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EQUIPARTITION OF ENERGY FOR MAXWELL'S EQUATIONS*

By GEORGE DASSIOS (National Technical University of Athens)

1. Introduction. The asymptotic equipartition of the kinetic and the potential energy
for the free space wave equation was first stated by Lax and Phillips in [1] (Corollary 2.3,
p. 106). Duffin [2] has shown that equipartition of energy is achieved in finite time as long
as the initial data have compact support. Both the asymptotic and the finite-time equipar-
tition of energy results have been generalized by Goldstein [3, 4] for abstract wave equa-
tions. For abstract equations see also [5, 6], Costa [7] considered a general first-order sym-
metric hyperbolic system and proved a partition of energy theorem for uniformly
propagative systems.

In the present work, following Duffin [2], the Paley-Wiener theorem is used to prove an
equipartition theorem for the electric and the magnetic energy for Maxwell's equations in
free space. If the initial electromagnetic wave is in [L2(IR3)]6, i.e. each component of the
electric and the magnetic field is in L2(IR3), then the equipartition of energy is attained
asymptotically as / —» +00. In particular, if the initial data have compact support, then
equipartition is attained in finite time R, where R is the Radius of the smallest sphere con-
taining the supports of the six components of the initial electromagnetic disturbance.

2. Maxwell's equations. We consider Maxwell's equations for propagation of elec-
tromagnetic waves in a vacuum, in IR3.

The electric field E(x, t) = (E\ E2, E?) and the magnetic field H(x, t) = (//', H2, IP)
satisfy the following equations:

d,E(x, t) = V X H(x, t) (1)

d,H(x, t) = - V X E(x, t), (2)

V • E(x, t) = V • H(x, t) = 0. (3)

The electric energy e(t) and the magnetic energy m(t) of a solution (E, H) of Eqs. (1)—
(3) at time t > 0 are defined to be

e(t) =/ / / |E(x, t)\2dxt dx2 dx3 = X 11£"(0112. (4)
r—00 r—00 *—00 i«|

m(t) = f f f |H(x, 0|2 dx, dx2 dx3 = £ ||//'(0ll2' (5)
r—00 »—00 '—00 /—|

where II - II is the L2 norm in IR3.

* Received November 14, 1978. The author wishes to express his appreciation to Prof. Walter Strauss for
introducing him to the subject and to Prof. Constantine Dafermos for continuous help and encouragement. The
work here described was performed while the author was a visitor at the Lefschetz Center for Dynamical Sys-
tems, Brown University.
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The total energy of the electromagnetic wave is defined as

g[t) = e(t) + m(t) = ||E(0 • E(/)||2 + ||H(r) • H(0||2. (6)

It is well known that 8[t) = SfO) for t > 0, i.e. the electromagnetic energy in vacuum is
conserved.

Consider next the Fourier transform in IR3

/+oo <• +oo i»+oo

I I exp (ix • £)/(x) dxt dx2 dx3. (7)
OO V—OO »—oo

Assuming C" solutions of (l)-(3) and taking Fourier transform, we obtain the follow-
ing system of six ordinary differential equations in t for the six scalar fields E'(t), i =
1,2,3:

| E(/) = A • ft(r), (8)

|h(0 =-a •£(/), (9)

supplemented by the algebraic relations

i ■ £(o = i ■ h(o = o (io)
where

£(/) = E(£, 0, H(0 = m, t), Z = |€|n, |n| = 1,
A = i|^| II X n (11)

is a dyadic and II is the identity dyadic in IR3. Note that the dot products in (8) and (9)
denote contractions of the dyadic A from the right.

3. The equipartition theorem.
Lemma 1. The solution of the system (8)-(9) that satisfies the initial conditions

E(|, 0) = £0(£), ft(|, 0) = ft0(|), (12)

where E0 and H0 are the Fourier transforms of the initial data, is given by

£(0 = E0 cos (r|£|) + /(ft0 x n) sin (/|{|), (13)

H(r) = H0 cos (f|||) - i(£0 X n) sin (<|||). (14)

Proof: Solving (8)-(9) formally, we obtain

£(/) = cos (t A) • £0 + sin (t A) • H0, (15)

H(0 = cos (t A) • ft0 — sin (/A) • E0. (16)

We define powers of A by

A" = A""1 A, n = 2,3, - (17)

and show by induction that

A2" = |£|2" (II — nn), (18)

A2"+1 = i|£|2"+1 (H X n). (19)
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Therefore we obtain

cos (f A) = 2 A2" = (H - nn) cos CI4I) (2°)

and similarly

sin (t A) = »(II X n) sin (f|£|). (21)

Finally we substitute Eqs. (20), (21) into (15), (16) and make use of (10) to obtain the
solution of the transformed Maxwell's equations in the form (13), (14). This completes the
proof.

LEMMA 2. Let /: IR3 —» IR be a square integrable function of compact support and as-
sume that /(x) = 0, |x| > IR. Let / :IR3 —» C be the three-dimensional Fourier transform
of /(x). Define the iterated integral

/+oo /»+oo i*+oo Moo

J J |/ (£)|2 cos (2f|£|) d£2 J = Hc(\t\) cos (2r|{|)rf|{|, (22)

where

Hc( |{|) = |£|2 r dt f 1/1 I2 sin 0 d6 (23)
*0 *0

and where (|£|, 0, <#>) are spherical coordinates in the £-space.
Then Hc is an even function of |£|, and C(t) = 0 for t > R.

Lemma 3: Let /, / be as in Lemma 2 and let g, g be another such pair. Define the ite-
rated integral

5(0 = /+~ rr Im (/>)(£) sin (2/|{|) d& d& = /" //,(l^l) sin (2f|{|) d|f| (24)
» — oo v—oo r—oo * 0

where

^(i^D=in2 rd* rim sin ̂M <25)
and where * denotes complex conjugate. Then H, is an odd function of ||| and S(t) = 0 for
t > R.

The proofs of Lemmas 2 and 3 can be found in the proof of Theorem 1 in [2] and are
based on the following corollary of the Paley-Wiener theorem.

Proposition: Let H(z) be an entire function of exponential type c which is absolutely
integrable on the real line. Then the support of the Fourier transform of H is contained in
[ c, +c].

Proof. See [2].
We are now equipped with the necessary tools to prove the following equipartition

theorem for Maxwell's equations.
Theorem. Let (E(x, t), H(x, t)) be a solution of Maxwell's equations satisfying the initial
conditions E(x, 0) = E0(x), H(x, 0) = H0(x). Then

(i) if Ed £ L2(IR3) and H0' G L2(IR3), i — 1,2, 3, we have

— 0, as t —> +°o, (26)

lim e(t) = lim m(t) = ]r 8[0); (27)
t—►+oo t—» + oo ^
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(ii) if E0(x) = H0(x) = 0 for |x| > R, we have

e{t) = m(t) = ^ g[0), t > R. (28)

Proof: We first calculate |E|2 and |H|2 using (13) and (14):

\m, Ol2 = |E0(£)|2 cos2(/|||) + |H0(f;)|2 sin2(f|£|) + Im [n • (£0(£) X fl0*(£))] sin (2f|{|), (29)

|m, Ol2 = |H0(£)|2 cos2(r|£|) + |E0(£)|2 sin2(/|£|) - Im [n • (E0(£) X H0*(£))] sin (2/|{|). (30)

Taking the difference of (29) and (30), we obtain

\m Ol2 - \m, Ol2 = [|E„(£)|2 - |H0®|2] cos (2/|{|)

+ 21m [n • (E0(£) X Ho*©)] sin (2/|£|), (31)

Integrating (31) over the whole space and using Parseval's theorem, we obtain
/+oo /• + oo /* + oo

/ I [|E(x, Ol2 ~ |H(x, Ol2] dx, dx2 dx3
oo r—oo w—oo

= /+°7+°X~ oi2 - ift«, oi2] <%, di2 di,
/+oo fl + oo i» + oo

J J [|E0(£)|2 - |H0(0|2] cos (2/|{|) di, di2 di3

/+oo /»+oo

J Im [n • (£0(|) X H0©)] Sin (2/|«|) <«, • (32)

Under the hypotheses of (i), both integrals in the last part of (32) tend to zero as t—* +oo
by the Riemann-Lebesque lemma. Therefore, (26) holds. Eq. (27) is an obvious con-
sequence of (26) and (6).

For the proof of part (ii) we observe that the first integral in the last part of (32) con-
sists of six integrals of the form (22) (23). The evenness of the six functions involved is
obvious. Therefore the integral vanishes for t>R.

After a tedious calculation we obtain

/m(£0 x fto'X-|€l) = -Im (£» x H0*)(|£|); (33)

hence all six integrals that appear in the last integral in (32) are odd functions of |£|. Using
Lemma 3, we now obtain that this integral also vanishes for t > R. This completes the
proof of the theorem.

4. Remarks. Zachmanoglou [8] has shown that if u is a solution of the wave equa-
tion with initial data that vanish outside a sphere of radius R, then the equipartition of
energy theorem implies that

/+oo /•-foo /t+oo

/ / u2 dx, ds2 dx} = constant, t>R. (34)
oo * — oo r—oo

Since each component of the electric and the magnetic field satisfies the scalar wave equa-
tion, the results of [2] and [8] can be combined to obtain a componentwise partition of en-
ergy for Maxwell's equations. Nevertheless, this result does not show equipartition of
electric and magnetic energy. The equipartition result is a consequence of the particular
coupling between the electric and magnetic field in Maxwell's equations, while, if we con-
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sider the wave equations for each component of the E and H fields, the equations are
completely decoupled.

The componentwise partition result can also be obtained from [7].
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