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1. Introduction. This paper is concerned with initial-boundary-value problems asso-
ciated with a general system of equations which covers in an unified way several classes
of wave propagation phenomena in continuous media. This system encompasses, as
special cases, integro-differential equations for electromagnetic waves in dispersive media
[1], stress waves in viscoelastic solids, magnetoelastic waves in conducting solids [2], and
symmetric hyperbolic systems governing wave propagation in elastic solids, for instance
[3]; it notably includes the numerous one-dimensional theories that describe various
wave propagation effects in rods (coupling of extensional, torsional, flexural waves in
beams or helical springs [4], water-hammer effect in cylindrical viscoelastic ducts [5]) as
well as asymmetric motion of shells of revolution.

The usual discretization methods (such as finite differences or finite elements) give a
solution whose accuracy rapidly decreases as the length of the time interval increases.
Wave-front expansion methods provide series solutions whose convergence is fast close
to a wave-front, but soon becomes very slow at some distance from it. Note that conver-
gence can be accelerated by the approach of Turchetti and Mainardi [6] who employed a
Padé approximant technique.

These shortcomings prompt the proposal of a new integral-like representation of the
solution which is termed the “summed progressing wave.” It still constitutes a formal
theory, but the excellent numerical results it provides already render its development
rewarding.

In addition to the computational advantages, this formalism provides a better insight
into and understanding of wave propagation phenomena, as it shows individually the
importance of coupling, attenuation and boundary conditions.

2. Hyperbolic integro-differential system. The above-mentioned system is of the
form:
~ 0 ~ 0 - 0 0
L0=_U0+4"_—U0+42_-0+4_-0 U=0
ot * 0x * dy * 0z + 7 ’

where U is the column vector of the n unknown functions of the independent variables
(x, y, z, t) such that (x, y, z) are the space coordinates and t is the time. A%, A%, A% are n
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by n constant coefficient matrices and &, is an operator, integro-differential with respect
to the variable ¢, defined by:

d

2,0(x, y, z, t) = 5J D(t —7)0(x, y,z, 1) dt = D(t) ®U(x, y, z, t)
0

where D is a n by n matrix whose coefficients are functions of time, several of which

depend on the constitutive equations of the medium considered. For the sake of

definiteness, we will confine ourselves to the situation where D is of the form:

where the matrices D, have constant coefficients, which is sufficient to encompass most
usual cases.

(a) Characteristic surfaces. It can be verified that the system LU = 0 has the same
characteristic surfaces as the partial differential system obtained by letting D = 0 [7]. The
corresponding characteristic surfaces ®(x, y, z, t) = 0 meet the characteristic equation
Q(®) = 0 with Q(®) = det A, where the n by n characteristic matrix A4 is defined by:

A=Q + O A"+ O, 4 + D A

where [ is the n by n identity matrix [8].

(b) Bicharacteristics. Let x; = xi(s); i=0,1,2,3 (xo=1t, x; =X, x; =), x3=z) be
the parametric equations of the bicharacteristic curves defined by: (d/ds)x; = 1(6Q/0®;),
(d/ds)®; = — A(0Q/dx;), where ®; = (6Q/dx;), s is the curvilinear abscissa and A is a par-
ameter [8]. We will be interested in the bicharacteristics contained in the characteristic
plane: ®(z,t)=z —ct + ¢ =0 where ¢ is a given quantity, and such that ¢+ 0 is a
(possibly multiple) root of the equation det(A* — cI) = 0.

It can be verified that these curves are the straight lines

t=s+ ¢, Z=cs.
Conversely, we have:

¢=t-— z/, s = z/c.

(c) Eigenvectors associated with a characteristic plane. We know that the equation
(A*—c)1=0,

where the superscript T denotes the transpose, possesses n vector solutions 1 associated
with the n possible values of c. These eigenvectors of (4°)" can be made to form an
orthonormal set which constitutes a basis of the n-space; this entitles us to assume that
A? is symmetric without restriction.

(d) Change of variables associated with a characteristic plane. Now set

oz, t)=1t—z/c, s(z)=z/c,

then ¢(z, t) = 0 is the equation of a characteristic plane. Next set

U(x, y, 2, t) = U(x, y, ¢(z, t), s(z)).
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With the independent variables (x, y, ¢, s) and since the initial state is rest, the operator
L takes on the new form L such that
0 0

where B, is the integro-differential operator defined by

0 0 |
B, U = ’A"— A — + D(¢p)®?
) it v " (4) ‘U
in which the superscript ¢ denotes that the Stieltjes product is with respect to the
variable ¢.

3. One-dimensional summed progressing wave. Consider temporarily the restricted
case where 4*= A4’ = 0 and the data are such that the solution U does not depend on
(x, y)-

First assume the characteristic ¢(z, t) = 0 to be simple and such that ¢ # 0. Let 1 be
the eigenvector of A* associated with ¢. Our key idea is to seek solutions of the system
LU = 0 which admit the decomposition:

U(e, s) = T'(¢) ® b(9, 5)® w(¢9) (1)

where w is a scalar function of the variable ¢, in class K for instance (that is piecewise
continuous together with its first derivative), b is a scalar function of the two variables ¢
and s which is infinitely differentiable, I' is a n-dimensional vector function of the var-
iable ¢ which is also infinitely differentiable, and which meet at s = 0 some boundary
condition involving the value of the scalar product s - U, where s is a n-vector such that

s-1=1 (2)

The operation ® bears upon the variable ¢; it requires a generalized derivative, if
necessary. In the sequel « will denote an auxiliary scalar function of the variable ¢
related to I'.

Seeking solutions of the form (1) leads to the following result.

FUNDAMENTAL THEOREM. Let I', o and b be three functions that meet the following
relations and conditions:

(eI — Aﬁ%l‘ + AT® a+ cB, [ =0, (3)
ro)=1 @

s T(g)=1, ©)

2 b6, )= 2(6) @ b(o 5, ©)

b(¢, 0)= 1. (7)

Then the field U defined by (1) is a weak solution of the system LU = 0.
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Proof. From the properties of the operation ® we have
0 0

a—¢U ()6d>(b® )+E®b®w,
whence:

(cI—A’)é%U (cl — A% )— ®b®w
as

(c — AL(0) = (cI — A =0

from Sec. 2(c). Moreover:

EU F®6b®w—r®a®b®w
0s 0s
from (6). Thus:
| ar . .
cLU=l(I A)%+Ar®a+c3 F‘®b®w

which is zero according to (3).

This enables us to propose the following definition.

Definition. We call “summed progressing wave” every weak solution of LU =0
which is of the form (1) where I', « and b meet ((3) to (7)).

Consequences. (a) Let ¢ denote a n-vector such that

A6 = cs. (8)

On premultiplication of (3) by ¢, we see that « can be expressed in terms of I through:
= — r+B,I'

(8) = ~a(j5T + B,T ) o)

(b) Let (sa-®) denote the operator which associates the function s« ® u with every
differentiable u = u(¢) and let exp(sa®) denote its exponential which is formally defined
by [9]:

2

exp(sa ®)u = (1 +sa+5a®a+ )@u.

Then it is clear from (6) and (7) that

b(¢, s) = exp(s ®)b(¢, 0) with b(¢, 0)=1, (10)
or, more generally,
b(. 5) = expl(s — so) ®)b(b, 5o). (11)
Comparing (10) and (11) gives
b(¢, s) = b(¢, s — 50) ® b(¢h, 50), (12)

which constitutes the semigroup property of b with respect to s.
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4. Properties of the summed progressing wave. Consider the specific case when w(¢)
takes on the form w(¢) = H(¢)w(¢), where H denotes the Heaviside step function and w
is infinitely differentiable. Then U defined by (1) meets:

the system LU = 0 in the weak sense in the domain (z > 0, t > 0);

rest initial conditions;

the boundary condition at z=0 (ie. s =0, ¢ =1);

U(t, 0) = s - T'(t) ® b(t, 0) ® w(t) = w(t), (13)

from (5) and (7), where ® is with respect to t.

Set z=0; then s=0, ¢ =¢ and, from (1), U(t, 0) = T'(¢)® w(t) where &® is with
respect to t.

This shows that I" fully defines the coupling between the various components of U on
the boundary z =0, without regard to w, which, as will be seen later, represents a
prescribed excitation.

Moreover, for an observer traveling along the axis z > 0 with the velocity ¢ of the
wavefront, the value of ¢ remains constant and (1) states that the variation of U with
z = cs is entirely governed by the function b(-, s).

It follows that the summed progressing wave enables one to identify three important
effects in the solution:

(1) the scalar function w represents the datum on the boundary on one hand and the
initial state (here rest) on the other;

(2) the vector function I' fully accounts for the “vector character ” of the solution and
thus defines the coupling between the unknown functions, without regard to the form of
the “loading” prescribed on the boundary z = 0 or to the initial state;

(3) the scalar function b describes the attenuation of the wave during its propagation,
without regard to initial or boundary data.

5. A more convenient formulation. Due to the fact that matrix ¢/ — A% is singular,
the system (3)-(7) does not easily lend itself to computation in its current form.

In (3) the term AT ® « can be transformed using the fact that I' ® « = I'(0)x +
(dT'/d¢) = o where = is the usual Riemann convolution product such that

()*g(¢)—J f(& =)o) dy.

Thus AT ® a = clo + A*(dT'/d¢p) * a as T'(0) =1 and A%l = cl.
From (9) it can be shown that

AT® o= ——cl®c( I'+B F)+A d—*a

dé dé

where ® denotes the dyadic product of n-vectors. (3) becomes:

(cI—Az—cl®o)%F+c(1—l®c)B¢F+A’% xa=0.



164 D. GAMBY

Now it can be demonstrated that the matrix 4% — ¢I + ¢l ® o possesses the remark-
able property that it is invertible; let M denote its inverse. Then the system (3)-(5) is
profitably replaced by:

d dr
46T = MU —1®6)B, T+ MA Gy o T(0)=1 (14)
4= —g- (d¢r+3 r) (15)

By eliminating o between (14) and (15), and after some manipulation, it is clear that
the vector function G = (d/d@)I" satisfies a surprisingly nonlinear Volterra integro-
differential system of the second kind.

6. Multiple characteristics. Most of the physical theories referred to in the introduc-
tion lead to systems that possess multiple characteristics. Now assume the characteristic
¢(z, t) = 0 to have multiplicity two: ¢(z, t) =t — z/c where ¢ = ¢, = ¢; # 0 is a double
root of the equation det(A* — cI) = 0.

Let w? and w? be two arbitrary functions of ¢ in class K; let 1, and 15 denote two
mutually orthogonal eigenvectors of A® associated with the characteristic ¢(z, t) = 0 and
S, , 83 denote two n-vectors such that

where §;; is the Kronecker delta; ¢, and o, are two n-vectors such that
Azo',' = CS,' (1 = 2, 3)

It can then be verified that the matrix A° — ¢l + ¢(l, ® 6, + 13 ® 03) is invertible; its
inverse is denoted by N.

Let I'" and o' on one hand, b on the other (i, j = 2, 3) denote the functions of ¢ and
(¢, s) respectively, with s = z/c, such that:

A NI =1, ®0; 1, @05)B," + NA* Y (drj i 16)
ié =c 21 ®0; ~13®0;3)B, P2 ﬁ)*a’ (
ro)=1, (17)
W= —0;- (d I'+B r') (18)
J d¢
O = 3 o @ (19)
0s = ’
bY(¢. 0)=0;  (i,j=223) (20)

It can be demonstrated that the summed progressing wave associated with the double
characteristic ¢(z, t) = 0, weak solution of LU = 0, is:

Z {T'(¢) ® (9, 5)®}w/(). (21)

i,j=2
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After some lengthy manipulation, it can be verified that
s V=9 ij=23. (22)

By putting z =0 (whence s =0, ¢ =t), and taking into account (20), (22), the above
solution is seen to satisfy the two boundary conditions:

s, - U(t, 0)=wi(t), s - U(t, 0) = w(t).

ij

7. Mixed initial-boundary-value problem. To illustrate this approach, assume that
the characteristics emanating from the origin are the two straight lines: ¢,(z, t)=0
associated with the simple root ¢ = ¢, and the eigenvector 1; on one hand, ¢,(z, t) =0
associated with the double root ¢ = ¢, and the two mutually orthogonal eigenvectors 1,
and 15 on the other. Next, set s, = z/c, and s, = z/c, .

Consider the following mixed problem: the initial conditions pertain to the rest state
(which is not very restrictive for practical applications)

U(z,0)=0;
the Boundary conditions consist in prescribing the classical data for hyperbolic systems
(e.g. see (10)):
s U0, 1)=gult), k=1,2,3,
with
s;- =1, s-L;=6; (i,j=273).
The solution is known to be of the form

Uz, 1) = Ul (2, 1), 51(2) + U (a2, 1), 52(2)), (23)

where U is of the form (1) and U? is of the form (21). g,(k = 1, 2, 3) are given functions
in class K for instance that characterize the prescribed “excitation.”

Let w! on one hand, w? and w? on the other, denote the functions w associated with
U' and U? respectively. The three functions w', w?, w® are determined by writing the
boundary conditions at z = 0, where 5, =s, =0 and ¢, = ¢, =t.

Taking into account conditions (5), (7), (20), (22) it can be seen that, once the
functions T*, ay, o', b, b (k = 1, 2, 3; i, j = 2, 3) are known, the functions w* are of the
form

w(@i) = H(pr)w (¢r) (k=1,2,3 with ¢; = ¢,)

where the new functions w* solve the partial integro-differential system

S - i ri(t) ®wi(t) = git), k=1,2,3 (24)

j=1

in which the operation @ bears upon the variable ¢ (it is understood that the functions
I'? and I'? are associated with the summed wave U2, whereas I'! is associated with U?!).
As will be demonstrated later, the system (24) enables one to determine the functions w*
completely.
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8. Numerical implementation. Computations take place according to the following
stages:

(1) the first step consists in calculating T* and o* or «", the only data being 4%, D(t),
and s, ;

(2) once T* o* and «" have been determined, the next two steps can be achieved
simultaneously; these are:

(a) calculation of w* from T'*, s, and g,

(b) calculation of b* or b" from the values of o* or o',

As regards the functions I™*, o* and o, it has already been verified that the systems
(14)-(15) or (16)-(18) lead to systems of nonlinear Volterra integral equations of the
second kind; for their solution, the iteration method turned out to be very efficient.

As regards the functions w*, taking into account the conditions (5) and (22), the
relations (24) lead to a system of linear Volterra integral equations of the second kind;
the iteration method can again be used successfully.

As regards the functions b* or b, their computation amounts to the calculation of the
generalized exponential (10). In order to perform it, we resorted to the following
procedure:

(1) calculate b for a small value of s by using the first terms of the expansion of b in
the powers of s;

(2) then calculate b for the values 2s, 4s, ..., through a repeated use of the semigroup
property (12).

This procedure allows one considerably to reduce the number of convolution pro-
ducts to be computed. Thanks to it, the asymptotic solution for large values of s could be
reached easily while solving a specific problem: we investigated the propagation of
dispersive stress waves along a beam of rectangular cross-section whose end is subjected
to a shock [11]. The phenomenon is described by either Volterra’s or Medick’s theory
which take into account the lateral contraction of cross-sections. The pertinent system
LU = 0 has dimension eight. With the help of the summed progressing wave formalism,
and after repeated use of the semigroup property (12), we could reach both short-term
and long-term solutions through the same computation, which could not be performed
as easily by other means; this example illustrates the potential of the proposed method.

9. Extension to three-dimensional problems. Consider now the following problem.
The solution is sought in the domain {z > 0, t > 0} of the four-space (x, y, z, t). The initial
data are homogeneous:

U(x, y,20)=0.

The boundary data are of the form s, - U(x, y, 0, t) = g,(x, y, t) where the vectors s, are
defined as above and the functions g, characterize the loading prescribed on the plane
z =0 (such problems are often encountered in seismology).

The solution can still be constructed by superimposing several “summed progressing
waves,” each summed wave being associated with a characteristic plane ¢(z, t) =1t —
z/c = 0 that contains the straight line (t = 0, z = 0) in four-space.

In the case where the characteristic plane ¢(z, t) = 0 is simple, the relevant summed
progressing wave is now defined as follows:

0 0 0 0
Uls. v, ¢,5) =T, 2, a—y)@b(dx s s @)®w(¢, <)
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in which:

w is some function related to the boundary data,

b is no longer a function, but a “generalized ” differential operator with respect to the
variables x and y, depending upon parameters ¢ and s. The term * generalized ” will soon
be specified;

I is also a generalized differential operator with respect to x and y, like b, but it
depends on the parameter ¢ only and it is vector-valued.

The operation ® can now be defined as:

o5 oo o) @wlox )= [ b0 —ves L St

In the cases of interest here, b and I" have the form:

) ® p o 0
(4” 6y)’;ov_!b"(s’&ﬂ)

0 0 z P 0 0
Mo s )= 2 e 3)

where b, and v, are operators, differential with respect to x and y, of order v at most,
which are number-valued and vector-valued respectively. A more rigorous definition of
such operators could be attempted by using the concept of “ pseudo-differential ” opera-
tor [13].

The relations verified by these operators are formally the same as those verified by
the corresponding functions in the one-dimensional case: after some obvious transposi-
tions, the relations (3)-(7) met by functions become relations between operators (the
order of the factors should be respected carefully). For instance, the relations (3), (6), (9)
are left formally unaltered, whereas (4), (5), (7) go over to:

o 0 ¢ 0 0 0
F(O,&,Ky)—",s F((ﬁ,a—x,@)—l,b(d),o,&,ahy):l

where 1 is the identity operator in the space of number-valued functions. «(¢) is replaced
by a(¢, 0/0x, 6/dy) and now:

exp(sa ®) =1+ (sa ®) +

After suitable transposition, the relations (14)-(15) enable one to readily determine
the operators I' and b through their expansions in powers of ¢.

We applied this procedure to a problem involving three-dimensional elastodynamics.
Here the system LU = 0 has dimension seven: the unknown functions are the three
components of the velocity vector, the dilatation and the three components of the rota-
tion vector. Boundary data consist in prescribing the values of the velocity vector on the
plane z = 0. The summed progressing wave enabled us to obtain the solution in the form
of a wave-front expansion more readily and more systematically than by using Recker’s
method [3] which requires the solution of the equations of transport of discontinuities. It
is also interesting to note here that the corresponding viscoelastic problem could be
treated in much the same way since the numerical procedure is not significantly altered
by the introduction of viscoelasticity.
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