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FLOWS WITH CONDENSATION*
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Abstract. Some simple flows with condensation are considered and their solutions
given. For the vapor phase, the nonlinearity of the equations of motion and of heat diffu-
sion, and of the equation of state, and the dissipation due to shear and volume viscosities
are taken into account. For the liquid phase the density is assumed constant. At the inter-
face, where condensation takes place, the velocity, the stress, and the temperature gradi-
ent are all discontinuous. The same approach can be used for flows with evaporation.

1. Introduction. In the literature there are very few solutions of the Navier-Stokes
equations for fluid flows with condensation. Studies of gas flows with evaporation at a wet
boundary are much more common. But in these studies, with a few exceptions (notably
the studies by Milton Plesset), the evaporating surface is treated at most as a source of va-
por and a heat sink, and the concentration of vapor carried away by the flowing gas is
considered to be a passive quantity with no effect on the flow except possibly through the
action of gravity, since the Boussinesq approximation is invariably used. So far as I am
aware, few attempts have been made to study the flow of the liquid phase and to match it
with the flow of the vapor (or vapors) in contact with it, with the effects of the viscosities
and the thermal diffusivity, the equation of state, and the condition of the vapor at the
condensation surface all taken into account.

In this paper, a simple flow of the vapor of a pure substance downward toward a cool-
ing porous plate will first be considered (Fig. 1). The cooling plate causes condensation
and the liquid formed flows away through the pores of the plate. The solution of the Nav-
ier-Stokes and diffusion equations for this flow will be given. Then an inclined flow with
condensation will be treated and flows with evaporation briefly discussed.

As will be seen presently, the solutions to be given have several novel features arising
from the necessity of abandoning the many usual conditions of continuity at the vapor-
liquid interface, such as the continuity of velocity, of stresses, and of heat flux.

2. Equations governing normal flow of a vapor against a cooling plate. Let y be mea-
sured in the direction opposite to that of the gravitational acceleration, and let the velocity
component in the direction of increasing y be denoted by v. We consider steady down-
ward flows of a vapor toward a cold plate. Far upstream, where y is taken to be (positive)
infinite for convenience, the vapor has density p0, velocity — v0, temperature T0, and
pressure p0. The position of the vapor-liquid interface will be taken to be the origin of y.
At the plate, where the temperature is maintained at T0 — \T,
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y=-d,

d being the thickness of the liquid above the plate, to be determined by calculation.
As usual, n will denote the viscosity and A the volume viscosity minus 2ju/3. The ther-

mal conductivity, the specific heat at constant pressure, and the specific heat at constant
volume will be denoted by k, cp , and c,, respectively, and will be assumed constant. The
ratio cp/c, will be denoted by y. The density will be denoted by p, the pressure by p, and
the absolute temperature by T.

The surface representing the equation of state of a pure substance, say water or water
vapor, is well known. There is a surface of zero curvature in the space of pressure, temper-
ature and specific volume, on which, if the temperature is maintained constant, the pres-
sure will remain constant as the specific volume p 1 changes. This is the region of con-
densation or evaporation, in which the liquid phase and the vapor of the substance
coexist. This developable surface is bounded on the right by the vapor-saturation curve
and on the left by the liquid-saturation curve, meeting at the critical point above which
the liquid state and the vapor state are separated by a curve on which the two states merge
and are indistinguishable. The pressure and the temperature at the critical point are called
the critical pressure and the critical temperature. Condensation or evaporation can take
place only when the pressure is lower than the critical pressure pcr and the temperature is
lower than the critical temperature T„ . The change of state at a pressure higher than the
critical pressure does not involve evaporation or condensation but takes place through a
state of indistinguishable phases without the release or absorption of latent heat.

The temperature at the plate, of course, must be below Tcr for condensation to take
place. The problem is to determine the temperature and velocity fields and the thickness d
of the liquid phase.

Since the flow is vertically downward, v, the only non-zero velocity component, is

Fig. 1. Sketch showing vapor flow downward toward a porous cooling plate, with an overlying liquid layer.
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everywhere negative, including the liquid region. The flow considered being steady, y is
the only independent variable, and the equation of motion is, with primes indicating d/
dy,

pw' = -gp - (p - Xvy + (2nv')', (1)

where g is the gravitational acceleration.
For the vapor phase we shall neglect the effect of gravity on the pressure and on the

flow. This amounts to neglecting the variation in the hydrostatic pressure in comparison
with the prevailing pressure, or neglecting the effect of the height of the apparatus, in any
experiment done for the problem under study, on the pressure in the vapor. We continue
to use y = oo for the position far upstream, with the understanding that y is very large
compared with a length scale to be specified later. Hence for the vapor we have

pw'=-/>'+[(A+ 2M)vy. (2)

The heat equation is

pcvvT' + pv' = (kTy + (\ + 2ja)v' \ (3)

where the last term represents the effect of viscous dissipation.
The equation of continuity is

pv = -p0v0 = m, (4)

and the equation of state for the vapor will be taken to be that of the ideal gas:

P = RpT, (5)
where R is the gas constant. This equation is not strictly satisfied near the vapor-satura-
tion curve, but the latent heat for the evaporation of water calculated by the use of this
equation, for instance, agrees very well with the measured values. Hence the use of (5) is
expected to introduce very little error.

3. Preliminary integration of the equation of motion and of heat diffusion. For the va-
por phase, then, (4) allows the left-hand side of (2) to be written as — (mv)', and a first in-
tegration of (2) gives

—mv = —p + (A + 2n)v' + C,, (6)

where

C, = p0 + mv0 = Rp0T0 + mv0. (7)

Eqs. (4) and (6) then reduce (3) to the simple form

-mcj' + mvv' = (kTy - C,v'. (8)

Assuming cv to be constant, we can integrate (8) to

mcXT- T0) +™v2 = kT'-Clv + C2, (9)

where

C2 = jv02-Clv0=-mRT0-j v0\ (10)
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since T' = 0 far upstream.
Eq. (6) can be written as

RpT = mv + (X + 2/x)v' + C,,

or, by virtue of (4), as

—RmT = mv2 + (X + 2/i)vv' + C,v. (11)

Eqs. (9) and (11) govern the flow of vapor. After v and T are found, (4) gives p and (5)
gives p.

It is desirable to put (9) and (11) in dimensionless forms. For this purpose we use the
new variables

^ v , . n T<o-T mC»V=-+l, S=——, r) = —— y, (12)
"o ^ 0 ^

so that V and 6 vanish far upstream. Dividing (9) by mv02, then multiplying the result by
y(y - OA/2, we obtain

e+ Y(Y~ 1) Miyi = _d' _(y_ 1)K; (13)

where

M=v0/c0, Cq = yRT0, (14)

c0 being the speed of sound at temperature Tu, so that M is the Mach number far up-
stream. The prime in (13) now indicates differentiation with respect to rj.

Eq. (11), upon division by mv02 and then multiplication by yM2, becomes

0= yhPfV- 1)(F+ aV) + V, (15)
where

A + 2 p.
<J=—jc—cv (16)

is a kind of Prandtl number. Eqs. (13) and (15) will be solved together with the equations
governing liquid flow and the boundary and interfacial conditions. The vanishing of 6
and V far upstream gives

0(oo) = F(oo) = 0. (17)

The interfacial conditions will be given later.

4. The flow of the liquid. We shall use the subscript / to indicate the properties of the
liquid, and shall take p,, the density of the liquid, to be constant. The v, is also constant,
for

p,v, = -m. (18)

Therefore only the heat equation needs to be solved for the liquid. This equation is still
(3), except that v there is now the constant v,. The definition of 6 is still given by (12),
except that T isT,, so that

e, = ( T0 - T,)/T0.
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Retaining the meaning of r] defined in (13), we have

-pe,'=e,", (19)
where

P-T~-k, c„

Since (19) is simple, we shall give its solution immediately. At the interface, where tj = 0,

0, = (r„ - T)/T0 = 0,
and

6, = A T/T0 = a

on the plate, where

r1 = -^d=-S. (20)

Two integrations of (19) give

0, = C4 + C3 exp (-/?7j), (21)

where the constants of integration are determined by the boundary conditions to be

C'-5Sr- C..0,-C„ (22)
5. Interfacial conditions. On the vapor-saturation curve, with F standing for "func-

tion,"

T, = F(p), (23)

where and henceforth the subscript i denotes the interface, and this condition has to be
satisfied by the density and temperature of the vapor at the interface. In a numerical cal-
culation, (23) can be used without approximation. For an analytical solution, and perhaps
even for a numerical one, it is better to approximate (23) with

_ A _ A _
Tc — —(- B — v, + B,Pi rn

in which, for a typical substance (such as water), A is negative and B positive. In terms of
6 and V, this can be written as

e,= aV,+ b, (24)
in which, for a typical substance (such as water), both a and b are negative. (Remember
the definition of 6.) We can use (24) with a and b chosen to approximate (23) as closely as
possible. Then, when 0 is determined on the interface, we can go back to (23) to seek a
pair of values of A and B for the tangent of the curve (23) for the temperature T, deter-
mined. Then we use the new a and b corresponding to the new A and B, and so on. With
the understanding that this iteration is always available, we shall assume a and b to be
given and proceed with the calculation. We shall use h to denote the latent heat.

On the interface, where tj = 0,
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9 = 9, = 9,. (25)
Furthermore, at the interface the heat-flux condition is

0'(O)-^r = y0/(O). (26)

We note that the equation of state has been used in obtaining (8) and in going from (6)
to (11). If /> is found from (6) after v is determined and p, is calculated, it will automati-
cally satisfy the equation of state together with T] and p,.

6. Solution of the differential system governing the flow. Since the Mach number is
expected to be small for most cases of interest, the forms of (15) and (16) suggest that the
solution can be obtained by expausions of 9 and V in power series of M1. Thus we take

9 = 9n + ^9, + M492 + - , (26)

V= V0 + Af*V, + M"V2 + ••• . (27)

Furthermore, since d will change when terms of higher orders in M are taken into ac-
count, we shall expand 8 in the power series

8 = 80 +1^8, +M%+- . (28)

Then from (13) and (15) we have

9o = -0o' -(y- \)V0, 90=V0,

the solution of which is

90= V0 = a0 exp (-y??), (29)

which satisfies (17).
The solution for 9, is always given by (21). But C, and C4 contain 6, and 8. In particu-

lar,

C3 = C30 + AT2C31 + M4C32 + ••• , (30)

in which

r - 01 ~*-'30 —

C3, =

exp (/380) - 1 '

1
exp (J380) - 1 A {90,-a)-9uexp (J380 - 1)

etc.
Substituting (29) into (24), we have

b
a0 -

1 -a'

which is negative since both a and b are negative. The interfacial heat-flux condition (26)
then gives

h k' or
ya<) yT0~ k PCv''
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which determines the S0 in C3.
Extracting terms of order M2 in (13) and (15), and combining the two equations so ob-

tained, we have

0/ + y0\ = ~2yD exp (-2yrj) + E exp (—yrj), (31)

where

D = i(y - l)(2ay - 1 )a0\ E = y(y - l)(ay - 1 )a0 .

The solution of (31) is

0, = a, exp (-yq) + Er\ exp (-yrj) + D exp (-2y17), (32)

which satisfies (17). Then from the equation extracted from (15) by taking terms of
0(M2), we have

"("FT + E-q) exp (-yrj) + G exp (-2yi)), (33)

in which

G = \\6ay1 - (2a + 5)y + 1 ]a02.

It is evident that V, satisfies (17).
The interfacial condition (24) demands

0,(0) = aV,( 0),

so that

(34)

The value of 8, at the interface is a, + D. The interfacial heat-flux condition is now

-a,y + E - 2yD = (k,/k) C3I,

which determines the 8, in C31.
Solutions for higher-order terms in the expansions (26), (27), and (28) proceed in the

same way. But these are not necessary if the Mach number is less than say.

7. A special solution. If T0 and p0 already satisfy the relationship (23) for the evap-
oration or condensation curve, the solution is especially simple, for the solution of (15)
and (13) is simply

0 = 0= V
for all values of y from the interface to positive infinity. The solution for 0, being always
(21), the condition (25) gives

K
k "3 cv7V

c3 = -

and the S in C, (negative) can be determined once for all, whatever the value of the Mach
number M.
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For T0 and p0 that are not far from the T, and p, satisfying (23), V is nearly zero, and
ignoring the nonlinear terms in (13) and (15), we can get the solutions once and for all,
without using the Mach number expansions (26) to (28).

8. Discussion. Since (15) contains V, the procedure of solution by expansion in
power series of M2 reduces the order of the simultaneous differential equations (15) and
(13), and this needs some clarification, which follows.

If one considers a flow in the neighborhood of the special solution just given, one can
linearize (15) and (13) and obtain from them a linear second-order differential equation.
This equation has two independent solutions, one of which becomes infinite at infinite y,
and hence must be discarded. The useful one is the one produced by the expansion in
power series in M.

We note also that use of the momentum equation between a section far upstream and
the surface of the plate gives

Po + mv o + gf>4 = Pp + mv„

where pp is the pressure at the plate. For steady flows to exist the pressure at the surface of
the porous plate must be maintained at the pp so determined. Otherwise the interface can-
not remain stationary, or there will be a moving shock wave in the vapor phase.

It is interesting, but ultimately not very useful, that the two nonlinear differential
equations (13) and (15) can be combined to give two first-order nonlinear differential
equations that can be solved in sequence. The first equation is of the form

{0 + ftV)] jp = f2(V)0 + f3(F),

and the second equation is just (15), which can be solved once 0 is determined as a func-
tion of V from the above equation. Unfortunately a simple analytical solution is not pos-
sible, and in any numerical calculation one will encounter the difficulty of having to start
at infinity. Hence the Mach-number expansion is still the best way to solve the problem.

9. Inclined flow of vapor toward a cold plate. If the velocity at infinite y is (u0, —
v0), u being the velocity in the (horizontal) direction of increasing x, the two velocity com-
ponents are uncoupled: v is given by the solution given in the foregoing sections, and u =
u0 for the vapor. For the liquid

u, = u„ 1 +1
where uu is the interfacial value of u,. This interfacial value is determined by the equation
for tangential momentum at the interface, i.e.,

u,u„ , .
-j- = m(u0 - u„).

These results follow immediately from the equations of motion, which will not be pre-
sented in detail.

The streamlines start as inclined straight lines far upstream, become curvilinear as
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they approach the cold plate, suffer a discontinuity in their slope at the interface, and in-
tersect the plate at right angles.

10. Flows with evaporation. We have discussed flows with condensation. If a
porous plate is heated, and liquid approaches it normally or obliquely from below, the
treatment is similar. We shall not give the details since all the points have been made in
this paper.

We note that at the surface of the porous plate permitting the vapor to flow through,
the normal stress must be specified to permit a solution. This normal stress is to be
matched to that in the porous medium. The specification of the normal stress amounts to
the specification of the velocity gradient, since the pressure is known once the temperature
and the density (via the velocity) are specified.


