1}^{p}, \\
& \left(A_{11}^{i}-A_{22}^{i}\right)\left(C_{1}^{s} C_{1}^{t}-C_{2}^{s} C_{2}^{t}\right)+2 A_{12}^{i}\left(C_{1}^{s} C_{2}^{t}+C_{2}^{s} C_{1}^{t}\right) \quad(s \leq t),  \tag{6.2}\\
& \left(A_{11}^{i}-A_{22}^{i}\right)\left(V_{1}^{p} V_{1}^{q}-V_{2}^{p} V_{2}^{q}\right)+2 A_{12}^{i}\left(V_{1}^{p} V_{2}^{q}+V_{2}^{p} V_{1}^{q}\right) \quad(p \leq q), \\
& \left(A_{11}^{i}-A_{22}^{i}\right)\left(C_{1}^{s} V_{2}^{p}+C_{2}^{s} V_{1}^{p}\right)-2 A_{12}^{i}\left(C_{1}^{s} V_{1}^{p}-C_{2}^{s} V_{2}^{p}\right)
\end{align*}
$$

where $i, j=1, \ldots, N ; p, q=1, \ldots, M ; s, t=1, \ldots, N+P$ subject to the restrictions indicated. With (2.3) and (6.1), we see that the elements $Q_{1}, \ldots, Q_{h}$ of (2.3) which change sign under $\mathbf{D}_{2}$ are given by

$$
\begin{align*}
& V_{3}^{p}, W_{12}^{m},\left(A_{11}^{i}-A_{22}^{i}\right) A_{12}^{j}-\left(A_{11}^{j}-A_{22}^{j}\right) A_{12}^{i} \quad(i<j), \\
& C_{1}^{s} V_{1}^{p}+C_{2}^{s} V_{2}^{p}, C_{1}^{s} C_{2}^{t}-C_{2}^{s} C_{1}^{t} \quad(s<t), \quad V_{1}^{p} V_{2}^{q}-V_{2}^{p} V_{1}^{q} \quad(p<q), \\
& \left(A_{11}^{i}-A_{22}^{i}\right)\left(C_{1}^{s} V_{1}^{p}-C_{2}^{s} V_{2}^{p}\right)+2 A_{12}^{i}\left(C_{1}^{s} V_{2}^{p}+C_{2}^{s} V_{1}^{p}\right),  \tag{6.3}\\
& \left(A_{11}^{i}-A_{22}^{i}\right)\left(C_{1}^{s} C_{2}^{t}+C_{2}^{s} C_{1}^{t}\right)-2 A_{12}^{i}\left(C_{1}^{s} C_{1}^{t}-C_{2}^{s} C_{2}^{t}\right) \quad(s \leq t), \\
& \left(A_{11}^{i}-A_{22}^{i}\right)\left(V_{1}^{p} V_{2}^{q}+V_{2}^{p} V_{1}^{q}\right)-2 A_{12}^{i}\left(V_{1}^{p} V_{1}^{q}-V_{2}^{p} V_{2}^{q}\right) \quad(p \leq q)
\end{align*}
$$

where $i, j=1, \ldots, N ; p, q=1, \ldots, M ; m=1, \ldots, P ; s, t=1, \ldots, N+P$ subject to the restrictions indicated. An integrity basis for functions $F\left(\mathbf{A}_{1}, \ldots, \mathbf{W}_{p}\right)$ which are invariant under $T_{5}$ is then given by $P_{1}, \ldots, P_{g}$ and $Q_{r} Q_{s}(r, s=1, \ldots, h ; r \leq s)$. After eliminating the redundant elements from the set of invariants $Q_{r} Q_{s}$, we obtain the result that an integrity
basis for functions $F\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{N}, \mathbf{V}_{1}, \ldots, \mathbf{V}_{M}, \mathbf{W}_{1}, \ldots, \mathbf{W}_{P}\right)$ which are invariant under $T_{5}$ is given by

$$
\begin{aligned}
& A_{33}^{i}, A_{11}^{i}+A_{22}^{i},\left(A_{11}^{i}-A_{22}^{i}\right)\left(A_{11}^{j}-A_{22}^{j}\right)+4 A_{12}^{i} A_{12}^{j} \quad(i \leq j), \\
& C_{1}^{s} C_{1}^{t}+C_{2}^{s} C_{2}^{t} \quad(s \leq t), \quad C_{1}^{s} V_{2}^{p}-C_{2}^{s} V_{1}^{p}, V_{1}^{p} V_{1}^{q}+V_{2}^{p} V_{2}^{q} \quad(p \leq q), \\
& \left(A_{11}^{i}-A_{22}^{i}\right)\left(C_{1}^{s} C_{1}^{t}-C_{2}^{s} C_{2}^{t}\right)+2 A_{12}^{i}\left(C_{1}^{s} C_{2}^{t}+C_{2}^{s} C_{1}^{t}\right) \quad(s \leq t), \\
& \left(A_{11}^{i}-A_{22}^{i}\right)\left(C_{1}^{s} V_{2}^{p}+C_{2}^{s} V_{1}^{p}\right)-2 A_{12}^{i}\left(C_{1}^{s} V_{1}^{p}-C_{2}^{s} V_{2}^{p}\right), \\
& \left(A_{11}^{i}-A_{22}^{i}\right)\left(V_{1}^{p} V_{1}^{q}-V_{2}^{p} V_{2}^{q}\right)+2 A_{12}^{i}\left(V_{1}^{p} V_{2}^{q}+V_{2}^{p} V_{1}^{q}\right) \quad(p \leq q), \\
& \left(\left(A_{11}^{i}-A_{22}^{i}\right) A_{12}^{j}-\left(A_{11}^{j}-A_{22}^{j}\right) A_{12}^{i}\right)\left(C_{1}^{s} C_{2}^{t}-C_{2}^{s} C_{1}^{t}\right) \quad(i<j, s<t), \\
& \left(\left(A_{11}^{i}-A_{22}^{i}\right) A_{12}^{j}-\left(A_{11}^{j}-A_{22}^{j}\right) A_{12}^{i}\right)\left(C_{1}^{s} V_{1}^{p}+C_{2}^{s} V_{2}^{p}\right) \quad(i<j), \\
& \left(\left(A_{11}^{i}-A_{22}^{i}\right) A_{12}^{j}-\left(A_{11}^{j}-A_{22}^{j}\right) A_{12}^{i}\right)\left(V_{1}^{p} V_{2}^{q}-V_{2}^{p} V_{1}^{q}\right) \quad(i<j, p<q), \\
& W_{12}^{m} W_{12}^{n} \quad(m \leq n), \quad W_{12}^{m}\left(A_{11}^{i}-A_{22}^{i}\right) A_{12}^{j}-W_{12}^{m}\left(A_{11}^{j}-A_{22}^{j}\right) A_{12}^{i} \quad(i<j), \\
& W_{12}^{m}\left(C_{1}^{s} C_{2}^{t}-C_{2}^{s} C_{1}^{t}\right) \quad(s<t), \quad W_{12}^{m}\left(C_{1}^{s} V_{1}^{p}+C_{2}^{s} V_{2}^{p}\right), \\
& W_{12}^{m}\left(V_{1}^{p} V_{2}^{q}-V_{2}^{p} V_{1}^{q}\right) \quad(p<q), \\
& W_{12}^{m}\left(A_{11}^{i}-A_{22}^{i}\right)\left(C_{1}^{s} C_{2}^{t}+C_{2}^{s} C_{1}^{t}\right)-2 W_{12}^{m} A_{12}^{i}\left(C_{1}^{s} C_{1}^{t}-C_{2}^{s} C_{2}^{t}\right) \quad(s \leq t), \\
& W_{12}^{m}\left(A_{11}^{i}-A_{22}^{i}\right)\left(C_{1}^{s} V_{1}^{p}-C_{2}^{s} V_{2}^{p}\right)+2 W_{12}^{m} A_{12}^{i}\left(C_{1}^{s} V_{2}^{p}+C_{2}^{s} V_{1}^{p}\right), \\
& W_{12}^{m}\left(A_{11}^{i}-A_{22}^{i}\right)\left(V_{1}^{p} V_{2}^{q}+V_{2}^{p} V_{1}^{q}\right)-2 W_{12}^{m} A_{12}^{i}\left(V_{1}^{p} V_{1}^{q}-V_{2}^{p} V_{2}^{q}\right) \quad(p \leq q), \\
& W_{12}^{m} V_{3}^{p}, V_{3}^{p} V_{3}^{q} \quad(p \leq q), \\
& V_{3}^{p}\left(A_{11}^{i}-A_{22}^{i}\right) A_{12}^{j}-V_{3}^{p}\left(A_{11}^{j}-A_{22}^{j}\right) A_{12}^{i} \quad(i<j), \\
& V_{3}^{p}\left(C_{1}^{s} C_{2}^{t}-C_{2}^{s} C_{1}^{t}\right) \quad(s<t), \quad V_{3}^{p}\left(C_{1}^{s} V_{1}^{q}+C_{2}^{s} V_{2}^{q}\right), \\
& V_{3}^{p}\left(V_{1}^{q} V_{2}^{r}-V_{2}^{q} V_{1}^{r}\right) \quad(q<r), \\
& V_{3}^{p}\left(A_{11}^{i}-A_{22}^{i}\right)\left(C_{1}^{s} V_{1}^{q}-C_{2}^{s} V_{2}^{q}\right)+2 V_{3}^{p} A_{12}^{i}\left(C_{1}^{s} V_{2}^{q}+C_{2}^{s} V_{1}^{q}\right), \\
& V_{3}^{p}\left(A_{11}^{i}-A_{22}^{i}\right)\left(C_{1}^{s} C_{2}^{t}+C_{2}^{s} C_{1}^{t}\right)-2 V_{3}^{p} A_{12}^{i}\left(C_{1}^{s} C_{1}^{t}-C_{2}^{s} C_{2}^{t}\right) \quad(s \leq t), \\
& V_{3}^{p}\left(A_{11}^{i}-A_{22}^{i}\right)\left(V_{1}^{q} V_{2}^{r}+V_{2}^{q} V_{1}^{r}\right)-2 V_{3}^{p} A_{12}^{i}\left(V_{1}^{q} V_{1}^{r}-V_{2}^{q} V_{2}^{r}\right) \quad(q \leq r)
\end{aligned}
$$

where $i, j=1, \ldots, N ; p, q, r=1, \ldots, M ; m, n=1, \ldots, P ; s, t=1, \ldots, N+P$ subject to the restrictions indicated. The quantities $C_{\alpha}^{s}(\alpha=1,2 ; s=1, \ldots, N+P)$ are defined by (6.1).

## References

[1] J. E. Adkins, Arch. Rat. Mech. Anal. 4, 193 (1960)
[2] J. E. Adkins, Arch. Rat. Mech. Anal. 5, 263 (1960)
[3] R. L. Long and L. V. McIntire, private communication (1973)


[^0]:    *Received November 6, 1980. This work was supported by a grant from the National Science Foundation to Lehigh University.

