AN INEQUALITY FOR THE COEFFICIENT σ OF THE FREE BOUNDARY $s(t)=2 \sigma \sqrt{ } t$ OF THE NEUMANN SOLUTION FOR THE TWO-PHASE STEFAN PROBLEM*

By

DOMINGO ALBERTO TARZIA
Universidad Nacional de Rosario, Argentina

Abstract

We consider a semi-infinite body (e.g. ice), represented by ($0,+\infty$), with an initial temperature $-c<0$ having a heat flux $h(t)=-h_{0} / \sqrt{ } t\left(h_{0}>0\right)$ in the fixed face $x=0$. If $h_{0}>c k_{1} / \sqrt{ } \pi a_{1}$ there exists a solution, of Neumann type, for the resulting twophase Stefan problem. If we connect it with the Neumann problem (on $x=0$ the body has a temperature $b>0$) we obtain the inequality $\operatorname{erf}\left(\sigma / a_{2}\right)<\left(k_{2} b a_{1} / k_{1} c a_{2}\right)$ for the coefficient σ of the free boundary $s(t)=2 \sigma \sqrt{ } t$, where k_{i} and a_{i}^{2} are respectively the thermal conductivity and thermal diffusivity coefficients of the corresponding i phase ($i=1$: solid phase, $i=2$: liquid phase). If $h_{0}<c k_{1} / \sqrt{ } \pi a_{1}$ there is no solution of the initial problem and if $h_{0}=c k_{1} / \sqrt{ } \pi a_{1}$ the problem has no physical meaning and corresponds to the case where the latent heat of fusion L tends to infinity.

Notation.

$\Omega=(0,+\infty)$	semi-infinite body x
space coordinate variable in Ω t time	
$s(t)$	position of the solid-liquid interface (free boundary) at time $t>0$
$\theta(x, t)$	temperature defined for $x>0, t>0$
$\theta_{2}(x, t)$	water temperature defined for $0<x<s(t), t>0$
$\theta_{1}(x, t)$	ice temperature defined for $x>s(t), t>0$
c_{2}	specific heat of water
c_{1}	specific heat of ice
l	latent heat of fusion
ρ	mass density
k_{2}	thermal conductivity of water
k_{1}	thermal conductivity of ice
$-c<0$	initial temperature
$b>0$	temperature in the fixed face $x=0$
$h(t)$	heat flux in the fixed face $x=0$

[^0]$C_{2}=\rho c_{2}, C_{1}=\rho c_{1}, L=\rho l$
$a_{2}=\left(k_{2} / C_{2}\right)^{1 / 2} \quad a_{1}=\left(k_{1} / C_{1}\right)^{1 / 2}$
a_{2}^{2}
a_{1}^{2}
thermal diffusivity of water thermal diffusivity of ice.
I. The problem. We shall consider the two-phase Stefan problem for a semi-infinite body, represented by $\Omega=(0,+\infty)$ with null change phase temperature (case: water-ice). That is, we shall find the functions $s=s(t)>0$ (free boundary), defined for $t>0$ with $s(0)=0$, and
\[

$$
\begin{array}{rlrl}
\theta(x, t) & =\theta_{2}(x, t)>0 & & \text { if } \\
& =0 & & 0<x<s(t) \tag{1}\\
& =\theta_{1}(x, t)<0 & & \text { if } \\
& s(t)<x,
\end{array}
$$
\]

defined for $x>0$ and $t>0$, such that they satisfy the following conditions:

$$
\begin{gather*}
C_{1} \frac{\partial \theta_{1}}{\partial t}-k_{1} \frac{\partial^{2} \theta_{1}}{\partial x^{2}}=0, \quad \text { in } \quad s(t)<x, t>0, \tag{2}\\
C_{2} \frac{\partial \theta_{2}}{\partial t}-k_{2} \frac{\partial^{2} \theta_{2}}{\partial x^{2}}=0, \quad \text { in } \quad 0<x<s(t), t>0, \tag{3}\\
\theta_{1}(s(t), t)=0, \quad \forall t>0, \tag{4}\\
\theta_{2}(s(t), t)=0, \quad \forall t>0, \tag{5}\\
k_{1} \frac{\partial \theta_{1}}{\partial x}(s(t), t)-k_{2} \frac{\partial \theta_{2}}{\partial x}(s(t), t)=L s^{\prime}(t), \quad \forall t>0, \tag{6}\\
\theta_{1}(x, 0)=-c<0, \quad \forall x>0, \tag{7}\\
k_{2} \frac{\partial \theta_{2}}{\partial x}(0, t)=h(t), \quad \forall t>0 . \tag{8}
\end{gather*}
$$

The function $h(t)$ represents the heat flux that the material Ω receives in its fixed face $x=0$.
In the case

$$
\begin{equation*}
h(t)=-\left(h_{0} / \sqrt{ } t\right) \quad\left(h_{0}>0\right) \tag{9}
\end{equation*}
$$

we prove that there is not always a solution of Neumann type [1, 2, 3, 4, 7] for the problem (2) to (9). Moreover, the explicit solution exists if the constant h_{0} satisfies a certain inequality (19). This idea was suggested in [5], where simple exact solutions are given for the steady-state two-phase Stefan problem in which the heat flux satisfies an inequality on a given portion of the body's boundary and the temperature has a constant sign (for example, positive) on the remaining body's boundary.
II. Solution of problem (2)-(9). Following the idea of Neumann for the two-phase Stefan problem [1, 2, 3, 4, 7], we propose:

$$
\begin{align*}
\theta_{1}(x, t) & =A_{1}+B_{1} f\left(x / 2 a_{1} \sqrt{ } t\right) \\
\theta_{2}(x, t) & =A_{2}+B_{2} f\left(x / 2 a_{2} \sqrt{ } t\right) \tag{10}\\
s(t) & =2 \omega \sqrt{ } t, \quad \omega>0
\end{align*}
$$

where

$$
\begin{equation*}
f(y)=\frac{2}{\sqrt{ } \pi} \int_{0}^{y} \exp \left(-u^{2}\right) d u, \quad a_{1}=\sqrt{k_{1} / C_{1}}, \quad a_{2}=\sqrt{k_{2} / C_{2}} . \tag{11}
\end{equation*}
$$

The four conditions (4), (5), (7), (8) give rise to the two systems of equations

$$
\begin{align*}
A_{1}+B_{1} & =-c, \quad A_{1}+f\left(\omega / a_{1}\right) B_{1}=0 \tag{12}\\
B_{2} & =-\sqrt{ } \pi \frac{a_{2}}{k_{2}} h_{0}, \quad A_{2}+f\left(\omega / a_{2}\right) B_{2}=0 \tag{13}
\end{align*}
$$

Solving (12) and (13) as functions of ω, we obtain:

$$
\begin{align*}
& A_{1}(\omega)=c \frac{f\left(\frac{\omega}{a_{1}}\right)}{1-f\left(\frac{\omega}{a_{1}}\right)}, \quad B_{1}(\omega)=\frac{-c}{1-f\left(\frac{\omega}{a_{1}}\right)}, \tag{14}\\
& A_{2}(\omega)=\sqrt{ } \pi \frac{a_{2} h_{0}}{k_{2}} f\left(\frac{\omega}{a_{2}}\right), \quad B_{2}(\omega)=-\sqrt{ } \pi \frac{a_{2} h_{0}}{k_{2}} .
\end{align*}
$$

The condition (6) is satisfied if ω is a solution of the equation

$$
\begin{equation*}
F_{0}(\omega)=\omega, \quad \omega>0 \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{0}(\omega)=\frac{h_{0}}{L} \exp \left(-\frac{\omega^{2}}{a_{2}^{2}}\right)-\frac{c k_{1}}{L \sqrt{ } \pi a_{1}} F_{1}\left(\frac{\omega}{a_{1}}\right), \quad F_{1}(x)=\frac{\exp \left(-x^{2}\right)}{1-f(x)} . \tag{16}
\end{equation*}
$$

Taking into account the following properties of the function F_{1} :

$$
\begin{gather*}
F_{1}\left(0^{+}\right)=1, \quad F_{1}(+\infty)=+\infty \\
\frac{d F_{1}}{d x}(x)>0, \quad \forall x>0 \quad \text { (cf. Appendix), } \tag{17}
\end{gather*}
$$

we deduce for the function F_{0}

$$
\begin{gather*}
F_{0}\left(0^{+}\right)=\frac{1}{L}\left(h_{0}-\frac{c k_{1}}{\sqrt{ } \pi a_{1}}\right) \tag{18}\\
F_{0}(+\infty)=-\infty, \quad \frac{d F_{0}}{d \omega}(\omega)<0, \quad \forall \omega>0
\end{gather*}
$$

and therefore we obtain
Lemma 1. There exists a solution (10) of the problem (2)-(9) iff $F_{0}\left(0^{+}\right)>0$ and iff

$$
\begin{equation*}
h_{0}>c k_{1} / \sqrt{ } \pi a_{1} \tag{19}
\end{equation*}
$$

Proof. Using the properties (18), Eq. (15) has a unique solution iff $F_{0}\left(0^{+}\right)>0$.

Remark 1. If $h_{0}<c k_{1} / \sqrt{ } \pi a_{1}$, there is no solution of the problem (2)-(9) of the type (10). The limit case $h_{0}=c k_{1} / \sqrt{ } \pi a_{1}$ has no physical meaning and corresponds to the case $L \rightarrow+\infty$ (cf. Sec. IV).
III. Relationship with the Neumann solution. The temperature in the fixed face $x=0$ is given by

$$
\begin{equation*}
b_{0}=\theta_{2}(0, t)=A_{2}(\omega)=\sqrt{ } \pi \frac{a_{2} h_{0}}{k_{2}} f\left(\frac{\omega}{a_{2}}\right) \tag{20}
\end{equation*}
$$

Since $b_{0}>0$, we can consider the two-phase Stefan problem consisting in finding the functions $s(t), \theta_{1}(x, t), \theta_{2}(x, t)$ solutions of (2)-(7) and (8 bis), where:

$$
\begin{equation*}
\theta_{2}(0, t)=b \quad \text { with } \quad b>0 \tag{8bis}
\end{equation*}
$$

The solution of problem (2)-(7) and (8 bis), which is known as Neumann solution [1, 2, 3, $4,7]$, is given by:

$$
\begin{align*}
\theta_{1}(x, t) & =\alpha_{1}+\beta_{1} f\left(\frac{x}{2 a_{1} \sqrt{ } t}\right) \\
\theta_{2}(x, t) & =\alpha_{2}+\beta_{2} f\left(\frac{x}{2 a_{2} \sqrt{ } t}\right) \tag{21}\\
s(t) & =2 \sigma \sqrt{ } t
\end{align*}
$$

with

$$
\begin{align*}
& \alpha_{1}(\sigma)=c\left\{f\left(\frac{\sigma}{a_{1}}\right) /\left[1-f\left(\frac{\sigma}{a_{1}}\right)\right]\right\} \\
& \beta_{1}(\sigma)=-c /\left[1-f\left(\frac{\sigma}{a_{1}}\right)\right] \tag{22}\\
& \alpha_{2}(\sigma)=b \\
& \beta_{2}(\sigma)=-b / f\left(\frac{\sigma}{a_{2}}\right)
\end{align*}
$$

Here σ is the unique solution of the equation

$$
\begin{equation*}
F(\sigma)=\sigma, \quad \sigma>0 \tag{23}
\end{equation*}
$$

with

$$
\begin{equation*}
F(\sigma)=\frac{k_{1}}{L a_{1} \sqrt{ } \pi} \beta_{1}(\sigma) \exp \left(-\frac{\sigma^{2}}{a_{1}^{2}}\right)-\frac{k_{2}}{L a_{2} \sqrt{ } \pi} \beta_{2}(\sigma) \exp \left(-\frac{\sigma^{2}}{a_{2}^{2}}\right) \tag{24}
\end{equation*}
$$

which satisfies:

$$
\begin{equation*}
F\left(0^{+}\right)=+\infty, \quad F(+\infty)=-\infty, \quad \frac{d F}{d \sigma}(\sigma)<0, \quad \forall \sigma>0 \tag{25}
\end{equation*}
$$

Remark 2. Notice that

$$
\begin{equation*}
A_{1}(x)=\alpha_{1}(x), \quad \forall x>0, \quad B_{1}(x)=\beta_{1}(x), \quad \forall x>0 \tag{26}
\end{equation*}
$$

Lemma 2. If the condition (19) is valid and we take $b=b_{0}>0$, then

$$
\begin{equation*}
\sigma=\omega \tag{27}
\end{equation*}
$$

Proof. Since $\beta_{2}(\omega)=-\sqrt{ } \pi\left(a_{2} h_{0} / k_{2}\right)$, we have:

$$
\begin{align*}
F(\omega) & =\frac{-c k_{1}}{L a_{1} \sqrt{ } \pi} \frac{\exp \left(-\omega^{2} / a_{1}^{2}\right)}{1-f\left(\omega / a_{1}\right)}+\frac{h_{0}}{L} \exp \left(-\omega^{2} / a_{2}^{2}\right) \\
& =\frac{h_{0}}{L} \exp \left(-\omega^{2} / a_{2}^{2}\right)-\frac{c k_{1}}{L \sqrt{ } \pi a_{1}} F_{1}(\omega)=F_{0}(\omega)=\omega \tag{28}
\end{align*}
$$

and from the uniqueness of σ in Eq. (23), we deduce (27).
Remark 3. With the hypothesis of Lemma 2, we have:

$$
\begin{equation*}
A_{2}(x)=\alpha_{2}(x), \quad \forall x>0, \quad B_{2}(x)=\beta_{2}(x), \quad \forall x>0 . \tag{29}
\end{equation*}
$$

Remark 4. With the hypothesis of Lemma 2, we deduce the following equivalence: Problem (2)-(9) \Leftrightarrow Problem (2)-(7) and (8 bis); this implies the inequality:

$$
k_{2} b / \sqrt{ } \pi a_{2} f\left(\sigma / a_{2}\right)>c k_{1} / \sqrt{ } \pi a_{1}
$$

or

$$
\begin{equation*}
f\left(\sigma / a_{2}\right)<k_{2} a_{1} b / k_{1} a_{2} c=\frac{b}{c} \sqrt{k_{2} C_{2} / k_{1} C_{1}} . \tag{30}
\end{equation*}
$$

Notice that this inequality takes into account the temperatures b, c and the coefficients k_{1}, a_{1} and k_{2}, a_{2} corresponding to the solid and liquid phase, but not the latent heat of fusion L.
IV. Limit cases. Using a method analogous to that in [6], we have Lemma 3.

$$
\begin{equation*}
F_{0}\left(0^{+}\right)=0 \Leftrightarrow h_{0}=\frac{c k_{1}}{a_{1} \sqrt{ } \pi} \Leftrightarrow \omega=0 \Leftrightarrow L=+\infty \tag{31}
\end{equation*}
$$

Let $\theta_{L}(x, t)$ be the function defined by (10), (14) and (15) for each $L>0$. Then:
Remark 5. If $h_{0}>c k_{1} / a_{1} \sqrt{ } \pi$, the limit of $\theta_{L}(x, t)$ as $L \rightarrow+\infty$ is given by:

$$
\begin{align*}
\theta_{L=\infty}(x, t)=\lim _{L \rightarrow+\infty} \theta_{L}(x, t) & =0 & & \text { if } x=0 \\
& =-c f\left(\frac{x}{2 a_{1} \sqrt{ } t}\right)<0 & & \text { if } \quad x \neq 0 \tag{32}
\end{align*}
$$

Moreover, $\theta_{L=\infty}$ is a continuous function, but its heat flux in $x=0$ is given by:

$$
\begin{equation*}
k_{1} \frac{\partial \theta_{L=\infty}}{\partial x}(0, t)=\frac{-c k_{1}}{a_{1} \sqrt{ } \pi t} \neq \frac{-h_{0}}{\sqrt{ } t}=h(t) \tag{33}
\end{equation*}
$$

This implies that the limit $L \rightarrow+\infty$ has no physical meaning, as was remarked in [6].

Remark 6. If $h_{0}>c k_{1} / a_{1} \sqrt{ } \pi$ the limit of $\theta_{L}(x, t)$ as $L \rightarrow 0$ is given by:

$$
\begin{equation*}
\theta_{L=0}(x, t)=\lim _{L \rightarrow 0} \theta_{L}(x, t)=\frac{\sqrt{ } \pi a_{2} h_{0}}{k_{2}}\left(1-f\left(\frac{x}{2 a_{2} \sqrt{ } t}\right)\right) . \tag{34}
\end{equation*}
$$

The function $\theta_{L=0}$ is continuous and its heat flux in $x=0$ is:

$$
\begin{equation*}
k_{2}\left(\partial \theta_{L=0} / \partial x\right)(0, t)=-h_{0} / \sqrt{ } t=h(t) \tag{35}
\end{equation*}
$$

Appendix. Let

$$
\begin{gather*}
F_{1}(x)=\frac{\exp \left(-x^{2}\right)}{1-f(x)}, \quad f(x)=\frac{2}{\sqrt{ } \pi} \int_{0}^{x} \exp \left(-u^{2}\right) d u=\operatorname{erf}(x) \\
H(x)=\frac{f^{\prime}(x)}{1-f(x)}=\frac{2}{\sqrt{ } \pi} F_{1}(x), \quad G(x)=H(x)-2 x \tag{1}
\end{gather*}
$$

We prove the following properties:

Lemma.

$$
\begin{equation*}
H(0)=2 / \sqrt{ } \pi, \quad H(+\infty)=+\infty, \quad H(x)>0, \quad \forall x>0 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
G(0)=2 / \sqrt{ } \pi, \quad G(+\infty)=0 \tag{ii}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
H^{\prime}(x)=G(x) \cdot H(x), \quad G^{\prime}(x)=H^{\prime}(x)-2 \tag{2}
\end{equation*}
$$

(iv)

$$
G(x)>0, \quad \forall x>0
$$

$$
\begin{equation*}
F_{1}^{\prime}(x)>0, \quad \forall x>0 \tag{v}
\end{equation*}
$$

Proof. (i), (ii) and (iii) are evident by definition or by application of L'Hopital's rule. (iv) we suppose that there exists $x_{0}>0 / G\left(x_{0}\right)=0$. It follows that

$$
\begin{gather*}
H\left(x_{0}\right)=2 x_{0}, \quad H^{\prime}\left(x_{0}\right)=0, \tag{3}\\
G\left(x_{0}\right)=0, \quad G^{\prime}\left(x_{0}\right)=-2<0 \tag{4}
\end{gather*}
$$

The conditions (4) implies that there exists $x_{1}>x_{0}$,

$$
\begin{equation*}
G^{\prime}\left(x_{1}\right)=0, \quad G\left(x_{1}\right)<0 . \tag{5}
\end{equation*}
$$

Therefore

$$
H^{\prime}\left(x_{1}\right)=G\left(x_{1}\right) H\left(x_{1}\right)<0 .
$$

Then

$$
0=G^{\prime}\left(x_{1}\right)=H^{\prime}\left(x_{1}\right)-2<-2
$$

which is a contradiction. (v) is evident using (iii) and (iv).

References

[1] M. Brillouin, Sur quelques problèmes non résolus de physique mathématique classique : propagation de la fusion, Annales de l'Inst. H. Poincaré, 1, 285-308 (1930/31)
[2] H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids, Clarendon Press, Oxford (1959)
[3] J. Crank, The mathematics of diffusion, Clarendon Press, Oxford (1956)
[4] L. I. Rubinstein, The Stefan problem, Trans. Math. Monographs, 27, Amer. Math. Soc., Providence (1971)
[5] D. A. Tarzia, Sobre el caso estacionario del problema de Stefan a dos fases. Mathematicae Notae, Año 28, 73-89 (1980/81)
[6] D. A. Tarzia, La chaleur latente de fusion tend vers linfini n'a pas de sense physique pour le problème de Stefan, submitted to Int. J. Heat Mass Transfer
[7] H. Weber, Die partiellen Differential-gleinchungen der mathematischen Physik, nach Riemanns Vorlesungen, t. II, Braunwschweig (1901), 118-122

[^0]: * Received October 1, 1980.

