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PLANE STRAIN PROBLEM OF TWO COPLANAR CRACKS IN AN
INITIALLY STRESSED NEO-HOOKEAN ANISOTROPIC INFINITE

MEDIUM*

BY BRIJ M. SINGH and RANJIT S. DHALIWAL (University of Calgary)

Abstract We consider the plane strain problem of determining the crack energy in
an initially stressed neo-Hookean anisotropic infinite medium containing two coplanar
cracks. We assume that the cracks are opened by a constant internal pressure. By using a
Fourier transform solution of the equilibrium equations the problem is reduced to solving
a set of triple integral equations with a cosine kernel. These integral equations are solved
and a closed-form expression for the crack energy W is obtained. The numerical values of
W are graphed in Figs. 1, 2.

1. Introduction. Incremental deformation theory concerns the infinitesimal defor-
mation of a solid with a known initial finite deformation. The basic equations of such an
incremental deformation theory have been derived by TrefTtz [1], Biot [2,3], Neuber [4],
Green, Rivlin and Shield [5] and Green and Zerna [6], More references on this type of
work may be found in an excellent monograph by Biot [7],

In this paper we use the basic equations derived by Biot [7] for initially stressed neo-
Hookean anisotropic solids for solving the problem of two coplanar cracks in an infinite
medium. In Sec. 2, we obtain a Fourier transform solution of the equilibrium equations
and obtain expressions for the components of displacement and stress. In Sec. 3, we give
the boundary conditions and reduce the problem to a set of simple triple integral equa-
tions. These integral equations are solved exactly and the closed form expression for the
crack energy W is obtained. The numerical values of QW/po are graphed in Figs. 1, 2
where p0 is the constant internal pressure on the crack surfaces.

2. Basic equations and their solution. We consider an infinite elastic medium
which is incompressible, homogeneous and of orthotropic symmetry. The coordinate axes
are oriented along the directions of elastic symmetry. The principal initial stresses S,,,
S22, S33 are also oriented along the same directions. Incremental stresses ,, s12, s22 corre-
sponding to plane strain in the x, y plane satisfy the equilibrium equations

dSn + dS»_p^=0> ^l+^_jp^i = 0! (21)
dx dy dy dx dy dx

where P is the constant initial stress in the x, y plane represented by

£„=-/>, S22 = 0 (2.2)
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through NRC-Grant No. A4177.
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FlG. 1. Numerical values of QW/p02 against b for a = 0.1, (N/Q) = 3.0, (P/2Q) = 0.1, 0.3, 0.5,0.7.

and oj is the rotation about z-axis given by

w = j(dv/dx — du/dy); (2.3)

u and v are the displacements in the x and y directions respectively.
The stress-strain relations are

5,1-5 = 2Nexx , s22 - s = 2Neyy, (2.4)

J|2 = 2 Qexy, (2s = stl + s22),

where N and Q are the elastic moduli of the laminated medium along the x and y direc-
tions respectively and Q is small in comparison with N. To the above relations we must
add the condition of incompressibility:

+ eyy = 0. (2.5)

Since

exx = du/dx, eyy = dv/dy, exy = ^(du/dy + dv/dx), (2.6)
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FIG. 2. Numerical values of QW/p02 against b for a = 0.1, (N/Q) = 5.0, (P/2Q) = 0.1,0.3, 0.5, 0.7.

Eq. (2.5) is satisfied by writing the displacement as

u = —d<f>/dy, v = d<f>/dx, (2.7)

where <j> is a function of x and y.
Expressing the strain components in terms of <f> through Eq. (2.6) and (2.7) and sub-

stituting the values (2.3) and (2.4) of the rotation to and the stress components into the
equilibrium equations (2.1), we obtain

:k«-d_
By dx

Elimination of s in the above two equations leads to a single equation for <f>:

(2.8)

k2^ + 2m = 0, (2.9)
dx4 dx2df By4
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where

2 N-Q Q-IP
~Q + ir' k-QTJP <210)

For an isotropic medium (N = Q) free of initial stress (P = 0) we obtain the well-known
biharmonic equation

V4<f> = 0. (2.11)
If we assume a solution of Eq. (2.9) in the form

4>(x, y) = / F(iv) sin (£*) di (2.12)
Jo

we find that /r(|>') satisfies the equation

F'"X£y) - 2mF"{&) + k2F(&) = 0. (2.13)
If we assume F in the form

F(iy) = exp (iPy), (2.14)

then (5 satisfies the characteristic equation

jB4 - Imp2 + k2 = 0. (2.15)

The roots of the above equation are given by

/S 2 = m + (m2 — k2)w2, fi2 = m — (m2 — k2),/2. (2.16)

If m > 0, m2 > k2, both [3 2 and fi2 are positive and hence /?, and fi2 are real.
The solution of Eq. (2.13) for -oo < y < 0 and vanishing at y —» — oo is given by

F(&) = C(0 exp (J3&) + £>(£) exp (fi2£y), (2.17)
where /S, > 0 and /32 > 0.

From Eqs. (2.7), (2.12) and (2.17), we obtain

u(x, y) = - ['" sin (£x) di (2.18)
Jo

v(x, y) = [~ cos (£x) di. (2.19)
Jo

From Eqs. (2.8), (2.12) and (2.17), we find that

5 = J~ [(27V-Q+ y) + fi2De"iiy)

- (G + y) (QB, + Z)/S2V^)

From Eq. (2.4)2, (2.6)2, (2.19) and (2.20), we obtain

£2 cos (£t) </£. (2.20)
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*22 = lo |(4iV - e + yj (C/3^ + DpiePlty)

- (Q + y) (CfrY^ + Z>jB2V*o]f cos (£x)rf£ (2.21)

From Eqs. (2.4)3, (2.6)3, (2.7), (2.12) and (2.17) we find that

*12 = Q(d2<t>/dx2 - d2<t>/dy2)

= -Q[ [(1 + (i2)C^ + (1 + p2)D^\e sin (fr)di (2.22)
Jo

3. Statement and solution of the problem. We consider the plane strain problem in
an infinite plane —oo < x < oo, —oo < y < oo which is initially deformed in a manner
given by Eqs. (2.2). If a pair of coplanar cracks develops by internal pressure in the xz-
plane symmetrically located with respect to the ^z-plane, we may consider the problem of
a quarter plane x > 0, y < 0. The boundary conditions may be taken as:

ayy(x, 0) = -p0, a<x < b, (3.1)

v(x, 0) = 0, 0 < x < a, x > b, (3.2)

oxy(x, 0) = 0, 0 < x < oo. (3.3)

The boundary condition (3.3) along with Eq (2.22) leads to the relation

D(0 = - C(£). (3.4)

Now from Eqs. (2.19), (2.21) and (3.4), we obtain
( \ 1/2 O 2 _ n 2

2) 1~+fV~ F<m°'1*]' (35)

ayy(x, 0) = - ^/2L"FM2C(0\ £ x], (3.6)

where

L-' = (1 + p2yl OS, - mm - q + y) (1 - /?,&)

- (q + j) (J3,2 + Pi + P1P2 + /S.W)], (3.7)

and where Fc is a Fourier cosine transform (see [9]). From Eqs. (3.5) and (3.6) the bound-
ary conditions (3.1) and (3.2) yield the following triple integral equations for the determi-
nation of C(£):

Ff[£C(0;£^*] = 0, 0<*<a, x>b, (3.8)
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/ 2Yn
F\i2{-> x] = I-1 p0L, a<x < b. (3.9)

Solution of the triple integral equations (3.8) and (3.9) is given by (see Srivastava and
Lowengrub [8]):

C(Q = y2f hit2) sin & dt, f hit2) dt = 0, (3.10)
? »a * a

hit2) = PoLit2 - b2E/F)[it2 - a2)ib2 - f2)]"'/2, a<t<b, (3.11)

(3.12)

where

are elliptic integrals of the first and second kind respectively.
From (3.10) and (3.5), we obtain

v(x, 0) = J" hif)dt, a< x < b. (3.13)

Substituting for hit2) from (3.11) into (3.13) and evaluating the resulting integrals (see
Gradshteyn and Ryzhik [9], we get

v(x, 0) = pjb [EiK 4) ~ bFi\, q)E/F]L, (3.14)

where

q = [ib2-a2)l/bT2, A = sin[(|^J'/2]. (3.15)

The total energy W required to open the cracks is given by

W= — 2 J ayyix, 0)c(x, 0)dx = 2p0 J vix, 0)dx . (3.16)

Substituting for vix, 0) from (3.13) into (3.16) and making use of (3.10)2, we obtain

w= 2Po M J\hit2)dt (3.17)

Now substituting for hit2) from (3.7) into (3.17) and evaluating the resulting integrals, we
obtain the following closed-form expression for the energy:

w=f P«L (a2 + b2- 2b2E/F). (3.18)

Numerical values of Q W/p02 have been graphed in Figs. 1, 2 against b for a = 0.1 and (JV/
Q) - 3.0, 5.0 and iP/2Q) = 0.1, 0.3, 0.5, 0.7. For incompressible isotropic elastic medium
without initial stress, we have

N = Q — n, P = 0 (3.19)
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and hence from Eq. (2.10) and (2.16) we obtain

m = k = 1, /?, = &= 1 (3.20)
From Eq. (3.18), (3.19) and (3.20), we obtain the following expression for crack energy:

W=jp02(a2 + b2- 2b2E/F) (3.21)

for an incompressible isotropic elastic medium. The expression (3.21) for W agrees with
the corresponding expression obtained by Lowengrub and Srivastava [9],
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