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Abstract. The translational addition theorems for spheroidal scalar wave functions
R„n(h, £)Sm„(/i, rj)exp(jm(j)); i = 1, 3, 4 and spheroidal vector wave functions M£/'2(')(/i;
r/, 4>), N„ny'zU)(h; £, t], </>); i = I, 3, 4, with reference to the spheroidal coordinate system at
the origin 0, have been obtained in terms of spheroidal scalar and vector wave functions
with reference to the translated spheroidal coordinate system at the origin 0', where 0'
has the spherical coordinates (r0, 60, <£0) with respect to 0. These addition theorems
are useful in acoustics and electromagnetics in those cases involving spheroidal radiators
and scatterers.

1. Introduction. The translational addition theorems for spherical scalar wave func-
tions were developed by Friedman and Russek [1] and those for spherical vector wave
functions were given by Stein [2] and Cruzan [3], These addition theorems were applied
by Bruning and Lo [4] to the problem of scattering of a plane electromagnetic wave from
a system of two spheres. In general the boundary-value scattering problem involving
many bodies will require transformation of an outgoing wave from one body and its
associated origin 0 (the center of the body) and coordinate system X into the incoming
wave to another body with its own associated origin 0' (center of the body) and coordinate
system X'. These transformations are accomplished by addition theorems. In particular,
when the geometries of interacting bodies are the same and the axes of symmetry are
oriented parallel to each other, the transformations are by translational addition
theorems for wave functions corresponding to the coordinate geometry of the interacting
bodies. The motivation here is to obtain an exact solution in terms of spheroidal wave
functions for the problems (acoustic and electromagnetic) of plane wave scattering from
two or more spheroids with parallel axial configurations as an extension of multipole
solutions given by the authors [5] for electromagnetic plane wave scattering from a single
prolate spheroid.

The first expansion treated in this paper is that for the standing spheroidal wave
Rmn(h, £)Smn(h, t])e\p(jm(f)) with reference to the coordinate system X at origin O in terms
of spheroidal waves Rmn(h', £')Smn(h', tj')exp(jm(t>') with reference to the translated co-
ordinate system X' at origin 0(£, rj, <fr) are the spheroidal coordinates, h = kFt where k

* Received August 29, 1979. The work described here was sponsored by Grant A-2176 from the Natural
Sciences and Engineering Research Council, Ottawa, Canada.

t h corresponds to c and F corresponds to <2/2 of Flammer's text [6],
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is the wave number and F is the semi-interfocal distance. A detailed account of spheroi-
dal functions Rmn (radial function) and Sm„ (angle function) can be obtained in Flammer

[6],
The second expansion is that for the outgoing spheroidal wave R„^(h, £,)Smn(h,

ij)exp (jm<p).
From the first two expansions we then obtain an expansion for R^(h, £)Smn(h,

t])exp(jmct>) with reference to the coordinate system (0, X) in terms of the spheroidal
waves referred to the translated system (0', X') by using the relationship R{^(h,
o = 2 Ri»(h, {) - R%(h, a

The transformations of the vector functions M*„y-2(1 •3'4)(h; r\, </>) and
N*'/,z<1,3,4,(ft; £, q, (j)) from (h, X) to (0', X') are then obtained from the expansions of
the scalar functions R^ 3' 4)(h, £)Smn(h, t])exp(jm(j)).

To evaluate the integrals which are instrumental in the above transformations (0,
X -> 0', X'), a formula is needed which expresses the product of two associated Legendre
functions in terms of a sum of associated Legendre functions such as given by Stein [2,
pp. 22-23]. A fast and convenient computer algorithm has been developed in Appendix I
to evaluate the coefficients of this expansion.

In this paper all derivations are for prolate spheroidal functions, although the termin-
ology "spheroidal" instead of "prolate spheroidal" has been used since the derivations
for the oblate case are very similar. In fact, the results for the oblate system are obtained
from those for the prolate system by the transformation <* h -» —jh (or F -> -jF).

2. The expansion for \^(h\ rj, 0) = R{J£(hi, t,)Smn(h, t])exp(jm(l)). The Cartesian
coordinate system associated with a spheroidal coordinate system has its origin at the
center and z-axis along the positive direction of the spheroidal axis of symmetry. The
translation moves the Cartesian system at the origin O corresponding to the spheroidal
system (h; £, rj, <p) to the origin O' corresponding to the spheroidal system (/?'; //', ft).
The cartesian coordinates under translation are shown in Fig. 1. The point P has
the spheroidal coordinates (h; £, 4>) and (h'\ r]', </>') in the two coordinate systems.
The polar coordinates of the origin O' with reference to the origin O are (r0, do, </>o)-

A plane wave to the direction [0=0,, (j> = </>,] can be expanded in terms of the
spheroidal scalar waves in the (h; rj, </>) system at 0 [6, p. 48] as

00 °°

expO'/cr cos y) = 2 ^ X J"
m= 0 n = m ^mn{h)

■ Smn(h, cos 0i)Smn(h, r])R{^(h, c)cos[m(cp - (/>,)] (1)

where Nmn(h) — normalization constant [6, p. 22] for the angle function and

= jl, m = 0
" 12, m 1 0 '

If we wish to use the complete range of m, i.e. — oo < m < +oo, then from expressions
given by Flammer [6, p. 22] we note

Sm„(h, rj)Smn(h, cos = S-m.n(/i, ri)S.m n(h, cos 0,)

Nmn(h) N-m,n(h)
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Fig. 1. Coordinate translation.

and from the integral equations [6, pp. 48-50] involving R„„(h, c), i = 1, 3, 4 we see that
R^Kh, £) = R(i'm „(h, £). These relations change Eq. (1) to

oo n :n

exp(jkr cos y) = 2 £ £
„=o m=-„ Nmn(h)

■ Smn(h, cos 0i)Smn(h, tj)R^(h, £)exp[jm(<p - <!>,)]. (2)

Multiplying both sides of Eq. (2) by Smn(h, cos di)exp(jm(f)i)sm integrating on 0, and
(pi, and using the orthogonality property of the angle functions [6, p. 22], we obtain

i£, t], (p) = Smn(h, rj)R(JJ(h, c)exp(jm<f>)
2 n .n

= (4nj") 1 I [ exp(jkr cos y)Smn(h, cos 0,)
Jo Jo

• exp(jm<f)i)sin 0, ddi dcpi. (3)

Similarly, the standing spheroidal waves referred to 0' are given by

Vmn (H; r\', <p') = Smn(h', rj')R%J(h', {')exp(jm<p')

= (4nj")~1l I exp(jkr' cos y')Sm„(h', cos 0t)
Jo Jo

■ exp(jm<fii)sin 0, ddi d4>t. (4)
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Now since the radius vectors are such that (see Fig. 1) r = r' + r0, it follows that if k, is
the propagation vector of the incident plane wave, then

kf r = k, (r' + r„)

or equivalently

r cos y = r' cos y' + r0 cos y0. (5)

From Eqs. (3) and (5) we get
,27i rt

^mn(h; L r\, <t>) = (4;if) 1 I I exp(jkr' cos y')exp(jkr0 cos y0)
•'n"0 *0

• Smn(h, cos 0,)exp(jmfa) ■ sin 0, d9t . (6)

Now consider the plane wave expansion

exp(jkr' cos y') = 2 £ £ 1TJU\ cos di)S^(h'< l')
v = 0 n= -V iVjM" )

■ KW' <HexPL/a*(0' - 4>i)l (?)
It can be shown [1, p. 18] that (7) is a uniformly convergent series; hence, on substituting
(7) into (6), the order of summation and integration may be interchanged. Consequently
we have

& if, 4>) = (47if)' '2 £ £ j tf, fa)
v = 0 n= - V iV/M" j

• I I {exp(y7cro cos y0)Sm„(h, cos 0,)SHV(/i', cos 0,)
•'o Jo

• exp[j(w - ^)</>,]sin 0,} <*0,. fa. (8)

Now from the definition of Sm„ [6] we have

Smn(h, cos Ot)S^{h', cos 0,)

= £ <"C)^m|+9(cos 0.) fj dr(fc')n.|+.(cos &,)
q = 0,1 s = 0. 1

-if<j = o, i s = o, i I |A< | ~ A4 + si!

• P^+Jcos e.JP^f+^cos 0;), (9)

where the d's are the expansion coefficients for the spheroidal angle function.
Using the linearization formula [2, pp. 22-23]

fn(cos 0,)P?(cos 0j) = £ a(w, n\fi, v|p)P; + "(cos 0,) (10)
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where p = n + v, n + v — 2, n + v — 4, ..., | n — v |, in (9) we obtain

Sm„(h, cos 0;)S„v(/i', cos 0.)

= f y y dmn(h)d"v(h')(-iY

■ a(m, |m| +q\~n, \n\ + s | p)P£-"(cos 0;) (11)
with

P = M + M +q+s, |m| + |/i| + q + s — 2, | |m| - |/i| +q-s\.

The determination of the expansion coefficients a(- ■ •) is discussed in Appendix I of this
paper.

From (8) and (11) it follows that
00 V 00' 00' /   1

IO*; = 2 X £ £ XI xTTvi jP+v'n
v=0 |/=-v pO(l s = 0,l p ^ nv\ /

■ +^ + S)! dmn{h) d^(h'\
(|/i| -n + s)\ 9 [,s [ '

■ a(m, |m| + q\~n, |/i| + s\p)

■{(4njpyl I | expO'fcr0 cos 7o)P^""(cos 0()
Jo Jo

• exp[j(m - n)(t>]sin 0t d6t dcp^'^h'-, rj', <£'). (12)

Now from Stratton [7]

jn(kr0)P^(cos 90)exp(jm(j)0)

r2n c*
= (47r;')n exp(jkr0 cos y0)P^(cos 0o)exp(/m^>,)sin 0,- dOt d<pt. (13)

•'o •'o

Hence, (12) reduces to
00 V

Vmn(h; &n,4>)=Y E A'ltvKlW', 4>') (14)
v = 0 n = — v

where
/  1 \n oo/ oo/

A^=2jnk i i £;p+v-n
fiv\ ) q= 0, 1 5=0, 1 p

■ ||^| * d™{h) d^(h')a(m,\m\ + q\ - n, \n\ + s\p)

■ jp{kr0)P^-"(cos 0o)exp[/(m - ^)tf>0]. (15)

The equation (14) is the required transformation from the O-system to O'-system. Since
any of the equations given above does not include any restriction on relative size of r'
and r0, Eq. (14) is valid for any r'.
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3. The expansion for 4,(/j; c, rj, <£) = R^„ 4)(/j, £)Sm„(h, tj)exp(jm(p). To obtain the
addition theorem for the outgoing spheroidal wave £)Sm(h, tj)exp(jm(j)) we start
with an integral equation given by Flammer [6, p. 50, Eq. (5.3.23)]:

•A!»3n(fr; L '1, <t>) = Rmn(h, Z)Smn(h, fj)eXp(/ni0)
2n n/2-jao

= (2nj")~1 I I exp(jkr cos y)Smn(h, cos 0,)
'0 -o

• exp(/m0,)sin 0; d0, d(pt. (16)
Proceeding in a similar fashion as before and using Eqs. (16), (5), (7) and (11), we get

*£(*;£,*.*) = 2f; i i I
v = 0 n = — \ q = 0, 1 s = 0, 1 p /ivV /

(Ijul+Zz-fs)! - , , . II, i\
• a(m, m + q -//, p + s p)(I/i| -|i + s)!

| ,2 ?r ,n/2-jao

■ (2jt/)_1 | exp(/7cr0 cos y0)P£~"(cos 0,)
I •'o

• exp[/(m - /i)0i]sin 0, <i0, if, </>'). (17)

Eq. (17) has been obtained by exchanging the order of summation of Eq. (7) and integra-
tion of Eq. (16), which is possible, provided that r' < r0 [1, pp. 19-22]. Hence Eq. (17) is
valid in the region r' < r0.

Using a relation given by Friedman and Russek [1, Eq. (15)] we can write
2 n n/2-jco

(2njp)~1 | | exp(jkr0 cos y0)P^-"{cos 0,)exp[j(m - p)0,]sin 0, <?0, dfa
0 Jo

= h(pu(kr0)p;-"(cos 60)exp[j(m - nWol (18)

where h(p1] is the spherical Hankel function of the first kind. Substitution of (18) into (17)
leads to

& n,<t>)= Z i A{X\h'- t(, </>'), r' < r0 (19)
V = 0 n = - V

where

N ) g= ot i s=o, i p (IH A' ~^~ ^) •
' d%"(h) d»v(h')a(m, |m| +q\~n, |//| + s|p)

' Hp)(kr0)F$~''{ cos O0)exp[j(m - n)<t>0\ (20)

From the relation R(^(h, £) = 2R(^(h, £) - R(^(h, £) we obtain

¥mn(h\ rj, (f>) = 2^(h; rj, (f>) - <p'^(h; r\, </>)
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which on substitution of the equation h{p\kr0) = 2jp(kr0) — h^](kr0), where /j(p2) is the
spherical Hankel function of the second kind, gives rise to

S, ri,4>)= i I AX\h'; rj\ </>'), r' < r0 (21)
v= 0 n= - v

where

_2 y y y -p+v-n (|A'J _+/'+_SI!
"v Njh') q=X i s=% i 7 fl/ij-fx + s)!

• d^"(h) d^'(h')a(m, \m \ +q \~n, \n\ + s|/>)
' h{p](kr0)P^~"(cos O0)exp[j(m - /i)(/>0]. (22)

In order to obtain the transformation for r' > r0 we substitute Eq. (5) into Eq. (16),
then express exp(jkr0 cos y0) as the following summation [1, Eq. (15)]:

exp(/7cro cos y0) = I I /(2v + l)jv(fcr0) jV ** j
v = 0 n = — v lV + Pi"

• Fv(cos d0)P1,(cos 0,)exp[>(</>o - 0,)] (23)

after which we exchange the order of summation and integration (valid if r' > r0) and
obtain

Vmn(h; & >7, <jf>) = (2nf)~1 X £ f(2v +
V= 0 H=-V lV ' Z1)-

,2 n n/2-jco

■ P»(cos 90)exp(jn(t>0) I j exp(jkr' cos /)
0 '0

• Smn(h, cos 0i)pv(cos 0i)exPD'(w - /#i]

■ sin 0, dOi dcfrj, r' > r0. (24)

Now, by expressing Smn(/i, cos 0,) in terms of associated Legendre functions, viz. Smn(h,
cos 0i) = X«=o, i (i™n(/i)Pj^|+9(cos 0,), converting P?(cos 0f) to Pv~"(cos 0f) by the well-
known relation Pf.(cos 0,) = ( — l)"[(v + /i)!/(v - //)!JP~"(cos 0,) and finally applying the
linearization expansion given by Eq. (10), we get

t i h (-l)"/+v-"(2v + 1)
v= 0 ji= — v q = 0, 1 p

• d™n(h)a(m, \m\ +q | -/i, v|p)j,(kr0)

■ Py(cos 0o)exp(7yu0o)(27t/)"1
> 2tt ir/2-j'co

• | I exp(jkr' cos }'')P£-"(cos 0,)exp[/(w - //)0,]
•'o

• sin 0, dO, d(j),r' > r0 (25)
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where p = |m | + q + v, \m\ + q + v — 2, ..., | |m \ + q — v|. Using a relation similar
to (18), Eq. (25) can be reduced to

n, <t>) = I I II (-1Tjp+V'n
\' = 0 n = — v q = 0, 1 p

' (2v + *)(v _^)t d7(hM™> H +q\-H,v\p)

' jAkro)Py(cos d0)exp(jn<l>0)h{pl)(kr')

■ f7""(cos 0')exp[j(m - /z)0'], r' > r0 . (26)

In order to obtain explicit transformation in terms of spheroidal waves we expand the
spherical wave function h{p\kr')P^~ "(cos 0')exp [j(m - n)(p'] in terms of a complete set of
spheroidal wave functions R^Lfl ,(h', £')< Sm_w>,(/i', r/')exp[;(m - /j.)</>'], i.e.

00

h(p\kr')P^ ''(cos 6')= £ <x,(h')R£L^,(h', if'). (27)
I = |m - /i |

When /)'£' (or kr')-*co, then r/'->cos 0', h'£'->k'r', h(p](kr') —> (ejkr /kr')jp+1 and
Rm-n,t(h', £')-^ (eihi /h't;')jt+1 -*■ (eJkr'/kr')f+1, so that Eq. (27) asymptotically reduces to

T"(cos 9')jp+1 = X f+\(h')Sm^,,(h', cos 0')- (28)
t

Multiplying both sides of Eq. (28) by cos 0') and using the orthogonality
properties of associated Legendre functions and spheroidal angle functions [6, p. 22], we
get

x(h>\= 2 + J'"' jm-u., (h>\ (29)
t{ > 2p + I (p — m + n)\ Nm_p t(h') p-|m-"|( )" (29)

Now if p — |m — }i\ is even, then in order that d™Ipi„|(/i') and hence a, do not vanish,
f — | m — /< | must be even, i.e. t = \m — n\, \m — n\ +2, \m — fi\ + 4, ... . Similarly if
p — |m — n| = odd, then t - \m — fi\ must be odd for nonvanishing a,(h'), i.e. t = |m —
^| + 1, \m — //| + 3, \m — ̂ |+5, ... . Hence, from Eq. (28) and Eq. (29) we write

VWK--(cos TZ~+%n!^ah')
■ d"I^L^(h')R^ltl t(h', r,'). (30)

From Eqs. (26) and (30) we have finally
00 V 00'

£,*,<!>)= X X X r'>r0 (31)
v = 0 n = — v t = \m~ n\, |m-|/|+l

where

(2v+I)^±£>1:Bn\t = 2 — ^ (2v + 1)^ ^jv{kr0)P$(cos 0o)exp(j//0o)

qo' j2p+v-n-t( , _ \f
■ y yJ- —-—— dmn(h)

(2p + l) (p-'» + M)! * 1 '

• I ™ I + <11 -H, v I p). (32)
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In a similar manner (as for \p<3), r' > r0) it can be shown that without any restriction on r',
00 V 00

M»(h; £, 1, 4>) = I I I ti', V) (33)
v = 0 n = — v t=\m~n\, |m —/i|+l

since the interchange of integrals and summations does not require any restriction in this
case. In fact, Eqs. (14) and (33) are equivalent. Finally from Eqs. (31) and (33) we obtain

00 v 00

»;Z,ti,4>)= I X Z B,vt ri, n r'>r0. (34)
v=0 /i = - v t= \m- n\, \m- n\+ I

In summary, we have shown that
00 V

iAmU'i; & 1, <t>) = Z X l', (/>'), r' < r0 (35)
v = 0 n = — v

oo v oo'

= 11 I r' > r0 (36).
v = 0 n = - v t= \m- fx\, \m~ n\+ 1

and have provided explicit expressions for A(^l and B^,.
In Appendix II it is shown that in the limit when the spheroidal coordinates become

spherical coordinates, Eqs. (35) and (36) reduce to the addition theorems for spherical
coordinates given by Cruzan [3, p. 40].

4. Spheroidal vector wave functions. The vector wave functions are the solutions of
the vector wave equation

VV - A — VxVxA + k2A = 0 (37)

The divergenceless solutions of (37) are designated as M and N which are related to each
other by

/cN = V x M, kM = V x N. (38)
Together with the constraint V • M = 0, M satisfies Eq. (37) only when

M = Vtjj x a

where iJ/ is the solution of the scalar Helmholtz equation

v2iA + k2ip = o
and a is a constant or radius vector. Now each of the coordinate unit vectors x, y and z is
a constant unit vector. For the sake of simplicity of coordinate transformations between
Cartesian and spheroidal coordinates, the Cartesian coordinate system is chosen to have
its origin at the center and z-axis along the positive direction of the axis of symmetry of
the spheroidal system.

The three Cartesian unit vectors generate three distinct classes of M vectors:

IM£S(h; £, r,, 0) = V^n(h; & r,, 0) x a (39)
where i = 1, 3, 4 and a = x, y, z. Similarly the three distinct classes of N vectors gen-
erated are:

N «>(h; 4^) = Jvx r,, <t>). (40)
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In the following section we shall establish the translational addition theorems for M^1
and N^' vectors. The explicit expressions for M and N are given in detail in Flammer's
text [6, pp. 69-78] as even (e) and odd (o) functions—

Mf> , Nf>andO O '

and N^' are related to these by the equations:
/ Ma(" Na(i) \

(M2?,NS>) =(1,7) 7 Z ■ (41)
\iY1omn ^omnf

5. Transformations of Mz(1'3'4)(/j; £, >/, 4>) and N*'„y-Z(1'3- 4>(h; £, rj, (p). From
Eqs. (35), (36) and (39) we immediately write the addition theorems for the M vectors,

00 V

MS?(/i; £,»/, 0) = £ I r' < r0 (42)
v = 0 n = - v

= I t t r' > r0 (43)
v = 0 n = — v t = \m — n\, \m — n\+ 1

where a = x, y, z, a' = x', y', z' and i = 1, 3, 4. The above relations follow because (x, y,
z) = (x', y', z') and the gradient (V) is invariant under coordinate transformations. From
Eqs. (41), (42) and (43) N vectors are given as

00 V

N^>(/i; & tj, <j>) = £ X /$Nj'v(1)(fi'; l'' <t>'\ < r0 (44)
v = 0 n = -v

oo v oo'

= 11 I ,(/!'; f',1,',0'). r' > r0. (45)
v = 0 n = — v t= \m- fi\, \m — n\+ 1

Eqs. (44) and (45) are the required translational expansions of spheroidal vector wave
functions from 0-system to O'-system.

Appendix I. Determination of linearization coefficients. The linearization expansion
of (10) can be restated as follows:

P?(x)p?(x) = £ a(m, n\n, v\p)P^+"(x), -I<x<+1 (1-1)
P

where p = n + v, n + v — 2, n + v — 4, ..., | n — v | if | n — v | > \m + p\. U \ n — v| <
\m + p\, the lower limit |n — v| for p is replaced by \m + | or \m + p\ + 1 according
as n + v + \m + p\ is even or odd. This is due to the fact that P^ + Il(x) = 0 for
p < | m + /i |. The lower limit of p will be designated as pmin.

The coefficients a may be identified with a product of two Wigner 3-j symbols which
are associated with the coupling of two angular momentum eigenvectors:

a(m, n\p, v|p) = (-l)m + M(2p + 1)
(n + m)! (v + p)\ (p — m — p)l

In v pl/n
' \o o o/U

(n — m)\ (v — fi) \ (p + m + fi)\

v p \

1/2

(1-2)m p —m — p J
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where (l\ is the Wigner 3-j symbol of which there are several definitions, all
involving summations of a multitude of factorials. Consequently straightforward calcula-
tions using (1-2) are very inefficient. Obviously a recursion relation for the a( -) in which
only the index p cycles would be highly desirable, especially for machine computation;
such a recursion relation has been given by Bruning and Lo [4, pp. 389-390] for the
special cases of /i = —m. In this appendix, using Bruming and Lo's recursion and the
recursion formulas derived in the Appendix A of [3], recursion formulas are developed
for machine computation of a( •) for any values of n and m.

From Cruzan [3, Eq. A-16], for m, n and v held fixed, we get

M/A PMn IP) = b2(n)a(n - 11 p) + b3(n, p)a{n + 11 p) (1-3)
where

bj(/t, p) = (p + m + n)(p — m — n + 1) + (v — n)(v + /i + 1) - (n + m)(n - m + 1),

b2(n) = (v + n)(v - + 1), b3(n, p)= (p-m- n)(p + m + n + 1),

a(n | p) = a(m, n \ n, v | p).

Now, replacing /i by n + 1 in Eq. (1-3), we obtain

a(n + 2\p) = - | - jj[bAn + 1, P)a(n + 1|p)-b2(n+ l)a(n\pj]. (1-4)

Further, from Eq. (1-3) we can write the following relations:

a(n - l\p + (P> P + + !) - MV, p + 1 )a{n + 11 p+ 1)], (1-5)

a(n-l\p- 1) = P ~ P- l)-b3(v,P~ 1 )a(n+ 1|p- 1)]. (1-6)

From Eq. A-10 of [3] we get

Ci(/i, p)a(fi+ 1|p+ 1 )-c2(n, p)a(n — 1|p+ 1) - c3(n, p)a(n\p + 1)

= p)a(n -t- 11P — 1) — d2{n, p)a(n - 1 \p - 1) + d3(^i, p)a(n\p - 1) (1-7)
where

Ci(n, p) = (2p - l)(p + m + n + l)(p + m + n + 2),
P) = (2P - l)(v + /')(v ~ t1 + *)> P) = 2/x(2p - l)(p + m + n + 1),

dt(n, p) = (2 p + 3)(p - m - n)(p -m- n- 1),
d2(n, P) = (2P + 3)(v + /x)(v — n + 1), d3(n, p) = 2n(2p + 3)(p - m - n).

By eliminating the terms containing n - 1 in Eq. (1-7) with the help of Eqs. (1-5) and
(1-6) we get

e^n, p)a([i+ 1|p+ 1 )-e2(fi, p)a(n\p+ 1)

= e3(n, p)a(n + 1 \p - 1) + e4(/i, p)a(n\p - 1) (1-8)
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where

eM P) = P) + ttt b3(n, p+ 1) = c:(/i, p) + (2p - 1 )b3(n, p + 1)*>2W

e2(n, p) = c3(n, p) + M^ P + !) = P) + (2P ~ l)bi(n> P + !)'

e3{n, p) = d1{fi,p) + (2p + 3)b3(n, p - 1),

e4(n, p) = d3(n, p) - (2p + 3)^i(n, p - 1).
Replacing p by p - 1 in Eq. (1-8) we have

a(n + l\p-2)= lp_ [et(n,p- l)a(fi + l|p)

- e2(n, p - l)a(Hp) - P ~ lMH/> - 2)l (!"9)

The recursion relations given by Eqs. (1-4) and (1-9) are the required formulas which
extend the Bruning and Lo's recursion to the general case. Bruning and Lo's recursion
(n = —m) is given as follows:

, (2n — 1)!! (2v — 1)!! (n + v)!
!„ + ,)= (2„ + 2v.1)n („_m)!(v + m)r (I-W)

I i (2n + 2v - 3)
—"ll"+-2) = (2„-l)(2» -!)(„ + »)

• [nv — m2(2n + 2v — \)]a( — m\ n -I- v), (I-H)

where (2q — 1)!! = (2q — 1)(2q — 3)—3.1; ( — 1)!! = 1 and a downward recursion scheme
of

<xp-3a(-m\p - 4) - (<xp-2 + flCp-! - 4m2)a(-m\p - 2) + upa(-m\p)= 0, (1-12)

where

[(n + v + l)2 - p2][p2 - (w - v)2]
4p2 — 1

Also, from Eq. (1-2) we get

a(—m + 11 n + v) = — (2n + 2v + 1) (.n + m)! (v — m -I- 1)! (n -I- v — 1)! 1/2

(n - m)! (v + m — 1)! (n + v + 1)!

. /" v n + vWn v (n + v)\

\0 0 0 )\m —m+1 -1 /' 1 ;

where the last two factors are Wigner 3-j symbols. The first, according to Edmonds [8], is

(n v n + v \
0 0 0 )=<-""

(2v)!(2»)!
(2 (n + v) + 1)!

1/2 (n + v)!
! v!n! v
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and the second [8] is

(» v " + v),(_i)-*.
\m -m+ 1 -I J ' '

(2n)! (2v)! (n + v + 1)! (n + v — 1)!
(2n + 2v + 1)! (n — m)! (n + m)\ (v + m — 1)! (v — m + 1)!

1/2

Now for given values of m and (i, n= —m±o where a is a positive integer including
zero.

(a) Determination of a(n\p) when n= —m + a. The machine computation is done
according to the graphical schemes of Figs. 2 and 3. In each figure a(^i\p) are the grid
points obtained by the intersection of columns (constant p) and rows (constant /z). The
number at a grid point refers to the equation number of this appendix from which a at
the grid point is obtained. The number on each arrow (the arrows represent the transi-
tion from one point to the other) refers to the equation number of this appendix re-
presenting a recursion. In Fig. 2 all the essential grid points, i.e. those situated on column

(10) (13)
n + " IK R('

n +1/-2'

n +1/-4 (

rmin  1 ' 1     

-m -m+l -m+2 -m+3 -m+4 fi-2 //-I /x

H-—~
Fig. 2. Determination of a(n\p) at key grid points.
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(M,q) (M+I,q)

(9)
(M, q-2)s — -*-@(M+l,q-2)

H-—~
Fig. 3. General recursion scheme for a(n\p).

Table 1. Expansion coefficients of the linearization expansion; x = 0.3.

I II III IV

n+ v

m, n, fi, v p a(m,n\/i,v\p) £ a(m, n\fi, v\p)P^+"(x) FZ(x)P»{x)
P=Pm in

1 —0 2000001'1'0'2 3 0:200000 -°'348'88 "°-348188

1 -0.257142
1, 2, 0, 3 3 0.666667 -0.328393 -0.328393

5 0.190476
2 0.952375 x 10"1

1,3,0,3 4 0.116883 0.301027 0.301027
6 0.216450
3 0.2000001,2,1,3 , -0.675673 -0.6756755 0.142857
1 -0.857142

2,3,-1,2 3 -0.333333 -0.585956 -0.585957
5 0.190476
2 -0.238095

2,3,-1,3 4 -0.155844 0.268563 0.268564
6 0.108225
2 -0.476189

2, 3, 0, 3 4 -0.389609 -0.156633 x 10' -0.156634 x 101

, , . , 4 0.779218 x 10"' n rwvic in-i n run* m-i2'3'1,3 6 0.649350 x 10"1 -0.322276 x 10* -0.322276 x 10'

4 0194804
2> 3' 2' 3 (\ nAV>fioo tn-i 0.167689 x 102 0.167690 x 102
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p = n + [i and row n = —m, are obtained. In Fig. 3 a general scheme of determination of
a at a grid point is shown.

(b) Determination ofa(n\p) when n = —m — a. From the well-known formula

(/ - mVPfm(x)=(-IfL—

we can write

p:(x)p:(x) = (—i)-'"1"1""1 (n{n+m^^y prww.

If we let - m = m' and — n = ft', then ft' = —m' + a. Thus a(m', n\ft', v\p), p = n + v,
n + v — 2, ..., pmin can be obtained from the computational procedure (a). When this is
done, the required coefficients a(m, n\ft, v|p) are obtained by

t | | ^ {n + m)\(v + n)l (p + o)\
a(m, n ft, v p =  - . v.-( rr a(m, n /i.v p

(n — m)\ (v — (i)\ (p — o)\

Some results of machine computation are presented in Table 1.

Appendix II. Reduction to spherical limit. When h -> 0, h' -> 0, the spheroidal co-
ordinates (h\ ri, 4>) and (h'\ tj', cf>') go over to spherical coordinates (r, 6, (p) and (r', 6',
ft). In this limit

Smn(h,r1) = I CW^nW-^^s^
q = 0, 1

00'

SJK, n') = z dr(h)P^+M) - Pv(cos 0'),
s = 0, 1

JV (ft)-* 2 (v + /j)!
(2v + 1) (v — /i)!

c), Rgfth, £), <-:)} - {j„(kr), h[l,(kr). ti„2,(kr)},

KlJ(h\ n KV(h', n £')} - {j.(kr'), h["(kr'), h[2\kr%
From Eqs. (13), (15), (18), (20) and (22) we get

00 00

^=(2v + 1)&t^t(-1)" I I
V ' rV* q = 0, 1 s = 0, 1 p

■ d?(h') 1J +_^++ \m\ + q\-n, \n\ + s\p)
» 2 7T ,

• (47y'p)"1 I | exp(//cr0 cos y0)P™""(cos 0;)exp[/(m - ^)</>,]sin 0, d()t #,■,
J0 *c

(Hi)
where |c = Jo f°r ' = 1,2 jg/2 JCO for i = 3 and 2 J^-jco f°r ' = 4.
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From the linearization expansion of Pj^ + ̂ cos 0j)P|~f+s(cos 0f) we get

= ( — l)"(2v + l)jv~"(2n)~1 | | e\p(jkr0 cos y0)
J0 Jc

■ P™(cos 0j)Pl7"(cos 0,)exp[/'(m — yu)</>,]sin 0, ddt d(j);. ([ 1-2)

Eq. (II-2), an application of linearization expansion for P™(cos Qi)P~"(cos 0,) and Eqs.
(13) and (18), yield

A«\ = ( — l)"(2v + 1) £ /+p""aK n| v|p)
P

' zp(kr0)P^~ "(cos 0o)exp[)(m - /i)0o] (II-3)

where zp = jp, h(p\ h^ according as i = 1, 3, 4 and p-n + v, n+v — 2, |n — v|.
Hence, Eq. (35) reduces to

Zn(kr)FZ(cos 6)exp(jm(f>) = £ £ £ (-l)V+p~"(2v + 1)
v= 0 n = — v p

■ a(m, n| ~n, v\p)jv(kr')zp(kr0)P%cos 0')

■ P%-"(cos 0o)exp[/(m - /i)0o]expO'/i0'), < '"o• (H-4)
Similarly, it can be shown that Eq. (36) yields in the spherical limit:

z„(kr)P„(cos 0)e\p(jm<p) = £ X Zi"1)T + P~"
v = 0 n = - v p

■ (2v + l)a(m, n| -/i, v | p)jv{kr0)zp(kr')Pli(cos 0O)

■ P^-"(cos 0')exp[/(m - /i)0']expO></>o), r' > r0 • (II-5)
Eqs. (II-4) and (II-5) are in fact the translational addition theorems for spherical wave

functions given by Cruzan [3, p. 40],
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