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THE INITIAL-VALUE PROBLEM FOR A STRETCHED STRING*
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and S. C. HU (Brown University)

1. Introduction. There have been many studies in the past thirty-five years of the
motion of a stretched elastic string. In 1945 Carrier [1] developed an approximate equa-
tion for transverse motion for such a string which accounted, at least to second order, for
the fact that such a motion was inherently nonlinear. These equations were reformulated
by Narasimha [5] in 1967. In this paper, Narasimha introduced a term which accounted
for external damping of the string.

The general theory of the Carrier-Narasimha equations has been partially worked out
by Dickey and Nisida. Dickey [2, 3] and Nisida [6, 7] have investigated the initial-
boundary value problem for these equations for a string of finite length and Dickey [4]
has obtained partial results for the pure initial-value problem for these equations for a
string of infinite length.

In [4], Dickey considered the initial value problem for the equation

Uu = C2{t)Uxx, — oo < x < oo and t > 0 (1.1)

where the speed of sound C(-) is related to the vertical displacement [/(•,•) by

C2(t) = 1 + £ [°° [/?(£, t) dt, 0 < e. X(1.2)
— oo

Through the use of certain differential inequalities Dickey was able to show that the
initial-value problem for the system (1.1) and (1.2) was uniquely solvable on some inter-
val 0 < t < T(e) where T(e) = 0(l/e). He was also able to show, via direct substitution,
that this system was capable of supporting traveling waves; that is, solutions of the form
U =f(x ± C*t) where C* is a constant depending on /

In this paper, we restrict our attention to the equations considered by Dickey in [4],
Our basic result is that if the parameter e in Eq. (1.2) is sufficiently small and if the initial
data for problem is sufficiently well-behaved, then the initial-value problem for (1.1) and
(1.2) is uniquely solvable for all time t. Moreover, we establish the existence of functions
R±{ ) and L+() and a unique positive number such that

lim U(x + C^t, t) = R±(x), lim U(x - C^t, t) = L±(x). (1.3, 1.4)
t~* ± 00 t~* ±00
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Here,

C2 = lim (l+e f U2(£,t)dA, (1.5)
(-»± qo \ — oo /

Our attack is similar to Dickey's. In Sec. 2, we Fourier-transform the original equa-
tions of motion and obtain integro-differential equations for the Fourier transform of the
motion U. The form of these equations suggests a study of a certain linear problem. This
is done in Sec. 3. The thrust of this section is to show that if a certain potential q(-), which
is related to the sound speed C(), has certain decay properties in |r|, then the Fourier
transform U must itself have similar properties. Equipped with these results we are able
to show (see Sec. 4) that it is possible to construct, through the identity (1.2), a well-
defined mapping of functions C( ) into functions C(); we also show that for 0 < £ 1
this map is a contraction. This fact yields the results claimed above.

2. Transformations. In this section we transform our original integro-differential
equation into ordinary differential equations for the Fourier coefficients of U. Our ori-
ginal equation is

U,t - C2(t)uxx = 0 (2.1)
where U satisfies the initial conditions

U(x,0)=/(x), U,(x, 0) = g(x) (IC)

and C2 is given by C2(t) = 1 + e $-«, U2(x, t) dx.
We assume that /' and g are twice continuously differentiate and that

(1 + x2)| f'(x)| < oo and (1 + x2) |g(x)| < oo. If we let Cq = 1 + e C/2(x, 0) dx =
1 -I- £ J-oo (/'(x))2 dx and g(x) = C0gx(x), the initial condition may be rewritten as

U(x, 0) =/(x), U,(x, 0) = C0g1(x). (IC)'
We shall use this fact later.

Our first task is to write Eq. (2.1) as a system. We let A(x, t) = U,(x, t) — C(t)Ux(x, t)
and B(x, t) = Ut(x, t) + C(t)Ux(x, t). The fact that Eq. (2.1) may be rewritten as

i+c^l)[jrc^)v--eu-

(22»

yields the following equations for A and B:

At + c(t)Ax=(B ~ A)' Bt ~ c(t)Bx=x§)(B~ A)■ (23)

The initial conditions for A and B are computable in terms of/' and g. They are
def

A(x, 0) = A0(x) = Co(0i(*) -/'(*)),
def

B(x, 0) = B0(x) = C0(g1(x) +f'(x)). (IC)t
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The defining relation for C2 becomes

c2(t) = 1 + (B - A)2{x, t) dx. (2.3a)

We now introduce the change of variable x = |'0 C(s) ds. Clearly, dx/dt = C(t) > 1 and
thus r is a strictly increasing function of t. We denote its inverse function by t = T(x) and
regard C as a function of x, i.e. C(r) = C(T(x)). Then, dC/dt = (dC/dx) • (dx/dt) = C(t)x
(dC/dx).

If we apply the change of variable to Eq. (2.3), we obtain

At + Ax = Bt-BX = ^(B-A). (2.4)

We are now regarding A and B as function of x and x. The initial condition and the
defining relationship for C are the same as described in (IC)j and (2.3a).

We now Fourier-transform the system (2.4). We let

si^((o, x) = j e~lcJXA(x, x) dx, x) = j e~,<a*B(x, x) dx.
— 00 — CO

The coefficients si ^ and satisfy

si + iwsi^ = ~ ^ (^* - ^*) (2-5)

and C is connected to si % and by

C2(t) = 1 + 8g(f2 ($Jco, x) - s/Jco, x))

■ (^M — x) — — co, t)) dco.1 (2.3b)

The initial condition for si# and are
def def

si+(w, 0) = Coig, -AKftj) = Ct^(co), #„(<», 0) = C0(g1-?1)(w) = C^(co),
(IC)2

where ft(co) = e io'xf'{x) dx.
Finally, if we let

then Eq. (2.5) transforms to

sir((o, x) = e2im@)(p), x), @T(co, x) = e~2ionsi((o, t) (2.6)

and si and satisfy the initial condition

si(u>, 0) = sf(co), &(co, 0) = (IC)3

1 Throughout, we exploit the identities s/t(—co, r) = t(a>, x) and 9t„( — (o, t) = t).
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These are equivalent to the integral equations

stf(co, t) = - [ e2ims^~\ 3){(0, s) ds,
Jo zC[s)

@(co, t) = &((o) - | e~2ilOSJ^^(co' S) ds' (2-7)

and C is connected to sd and M by

c2(t) = 1 + 8^(7) f"ja(eo'x]eim ~ ^(co' r)e~imT)

x (<M( — co, t)e~ia" — ,s/( — co, r)e,an) dco. (2.8)

Now our goal is to show that for 0 < £ <^ 1 there exists a unique solution to (2.7) and
(2.8). We shall also show there exists a function (^±00, @±x)(co) and a unique positive
number C* > 0 such that

and

lim r), &(a>, t)) = (j/±00 , @±a0)(co)
x~* ± oo

lim C(t) = > 0.
T —» ± oo

These latter limit relations imply that the functions

A(x, t) = -p- (" ei<oxs/Jco, t) da>, B(x, t) = ~ f elwx@! t) da>
2nJ-x 2nJ-x

satisfy

lim A(x + t, t) = A±ao(x), lim B(x — t, t) = B±ao(x)
Z-* ± 00 X-+ ± 00

where

e^±ao(co)dco, B±x(0 = ~f e"*®±00(co)dcD.

That is, the system (2.3) and (IC)j has a well-defined scattering theory.
That such a result should have been anticipated follows from Dickey's observation [4]

that the original equation Utt - C2(t)Uxx = 0 with C2(t) = 1 + e U2x(x, t) dx sup-
ports right- and left-facing traveling waves.

3. The linear problem. In this section we shall confine our attention to solutions of
the integral equations:

srf(a>, t) = — I e2,msq(s)&(to, s) ds
Jo

&(a>, x) = $(co) — [ e~ 2,msq(s)s/(co, s) ds (3.1)
Jo

when q( ) is prescribed.
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In fact it will suffice to examine carefully solutions of

a(co, t) = 1 — | elimsq(s)P(co, s) ds, p(oj, r) = — ( e~2"usq(s)a(co, s) ds (3.2)
Jo Jo

because the solution of (3.1) may be expressed in terms of the functions a and /? by

,3J|

This last result is a consequence of the variation of constants formula for the system (3.1)
def

and the fact that W(u>, t) = a(co, r)a(—<w, t) — P(a), t)/?(—a>, x) satisfies dW/dz = 0.

3.1. Boundedness and continuity lemmas. In what follows we shall let

I'll = sup I• |, IMIi = j I• I(s) ds (3.4)
CO, T — 00

and shall employ the working hypothesis that the function q( ) in (3.1) satisfies ||q|| t < 1.
This assumption guarantees that the functions a and P of (3.2) are well defined. When
comparing solutions of (3.1) we shall let , (%>), i = 1 and 2, denote the unique solu-
tions of (3.1) corresponding to the potential <?;(■), i = 1 and 2. The following notation will
be used throughout the remainder of this section:

M„t ,(t) = max

Nn,i(T) = max

sup | t)|, sup \ a>n@i(cD, t)|
(O CO

' 00 .CO

j \a>"s/i(a>, r)\dco, J \u)"^i(co, r)\ da>

(3.5)

(3.6)

M„*(t) = max Mn, f, N*(t) = max Nn> ,(t), (3.7)
1=1,2 1 = 1,2

A„(t) = max

D„(x) = max

sup | (o"(s42 ~ J^i)(<w» t) |, sup \ (on(3S2 — )(<*>> T)|

J \af(j/2 — ̂i)(<x>, *)\dco, J \co"(@2 — ̂i)(co, r)\d(0

(3.8)

■ (3-9)

We shall now give some estimates which tie down the dependence of the functions
(aj, Pi) and (sft, on the potentials qt(-).

Lemma 3.1. (a) The functions a, and /?, satisfy

Wsrrfcn. <310>
(b) the functions Mn> f and Nn_ t satisfy

M M -- i(Q) », / \ N„, i(0) /3
"A) i-lkllt "■'<) i - tkill.' ( *
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(c) the functions A„ and Dn satisfy

(3.12)
1 - max HqJj

m = 1,2

Dn( t)< (3.13)
(l - max \\qm\\i)
\ m= 1,2 /

Proof. We establish (3.10) first. We discuss only the case where t > 0 and suppress
the indicies i. Eq. (3.2) yields the identity

tx(a>, i) = 1 + I e2tosg(s)| e~2imyq(y)<x((x>, y) dy ds
'o o

and from this we obtain the inequalities:

|a(o), t)|<1 + J |<?(s)|j |<?(y)| |a(co, y)|<fy ds < I + ||g||? sup |a(a>, >>)|,

||a|| < 1 + II4II1 ||a||. llaM-

0<*y<T

1
i - Mi

We also have

/}(a>, t) = — [ e~2lcosq(s) ds + f e~2""sg(s)| e2"°yq(y)P(w, y) dy ds
Jo Jo Jo

which in turn yields

|0(<u,t)<| | q(s) | ds + j | q(s) | I \q(y)\\P(co, y\dy ds
Jo Jo Jo

Iklli + Ikll! sup IP{a>>y)\>
o

0 < y<t

Wis klli+ lkllillfl. W^rqj]-
The identity (3.3) connecting the solution of (3.1) to the solution of (3.2) and the

results of (3.10) yield (3.11).
To obtain (3.12) and (3.13) we first note that

(sf2 - t) = - I (q2 - q^sje2'"^^ai, s) ds
Jo

- j (q2(s)e2i"'s(^2 - &1 )(g>, s) ds
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and

(82 - T) = - I (q2- qi)(s)e'2ic's^i((o, s) ds
Jo

- I q2{s)e'2ia"(s/2 - s/^co, s) ds.
Jo

From the above we obtain

A„(t)<([ \q2 -qt |(s)ds) supM*(s) + max (f |qm | (s) ds) sup D„(s),
\ -|t| /|»|S|I| m= 1, 2 \ — |t| /l»|S|t|

Dn(*) £ (I 19a - 9i I (®) <*s) sup N*{s) + max ( f \qm\ (s) ds) sup A„(s),
V-M /|»|S|t| m = 1, 2 \ — |t| /l»|S|t|

and these, when combined with maxm = lj 2 \\qm ||i < 1, yield

sup M*(x) sup N*( t)

i" -«■»" p-">s h.1,1*. -«.I-
m— 1,2 m = 1,2

The desired result then follows from the above estimates and the inequalities

m ■■ *»>* n:(o>
1 — max ||qm111' " 1 - max II^IIj'

m = 1, 2 m = 1, 2

the latter being a direct consequence of (3.11).

3.2. Decay estimates for a single potential q( ). Our task now is to obtain decay esti-
mates for the solution of (3.1) for a given potential <?(•). Recalling that si and St satisfy:

j/t(co, t) = — q(x)e2"m^(co, t), @z(a>, x) = -q(x)e~2ims/(a>, x),

we see that

— (sfst + fM3d)(co, x) = —2q(r)(e~ x) + e2"in(.s/iM)(oo, t)),

— (s/<%)(co, x) = —q(x)e2,an(s/s/ + t),
ox

or equivalently that

[s4sH + &$)(a), x)

= {33 + M)(co) - 2 f q(s)(e~ 2iaa(tf8){(0, s) + e2im(^)(co, s)) ds (3.14)
Jo

(s/M)(a), x) = (s/$)(co) - I q{s)e2ims{-s4sd + .#,#)(a>, s) ds. (3.15)
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Our first task is to obtain a decay estimate for

def .00

J(t)=[ coe~2"az(s/^)(co, t) dco. (3.16)
— 00

Eq. (3.15) implies that J(x) = J1(r) — J2(t), where

Ji(t) = J coe-2iloT(^3)(co)da) (3.17)
— 00

and

J2(t) = j q(s)j (oe~2,w{z~s)(stf3? + s) dco ds. (3.18)
0 - oo

and

Our first result is an estimate for J^r). This estimate depends exclusively on the data
si and 3b and is independent of the potential q( ). In what follows we adopt the notation

def

11/11" =suP(1 + t")|/(t)|. (3.19)
T

Lemma 3.2. If

lim y—r (a>Jxf&)(co) = 0 for 0 < r < 2k, (3.20)
|ct>| — 00

then
r<*> / 1 //2k \ -

(1 + x2k]J\x) = J e_2i<OT(l+ (co^)(co) dco, (3.21)

II J1 II4 < j ^ (l + -—y-k ■ (3-22)

Moreover, these latter terms are finite if the initial data and M(oj) are sufficiently
well-behaved.

Proof. Repeated integration by parts and repeated application of the limit relations
(3.20) yield the identity

.oo / i J2k   \

T 2kJl(x) = 2ffk ■ k dw,

and from this we obtain

(1 + t2^1^) = J 1 + (2^ d(0-

The inequality (3.22) is an immediate consequence of (3.21).
We now seek a similar estimate for J2(x) (see Eq. (3.18)). We first prove the following

preliminary lemma.
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Lemma 3.3. Let k > 1 and H(-, •) and q( ) be two functions satisfying

(1 4- T2k)| J?(t, s)| < Hk < oo for all x and s, (3.23)

II# < 00■ (3-24)
Then the following inequality holds:

(1 + t2*)| q{s)H(x-s, s) ds < 22*+1||q||*ffJ' ^ 2k ■ (3.25)
Jo Jo 1 + s

Proof. We shall consider only the case where t > 0. The case t < 0 is similar. For
t > 0

I q(s)H(x -s,s)ds < f |g(s)| \H(x - s, s)|ds
^ n J r\

'(1 + s2t)k(s)l (1 + (x - s)2k)\H(x - s, 5)| ^
+ s2k (1 + (t - s)2k)

ds rt/2 ds

_ f U_+j
•"o 1

J.. /Jc _ J*''* /fC

o (1 + S2k)(l + (T - s)2") = 2 WH\f0 (1 + S2*)(l + (t - s)2*

^ 2||q\\kHk r12 ds ^22k+l\\q\\kHkr"> ds
1 + l+s2k ~ 1+T" J° 1 + s2k

and this is the desired result.

By virtue of the preceding lemma it suffices to show that (3.23) holds for
def oo

H(x, s) = e~2ic3ta>(s/^/ + s) dco. (3.26)
— 00

It is easily checked that H is odd in its first argument. Thus it suffices to establish (3.23)
when t > 0. We shall limit our discussion to the situation t > 0 and s > 0. The case x > 0
and s < 0 is similar. To analyze H we shall make use of the following identity:

H{x, s) = | e~2l*niti{s4+ $$)(co) dco
— 00

— 2 I q(r]) j (e~2,M(Z + + e~2"Mx~m(a).rf.%)(a}) da> dt]
— oo

+ 2 f q(ri)f q(0(H(z + rj - C, 0 + H(x - r, + C, 0) K dr,. (3.27)
Jo Jo

This is a direct consequence of (3.14) and (3.15).

Lemma 3.4. Let x > 0, s > 0, 0 < rj < s, and k > 1, and suppose that

lim ~^—r (a+ &3t){(o) = 0 (3.28)
| CO | —* 00 dco
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and

lim -^—r (cos/3t)(co) — 0 for 0 < r < 2k. (3.29)
I nil —» an (*CQ

Then the following inequalities hold:

(1 + z2k) I e~ 2l0nco{s4s4 + !%!%))(co) dco
~ oo

- J „ f1 + (2^*' +
2k _ _

■ dco, (3.30)

(1 + t2")]'^)]'00 e-2to(t+'W$(co) dco dtj
0 — co

(1 + x2^)! q(f])\ e~2lcKx~'l)(coji?$)(co) dco drj
n — 00

s MM + **»)£-faf (,

dco, (3.31)

2k _
' dco. (3.32)

Proo/ First we prove (3.30). The proof mimics the proof of Lemma 3.2. Repeated
integration by parts and application of the limit relation (3.28) yields

22k

t2*J e 2i'*co(J/Ji? + &$)(co) dco = J e 2'",r |^)2j< • -^—^(co(jtf£t/ + 3S$))(co)) dco,

and thus we have

(1 + T2k)j e~2ic"co(si?s& + &M)(co) dco

J + M)(co)) dco
.oo / i J2k \    

- J . \l +12iyk' + dco,

as claimed.
If we apply the arguments used in Lemma 3.2 to the integral appearing in (3.31), we

obtain

(1 + t^f^r e-2iwiz+"\co^M)(co) dco dr\
-00

_ (1+*» *>

■ 0+TvhrO^'i1+w>' *»
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and this implies
*s -00

(1 + t2*)| q(r})l e 2i<0{t+T,)(o(^^)(co) dco drj
0 — oo

<(1 + T»)f I „,J* |l+ ' .'|mIk„)'J0(l + ir")(1 + (t + i;):2")J-oo\ (2i) dco J /v 7
da; dr]

^ II#1ri^rj('+pr dco,

as claimed.
Finally, we turn to (3.32). We have

-S CO

(1 4- x2^)j q(>/)j e 2i(a(l n)(coJrf$)(co) dco drj
0 — oo

_ (1 + e-^-XuZW) do 4,

- <»++W'
and thus the inequality

(1 + T2k)j q(tj)j c"2'<0<t_")(aj^5)(£o) dco dq

d(o dr\

— Ikll*C00 / 1 (f2*1 \ - l-sLv+w^r Ka)H (1 + z2k) drj
(1 + r,2k)(1 + (t - r,)2")

The desired result, (3.32), now follows from the inequality above and the fact that

I" (1 + t2")^ < (i + 22k+1)C dt] (3 33)
J0 (1 + r,2k)(l + (i - n)2k) ( % 1 + ri2k' [ '

Our final task is to show that the function H of (3.26) decays.

Lemma 3.5. Let k > 1 and suppose there exist constants 0 < dk < oo and 0 < Qk < oo
such that

II# <<5*, (3.34)

and

/ 1 d2k \ ~ - ~~
(* + (2/)" ' d^~k+ ^»)M)

,® / 1 d2k \ —•L V + (2ip' ^)(co^)(co)

dco < 2Qk, (3.35)

dco<Qk, (3.36)

dco <Qk. (3.37)
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Then the function H(x, s) defined in (3.26) satisfies the estimate

0.(2+^(1+2")/;^) def

((1 + t2")|//(t, s)|)< i  » ' (2 =Hk (3.38)
1-4(1 + 22k+1)Sl f "

o 1 + 12k

provided

*>< d„ • (3-39)

Proof. By recalling that H is odd in its first argument it suffices to confine our
attention to the case t > 0. We shall further limit our discussion to the case s > 0. The
case s < 0 is similar. The results of Lemma 3.4 and the identity (3.27) yield

(1 + x2k)\H(x, 5)| < 2(l + 2(1 + 22k)dkj"

+ 2(1 + x2k)f | «(>,) | /" | q(01 | H(x + r, - C, C) + H(x - r, + C, C) | dC dr,. (3.40)

We now let
def

hk(x, s) = (1 + x2k) | H(x, s) |. (3.41)

Clearly hk is nonnegative. The fact that H is odd in x implies that hk is even in t.
Moreover, (3.40) implies that hk satisfies

M«. s) £ 2(1 + 2(1 + 2"ft|o*7^5i)e.

+ 2«(1 +,«)/"'/' ' ( Mx + T-f.O Mt-1 + t, 0 \
'J01 + n J01 + C \i + (t +1] - c) 1 + (x - if + 0 7

(3.42)
We now let

def

hf(T) = sup hk(x, s). (3.43)
0<S, 0 < T

s + r<T

Our goal is to show that hi obeys the upper bound (3.38). For 0 < t, 0 <(<?/< s and
s + x < T the following inequalities are valid:

0<x<x + rj — C<x + rj<x + s<T,

0< |r-f/ + C| + C< max[t + £, 1 - t] < r + s < T.

The above relations, together with the fact that hk(-, •) is even in its first argument, then
yield

mt + n - c, o < wn m* - f + c, 0 < wn
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and this in turn implies that the second integral on the right-hand side of (3.42) is
bounded from above by

2 dlhf(T)

7211*

/f°° d1 V /1 2*\f°° dfl f" ,
(J0 i + n2k) +(1 + T 1 TTip'0 (l + C2fc)(i + (t — if + 02k)

Moreover, it is a relatively trivial matter to show that

(1 + T2t)J0 o (1 + c2fc)(i + (T - , + CD dC dr,-(l + 2"+a)0o it?5)'

Combining the last two facts with the inequality (3.42), we see that

hk(T, s) < 2(1 + 2(1 + + 4(1 + (3.44)

for all t > 0 and s > 0 such that s + x < T. The last inequality yields the result that h%(T)
obeys the upper bound (3.38) and, since this result is independent of T, we have the result
claimed for H(-, ■).

From the last lemma, we know that for 8k sufficiently small, the function H of (3.26)
satisfies the hypotheses of Lemma 3.3 with Hk given by the right-hand side of (3.38). This
in turn implies

Lemma 3.6. If ||||fc < Sk and Sk is sufficiently small and if the hypotheses of Lemmas 3.2,
3.4, and 3.5 hold, then the function J2() of (3.18) satisfies

drj_

3.3 Additional continuity and decay estimates. Now suppose that (s/u i$t) and
{.<rf2, fM2) are the unique solutions of (3.1) corresponding to the same data (si?(co), il(co)).
For m — 1 and 2 we let

Jm(x) = [ (oe~2ian(s/m Jm)(co, t) da, (3.46)
- 00

Hm(x, s) = j we'2il,t(.s/m.f/m + s) da), (3.47)
- 00

K(x, s) = H2(t, s) - Hx{x, s). (3.48)

Arguments similar to those previously employed may now be used to obtain

Lemma 3.7. If the data si and .# and the potentials qm, m — 1 and 2, satisfy the condi-
tions of Lemmas 3.2, 3.4, and 3.5, then K satisfies

(1 + x2k) | K(x, s) | < Kk ||q2 - qi ||* for all x and s, (3-49)
where

4(1 + naf-rrpi + 8<! +
«, =  , / l + " ' (3.50)

!--Hi+ TT7>

£2"^'4"rrV <145>
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and 5k, Qk, and Hk are the constants defined in Lemma 3.5. Moreover, for m = 1 and 2
and all x,

(1 + T2k) J qm(s)K(r-s, s)ds <22k+16kKk\\q2-qi\\k\ 2k ■ (3-51)
•"o o 1 + n

4. The nonlinear problem. In this section we turn to the nonlinear problem derived
in Sec. 2:

ft = —~,elivnSd, ax= -%^e'2imsi (4.1)
2C 2C

and

where

(si, @)(a>, 0) = (si, J)(oj) = C%(qx -fu +fl)(a>), (4.2)

0i,/i)H=f e~"°x{9i,f')(x)dx, (4.3)
- 00

C\ = 1 + ̂  J Mai)fi(-co) dco, (4.4)

C2(t) = 1 + r)e^ - si(a>, x]e~^

X (&(-(0, z)e~ivn - si (-03, x)ei(m) dco. (4.5)

It is easily checked that if (si, 28, C) is a solution of (4.1)-(4.5), then

(si, @)(co, x) = (si, 88)(—o), x) and C2(0) = C%. (4.6)

For any integer k > 1, we introduce the class of functions

<gk = |c(-)|c( ) e BCl(-<x>, oo) and sup(l + r2k)|C(r)| < ooj. (4.7)

For functions C( ) m%>k, we let
def

IIIC III* = max suP|C(t)|, sup(l + r2fc)| C(t)| (4.8)

It is easily checked that %k with the norm |||- III is a Banach space. For functions C( ) in c€k
with k > 1, we also have the inequality

|C|, - J" |C(z)|As2f"T^5iICir. (4.9)
J-00 J0 1 + >7

For positive numbers 5 we let

« = C(') 6 I c(0) = Co > 1, C(t) > 1, and sup(l + x2k) \ C(x) | < S . (4.10)

We employ the notation/(t) = (df/dx)(r).
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The number C0 > 1 is the positive square root of the right side of Eq. (4.4). It is easily
checked that a is a closed convex subset of (£k under the norm III- |||k.

For functions C(-) in ^ 6 we let

<?c(t) = C(t)/2C(t), (4.11)

and we let {-rJc, t) be the unique solution of

<= -qc(*)e2imt&, -qc{x)e-2iund (4.1)

satisfying

c, &c)(co, 0) = CUdi - fx, gx +/i)(«). (4.2)

We define

rc(t) = 1 + " (^c(«, r)e"" - j*c(co, z]e~^)

x (<3c(-co, z)e'un - s*c(-co, z)eUn) d(o, (4.12)

and Tc as the positive square root of the right side of (4.12).
The estimates of Lemma 3.1 and the inequality

(413)

for all C(-) e <&k s insure that s/c, ^c, and Tc are well-defined for all

S < % T
dr\

+ fj"'

provided the initial data (si, J?)(co) is well enough behaved.
We also observe that if for some k > 1 and <5 sufficiently small, the mapping C -* Tc

has a fixed point in ^k_d, then the problem (4.1)-(4.5) has a globally defined solution for
all time t. Moreover, the estimate (4.13), the integral identities

s/(gj, t) = Jtf(co) - \ ^ (s)e2i0*@(cj, s) ds,

3)(a>, t) = 3S((a) — ̂  I ^ (s)e~2iaJSs/(co, s) ds (4.14)
2 Jq C

and the results of Lemma 3.1 will guarantee the existence of functions (s/±a0, @)±x)(co)
such that

lim ($t, @)(a>, t) = (^±00, @±x){co). (4.15)
T —* ± oo

The fact that C( ) e d will guarantee the existence of numbers C±00 such that

lim C(t) = C±q0. (4.16)
r-» ± oo
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That these two numbers are equal will follow from (4.5), the conservation of energy
identity which states that any solution of (4.1)-(4.5) satisfies

C4(t) + ~ C(t)[ (#(<», x)eian + s*{(o, x)e~iun)
An

■ (&(—a>, z)e'imt + s/(—cj, x)eim) dco = constant, (4.17)

and the fact that such solutions will satisfy

lim I t)&(cd, x]e2,°" dco — 0. (4-18)
T-» ± 00 ~ 00

By virtue of the last remarks, we shall confine our attention to showing that for some
k > 1 and S sufficiently small the mapping C -> Tc has a fixed point in For
definiteness, we fix k > 1 and assume that the initial data

(jar, &)(co) = Ct{gj -fu gi +fi)(a>) (4.2)
satisfies

M„( 0) = max

Nn( 0) = max

sup | co"^(co) |, sup | con&(a)) | <oo, n = 0, 1, (4.19)

| \co"si?(co)\dco, J |of 3$(id) \ dco <oo, n = 0, 1, (4.20)

and

1 r°°Sn(0) = max - J
jln

(2i)2" dco11 + T^rn^Tn l(co(^ + @@)(co))

dco,

dco,

dco <oo, n = 0, 1, (4.21)

Our first task is to show that for fixed k > 1 and 0 < S sufficiently small, there is an
e(k, <5) such that for all C( ) e <£ky h and 0 < e < e(k, <5) the function Tc(-) is in (€K d. Before
starting to prove this assertion, we simplify our notation. We let ^c(t) = .s/c(w, t),
■%c(t) = :Mc(oJ, t), ^c(t) = s/c(-co, x) and .ic(t) = #c(<o, t) = :Mc(-o), t).

Theorem 4.1. For k > 1 fixed,

0 < <5 < —
(1 + 22*+1)*[ -

Jo 1

drt
+ r,2k

and
def And

0 < e < e(k, 5) =  -   , (4.22)
Qk(0) + 22kSHk\ -

Jo 1

the mapping C -* Tc of (4.12) takes d into d.

dr]
+ t]2k
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Proof. From the definition of TcO and Lemma 3.1 it is easy to check that
rc(0) = C0, Tc( ) e C*( — co, oo), and

1 < Tc(t) < 1 + i(MfiNo)(0)

We need only show that, for 0 < e < e(k, <5), ||f c ||l < S.
The defining relationship (4.12) implies that

2pcfc = -g^2 j ^ym)dco

+ 8^cl ' - ^c,^)eUm)(^c(r)eiu" - ^(x)e-im) dco

+ ~\ - m&UJT)(^c, ,(r)eUn - t(t)*-tot) dco

+ 8^C 1 (~ + ^(z)eim)(^(r)eiajz - ^(z)e~ion) dco

+ 8^C 1 (iC°)(-5/c(t)e"i<K - ^(z)eim)(^(z)eim + ^(x]e~im) dco

and this when combined with Eq. (4.1) yields:

pcfc = °° ico(e-2i™(s*?%Z)(T) - e2i0"(^^)(r)) dco.

Moreover, the fact that

- [ icoe2ia*(^?&£)(t) dco = I'" icoe~2ian(rf^)(z) dco
- 00 - 00

reduces the last equation to

rr =
c00 def if

ticrwL*"'' 5ifvcJW <4'23)
where J(z) is the function defined in (3.16). The fact that Tc and C are both greater than
or equal to unity implies

|fc(t)| £±\J(t)| (4.24)

and

(l+t")|re(T)| <±(l + r2k)\J(z)\. (4.25)
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The results of Lemmas 3.2, 3.5 and 3.6 and (4.25) above imply that

(l+T»)|fc(T)| <^(1+T2")|J(T)|

*£(&«»+ («6)

provided 0 < e < e(k, S). In the last inequality

l2 + 2(l + 22k)5f-^-JQk(0)
"k =  °/f I V < ^27)

Theorem 4.2. Let /c > 1,

0<<5< —

(1 + 22^1)ijo _

dl
+ tj2k

and e satisfy (4.22). Then there exists a constant D which may be chosen independently of
e such that

llirC2 — rClmk < eDinc2 - c,ink.
It is now an immediate consequence of the contraction mapping principle that if the

hypotheses of Theorems 4.1 and 4.2 hold then the map C->Tc has a unique fixed point
in Ckj 5 provided e is small enough. This is the desired result.

Proof of Theorem 4.2. We shall employ the simplified notation:

rm = rc„, qm = qCm = Cm /2Cm, ^»(t) =

m?) = ^cM m = 1 and 2.
The functions srf™ and satisfy the identities

•sO*) = ^(0>) ~ I -r^m(s)<?2"M^™(s) ds
Jo

&%(z) = &(cd) - I qm(s)e'2icoss/Z(s) ds for m = 1, 2.
J n'0

The results of Lemma 3.1 yield

lu?l<"w:(,)l (4'31)

supKCMI < . M:(Q)|, , (4.32)
(o, t A || Qm || 1

supf00 Ico".<(t)I < N;(0) , (4.33)
t - oo 1 ll^m || 1
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sup f I con^(t) I dco < , (4.34)
T — oo || Q.m || 1

sup A„(t) <   ™ ||q2 - «! || i, (4.35)
- max \\qm\\i)

m= 1,2 /

sup Dn(x)<-,  72 1192-«1 111 (4-36)
- max ||gM||i)

m = 1, 2 /

where A„(t) and D„(t) are defined in Eqs. (3.8) and (3.9) and M„(0) and iV„(0) in Eqs.
(4.19) and (4.20). We shall state without proof a crucial relation among the norms ||-|| j,
|H|\ and III-III*.
Lemma 4.1. For Ct, C2 e we have

drj_
J o l + »72

Ik2-<?ir<i(i + ̂ )mc2-c1r.
From the definition of Tm(-), we have

lk!-«,!l,£(l+«)j*T^1r,IC!-C1r,

riM -1 + r-F~n f" - WKW
87i:Cm(T)J_Qo

= 1+Tth~\ f001 ̂y~im - 12d(°- (4-37)

The above identity and the fact that rm(t) > 1 yield

rl-n|r2 - r1|(r) = r2 + r1 (T)

<\ in - n Kt)
i< -_ 2 7-, f | Jt?{r)e-icat - .^(z)eion |2 dco

(T)J-0C

I s4X(xYivn ~ ®^)eia" |2 dco

8nC2

£

< eifaC g1' (T)j I I2 dco

£
+ J (\^(x)e-im - ion 12

MwtC^t)

- \^(r]e-im - %1(x)eim\2) dco
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< £IC^ .,Ci^ f |im - ^(x)eim I2 dco
lort J -oo

f {{-^2^2 ~ + (£JJJ - 0?3?)(t)) dco
— 00

I (<T 2iwt(j/^? - j3^7)(t)

e
+ 1671

e
+ 1671

+ - stt&ffo)) dco (4.38)

We shall estimate the terms in (4.38) separately. For the first term we have

1671
£ |C2-C,|(t)J \^(t)e-ion - ^(x]eia"\2 dco

e
I67:<-^ |C2-C,|(t)[ (|j/?j/J| +

— 00

- e Ir r IM 4<M»N»K°) - =(MoN„)(0)
I 2 - 11' ̂  4ji(1 - ||f?2 II1 )2 l(t)-

e
167t

e
~ 16tt

The second term becomes

| ((j/?i*7 - ^W?)(t) + (0JJ? - #?$?)(t)) dco

[ {^2(^2 - ) + ^1(^2 ~ J*i) + ^2(^2 - @1)
— 00

+ - .^i'))(t) dco

<-rff (|j/jii^-^ri + i^ri\j*2--*t\ + i«211^?-^ti
1071J _ oo

+ |3?| |^?-^?|)(t) <fo

<JK2I + |^?| + 1^1 + !*?!*)*»
e 4No(0)

16tt (l- max |k ij 1 " ™rJk-,U
V m=l,2 /

£(M0No)(0) „
1 T3 N2 - <7l II l-

4tc( 1 - max ||«m || t
V m = 1,2 /
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The last term of (4.38) is similar to the second term; the result is

f (e~ - */?&?)(r) - e2icot(^2^2 ~ &T&T)(*)) dco
 )

e(M0N0)( 0)

e
1671

I \3 life <?1 II 1-
4?t( 1 - max HgJj

\ m= 1,2 /

The last three inequalities imply that

tr _r i£(mqno)(°) lr _r IM i iu _fl 11lr2 1 ' ' 4W1 ll/i II \2 I 2 ^ll(T) + / \3 11^2 *21 111'
" " 2,1- max I,. 1,

\ m = 1,2 /

and since ||gm || j < <5 jo (</>;/( 1 -I- f/2lc)), for m = 1, 2, we can majorize the last inequality
by

ir r |M' £(MoNo)(0)I 2 -mKt) <—  ————-2 I c2 - CjKt)

'J. 1+V)
From the definition of |||- III* and Lemma 4.1 we have | C2 — Ct | (r) < |||C2 - C,1|||k and

life - 111 < (1 + <5)jo J-^21 IHC2 - Cif,

and these combine to give

Ir, — r,|(t) < „nc,-c,i I*

e(l + ̂ jJT^](M0N0)(0)
+ ; - ' ' ;—73— iiic2 - cj k

ell + C + d^-^iMoNom
<   7 ~ x , ' u IIIC2 - Cjf. (4.39)

We now turn to the derivatives. We have

r2f2 r2fir2-rJ = Ti
^ jr^fv-Tifjj | |fi||ra -nj
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and therefore if we exploit 1 < r2 and supt(l + t2*) | f 11 <5 we have
sup(i + T2*)|r2 -fiKtj^supCi + T2k)|r2f2 -r1f1|(t) + ^ sup|r2 -TjKt).

XX X

(4.40)
The inequality (4.39) yields

sup(l + r")|f2 - r,(T)| <sup(l + T2*)|r2f2 - r1f1|(r) + eSDl IIIC2 - Cjf,

(4-41)
where

Dy =
|l + (2 + 5)j"Ti5J(M0No)(0)

and therefore it suffices to estimate the first term on the right side of (4.41).
Recalling the relation

r f = £l
1 in1 m

47tCm-_00
J" oj(s/Z®l)(i)e~2iun dco

and the identities (3.46) and (3.47), we have
J 2 JI

|r2f2-r1f1|(t) = ^ (t)

e< —
4ft

C2 C,

J 2 — JI J l(C2 — Cj)
c2 c,c 2

M
iJiri LW+«.Jil^lW (4.42)

47t C2 4n C1C2

From the fact that Cm > 1, for m = 1 and 2, we are able to replace (4.42) by

(1 + T2*)|r2f2 - TjfiKT)

^(1 +*2k)\J2 - J1|(t) + ^(1 + t2*)|J1|(t)- \C2 -CjKt)

< ^ (i + t2') |o(q2(s)H2(T - s, s) - 4i(s)tf i(t - s, s)) ds

+ ^0 + T2k)|^i|(T)|C2-C2|(T)

+T">f> ~ ~5' s)ids

+ in ^ + t2k)l0 '^2 ~ ~ S' dS

+ ^(1 + t2")|J1|(t)|C2-C1|(t), (4.43)

where and H2 are defined in Eq. (3.47).
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The results of Lemmas 3.2-3.7 together with (4.26) and (4.27) yield

(1 + r2k) I r2f2 - r\ I (r) < ^ 22k+1Hk IIq2 - qx ||»

111'1

e
4n ((2,(0) + 2»6ffkj" A)|C2-Cj|(t)

where

4<1 + 2»«.(0)j; + 4(1 + 2"W(I
Kk =

1 -(2—+1^(i;T^pi)2

(4.44)

and Hk is defined as in (4.27).
The theorem now follows from (4.39), (4.41), (4.44) and Lemma 4.1.
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