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Abstract We consider a class of singularities, locally of the form y2 = p(x) near the ori-
gin in R2, describing the shape of a free boundary curve arising from an elliptic free
boundary value problem. The point of view taken is that of generic bifurcation, in partic-
ular with more than one parameter present. Of prime interest is a description of the un-
foldings of such singularities, their normal forms, and generic conditions for one- and
two-parameter unfoldings. The two simplest cases corresponding to perturbations of sin-
gularities y2 — x" + 0(x"+l), n = 4, 5 are treated in greater detail and the bifurcation dia-
gram for a generic two-parameter unfolding is given.

Our results do not rigorously concern the free boundary problem itself, but rather set
down a formal framework, or model, for studying this problem in terms of bifurcation
theory. We prove theorems describing this model. Nevertheless, our results have a bearing
on any rigorous analysis of this problem since they form the necessary first step to such an
analysis. The theory for computing the normal forms of solutions up to first order, for ex-
ample, is given here.

1. Introduction. Consider the following obstacle problem in two dimensions: in a
bounded domain 12 C R2 are given functions

\p: Q,—> R, Aif/ < 0
representing an obstacle and

g: dfl —» R, g(w) > \p(w)

representing the boundary position of a membrane to be stretched over the obstacle. The
membrane is given as the graph of a function u: Q, —» R which minimizes the energy

-u™m = T
over an admissible class of functions

u: £2 —> R, u = g on dS2, in £2.

The set of contact

/ = {w G £2 | u(w) = >Kw)}

between the membrane and obstacle is of particular interest.
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under NSF-MCS 78-18858 and in part by the U.S. Army Research Office under ARO-D-31-124-73-G130. The
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Such problems, and more general ones, have been studied by many authors including
Brezis, Caffarelli, Kinderlehrer, Lewy, Nirenberg, Riviere, Schaeffer, and Stampacchia. It
is known [1] that the above problem has a unique solution u e C'(ft) with Du Lipschitz in
ft, provided \p is sufficiently smooth. Under quite general conditions [3, 9, 10, 11] the free
boundary dl consists of smoothly parameterized arcs, possibly with cusps; and the param-
eterization is analytic if \p is. Schaeffer [13, 14] has studied how the set / changes as the
data ip and g vary, and has pointed out the need for a generic theory of such variations.
Such a theory presumabably could take the form of a bifurcation theory or unfolding the-
ory for the singularities of dl. A significant point here is that the unfoldings one would
encounter would not be generic in the sense of singularity theory as developed by Thom,
Mather, Arnold and others; only very special types of singularities can occur. This is seen,
for example, from a result of Kinderlehrer and Nirenberg [10]: for n > 1 odd the free
bounary can never have a cusp of the form

(y — yo)2 ~ K(x — x0)2"+l, k* o

near some (x0, y0), whereas for n even such a cusp can occur. (In fact, the case n = 1 was
first noted by Schaeffer [15].) Their proof involves first straightening out the cusp to a line
segment by means of a conformal mapping; then an analysis of several terms of the Tay-
lor series of u near (x„, y0), based on the equation Am = 0 governing u in £2 — I, gives a
contradiction to u > \p.

In this paper, we make a detailed study of a class of singularities of a free boundary,
and their bifurcations, as the data of the system varies parametrically. Of particular inter-
est is the multi-parameter case, with more than one scalar parameter present. Generic
conditions, describing how the parameters enter the system in a non-degenerate manner,
are derived; in such a case the bifurcation set in the parameter space can be described, at
least up to first order.

Our results do not rigorously concern the above obstacle problem, but rather set down
a formal basis, or model, for studying this problem from the point of view of generic bi-
furcations. We prove theorems describing this model. We believe such a study of the for-
mal calculations is worthwhile for a number of reasons.

(1) In many bifurcation problems the analysis divides naturally into two parts: formal
analysis (which typically can involve equating coefficients in some small-parameter ex-
pansion and solving for unknown coefficients) and rigorous justification (employing, for
example, the Lyapunov-Schmidt method, and other uses of the implicit function theorem
coupled with various scaling techniques). Often the formal calculations involve rather
straightforward ideas such as solving a linear equation with the Fredholm alternative, or
solving a system of polynomials in one or two real variables. Here, however, the formal
calculations themselves involve significant mathematical questions. For example, they
deal with multivalued functions which must be considered on a Riemann surface, a care-
ful study of which must be made. The formal theory, in itself, gives rise to a number of
mathematically intriguing questions.

(2) The formal calculations are a necessary first step before corresponding rigorous re-
sults can be obtained. In particular, they are needed to compute normal forms for singu-
larities and their deformations, and to compute bifurcation sets in the parameter space.
For problems arising in specific applications these, indeed, may be the questions of cen-
tral interest.

(3) For multi-parameter bifurcation problems the appropriate generic hypotheses de-
scribing how the parameters enter the system follow naturally from the formal analysis.
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This analysis, in fact, can provide a general framework in which multi-parameter prob-
lems, generic or not, can be placed.

(4) A general method for making a rigorous bifurcation analysis of such problems in-
volves obtaining rather sharp upper and lower a priori estimates u+ and u~ for the true so-
lution u, and corresponding estimates for the location of the free boundary dl. This was
carried out in [6] for a particular two-parameter problem using "restricted unfolding"
techniques, as described below. To use these techniques in other such problems it is neces-
sary to have at hand candidates for u* and u~, preferably in some closed analytical form.
The formal theory supplies such candidates as first-order approximations to the true solu-
tion u.

We may broadly distinguish two viewpoints which one can take in analyzing singular-
kites. In the universal unfolding (u.u.) approach one begins with a specific singularity and
tries to describe all nearby singularities up to some equivalence relation such as non-
singular coordinate change. For example, it is intuitively clear that any smooth map near t
£ R—> t1 E. R must, near the origin, resemble t —> t2 + a,t + a0 for some (a,, a0) near (0,
0). This can be made precise in a number of ways; for example, if F(t, A) is real analytic
for (t, X) £ R X Rk near (0, 0) and F(t, 0) = t2, then by the Weierstrass preparation theo-
rem F can be factored as

F(t, A) = E(t, \)(t2 + «,(A)< + «0(A))

where E, a, and a0 are analytic and satisfy

E(t, 0) = 1, a,(0) =ao(0) = 0.

The normal form t2 + axt + a0 is called the universal unfolding of the singularity t —* t\
the number of parameters in the universal unfolding, two here, is called the codimension
of the singularity.

In the restricted unfolding (r.u.) approach one begins with a specific parameterized
family, say F(t, A), and attempts to analyze this directly. Even though it may be possible
to invoke theorems, such as the preparation theorem, which reduce F to a normal form,
this may not be the best course of action. For one thing, the normal form itself must be
analyzed: suppose, for example, F: Rx —»• R has the form

F(t, 0) = I1" + 0(t2n+l), dF/d\(0, 0) = K>0

and we wish to describe the zeros of F near t = 0, for a given The preparation theorem
reduces this to an analysis of

t2" + a2„-,(A)/2"-' + - + a0(A) = 0, a/0) = 0, dao/d\(0) = K

which is no simpler a problem; it is just as easy to study F directly. This may be done by
first establishing the a priori estimate |/| < (constant) |A|'/2" for zeros of F. This estimate
justifies the scaling / —»fit where /x = |A|I/2", and leads to analysis of the zeros of

G(t, fj.) = iT2"F{iit, (sgn X)n2")

= t2" + (sgn X)K + OQi).

It is easily seen that there are no zeros when X > 0; for A < 0 an easy application of the
implicit function theorem to G shows that F has exactly two zeros and they have the
asymptotic forms t ~ ±(—\K)W2".
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The r.u. method thus has the advantage of using relatively elementary techniques
(such as scaling and the implicit function theorem) to obtain quite precise information
about specific singularities. A disadvantage is that there is no general approach; the tech-
niques are often applied in an ad hoc manner and are not easily used at all if more then
two or three parameters are present. The u.u. approach, on the other hand, is not limited
by the number of parameters or the way they appear. But, perhaps its most significant fea-
ture is the way it illuminates and unifies the various families of singularities and hypothe-
ses encountered in the r.u. case. In the above example the hypothesis dF/dX (0, 0) # 0
translates to dao/d\(0) ^ 0 and in this form makes the choice of scaling factors more obvi-
ous. For a two-parameter family, with parameters (A,, A0) G R2, a natural hypothesis on F
would be |d(.F, F)/d(A,, A0)| ̂  0, as this is equivalent to |d(a,, a0)/d(A,, A0)| ̂  0. Under
such conditions the zeros of F can be analyzed by scalings suggested by the normal form.
In fact, if F(t, 0) = t1, A E Rk and d(F, F)/dA has rank two at the origin, it is always pos-
sible to select two coordinates (A,, A;) for which \d(F, F)/d{A,, Ay)| ¥= 0, and give a fairly
complete picture of the zeros of F by r.u. techniques. Such questions and, in general, the
relation between the u.u. and r.u. approaches were investigated by Chow, Hale and Mal-
let-Paret [4, 5], See also Hale [7, 8], Mallet-Paret [12], and Golubitsky and Schaeffer [16].

For the obstacle problem above Schaeffer [13] proved an implicit function theorem
which suggested analyzing singularities of the free boundary dl using r.u. techniques.
Such an analysis was carried out by Chow and Mallet-Paret [6] for two specific cases: (1) a
one-parameter system in which the obstacle <// touches the membrane at one point, in a
non-degenerate manner, and varying the parameter causes the obstacle at that point to
move up or down with non-zero speed; and (2) a similar situation but with two parame-
ters and two points of contact, where the two parameters describe independent vertical
variations of the obstacle near the two points. This analysis involves two steps: (1) obtain-
ing upper and lower a priori estimates u+ and u~ of the solution u, and estimates of the
location of the free boundary; and (2) a scaling of the system, justified by these estimates,
and application of Schaeffer's implicit function theorem. (In fact, since the independent
variable here is two-dimensional one can use the classical reflection techniques of Lewy
and Stampacchia [11] in place of the more complicated implicit function theorem. An ad-
vantage of this is that the reflection arguments are local.) The scaling yields an obstacle
problem which is a perturbation of a particularly simple one, in which dl is an ellipse and
the obstacle is a paraboloid. Indeed, u* and u can also be chosen to be of such a simple
form.

In this context then the philosophy of the present paper is to place the obstacle prob-
lem in a u.u. setting with a view to using r.u. techniques. We begin with a specific singu-
larity y2 = x"b„(x)2 of dl and obtain necessary and sufficient conditions for a deformation
of this singularity, at least locally, to give rise to valid solutions. Such solutions can pre-
sumably be used, with r.u. techniques, as estimates u* and u in proving bifurcation re-
sults. The precise conditions on the singularity are given in Theorems 4.4, 5.2 and 5.4. The
resulting normal forms of the singularity, in the simpler cases n = 4 and 5, are given in
Sec. 6. In Sec. 7, a first-order analysis of variations in the boundary condition g is made,
and from this arise the generic conditions for multi-parameter bifurcation. Finally, in
Sees. 8 and 9 generic one- and two-parameter unfoldings for the cases n = 4 and 5 are
considered; normal forms and bifurcation diagrams are given.

Throughout, we assume the obstacle is a paraboloid

i(x, y) = - K*2 + /) (*> y) e ^2-
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This is no major restriction as we are concerned with a local analysis. If more generally
only A\p<0 holds, then by adding a harmonic function to xp and multiplying by a positive
constant we obtain an equivalent problem with

Hx,y) = - K*2 + f) + + H3)
near the origin. The higher-order cubic terms in should not affect the resulting theory
significantly, at least for the simpler singularities.

2. Local solutions of the obstacle problem. The unique solution u of the obstacle
problem in Sec. 1 is characterized by the following system of differential inequalities (see
[6,13]):

u:Cl—>R,uE C',

u= g on d£2,

u > \p in £2,

Am = 0 in S2 — I,

I = {(x, y) G J2 | u(x, y) = <Kx, y)}.

As noted above, under very general conditions dl is a smoothly parameterized arc, possi-
bly with cusps. In fact, if ^ is analytic then any part of dl with a C parameterization has
an analytic parameterization.

Suppose now \p has the form

t(x, y) = -i (x2 + /) = -! M2

(x, y) £ R2, w = x + iy G C

near the origin (0, 0) £ £2. Let dl pass through the origin as a non-singular arc ^with /
lying to one side; then we may assume Sfand I locally have the form

Sf: y = a(x), a(0) = 0, a is real analytic,

I: y < a(x).

In / we have u = if/; since uGC'we have
/

u = ~~(x2 + f)

,®rad"-(H-^) --c-^.
(x,y)EC. (2.1)

Fory > a(x), u is harmonic so it is uniquely determined there from the data (2.1) on & by
the Cauchy-Kowalewski theorem. In fact, an explicit formula for u can be given (see
Schaeffer [14]): let h(z) be the holomorphic function

w = h(z) = z + ia(z) (2.2)

taking values in the w-plane. Clearly, h conformally maps a neighborhood of z = 0 to a
neighborhood of w = 0, taking the real axis to the curve 'tf. Let, for w near 0,

/(w) = 2h~\w) - w (2.3)
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and note that

f(w) = w, wEf (2.4)

It is now a simple matter, using the Cauchy-Riemann equations, to see that u is the har-
monic function

u(w) = —Re I f(a) da, w $ I.
Jo

In terms of the z variable this formula is

1
u(w) = ir Re (h(z)2) - 2 Re

Re z > 0, w = h(z).

f mt) di
Jo (2.5)

If n is the unit normal for then along

d\u - M
dn2

= A(u -\P) = -At = 2.

Hence, u > \p in some one-sided neighborhood 0 < y — a(x) < e of If.
Thus, given a non-singular analytic curve in the plane, there is defined a unique har-

monic function u (2.5). If the curve varies analytically with a parameter A, say as

^:y = a(x, A), A £ Rk near 0

then u = u(w, A) is well-defined in a uniform neighborhood of ^, and satisfies u > \p in
the neighborhood. Below, we study the case where ^ has a singularity and r<fK describes
some unfolding of this singularity—then u may not be defined in a uniform neighbor-
hood; and even if it is u > may not hold. Our object is to describe perturbations ^ for
which these properties do hold.

3. Curves with cusps. Let ^ denote the solution set of

• f = Po(x) (x, y) G R2 near (0, 0)

where

pa{x) = x"b0{x)2, n > 3, Z>u(0) >0 (3.1)

is real analytic near zero, and let

{(x, y) \ y2 < p0(x)}.

We regard ^ as a free boundary and /„ as the contact set of the obstacle problem; we sub-
ject these sets to perturbations to obtain Ix and ^ = d/x, and wish to study those per-
turbations giving local solutions u(w, A) as in (2.5), defined in a uniform region of the
complement of Ix, satisfying u > \p in that region. For simplicity we assume symmetry of
Ix with respect to the jc-axis, although non-symmetric perturbations could just as well be
studied. Also, the choice of y2 < pu(x) to describe /„, rather than the opposite inequality,
was made in view of a result of Caffarelli [2] that points of dl which are singularities must
be points of zero density of I. (For this reason, we consider only n > 3; n = 2 cannot oc-
cur.)
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The family of perturbations of /„ is motivated from the following considerations. Let

Fo(x, y) = y2- p0(x)

so /„ is the region where F0 < 0. Any real analytic function, even in y, near F0 must have
the form

F(x, y) = E(x, y*)(f - p(x))

|£(0, 0) — 1| « 0
by the Weierstrass preparation theorem. By "near" we mean, for example, obtained
through an analytically parameterized family F(x, y, A) for A G Rk near the origin. In such
a case p is also near p0, so again by the Preparation Theorem

p(x) = (x" + + ••• + a0)b{xf (3.2)

otjE:R, |ay| <SC 1. (3.3)

6(0) >0, b is near b0 .

As we are interested in the region I where F < 0, we may neglect the factor E(x, y2).
Therefore, we shall study solutions u(w) arising from

I = cl int {(x, y) \ y2 < p(x)j, = 3/ (3.4)

with p(x) as in (3.2), (3.3), and b(x) real analytic and uniformly near b„(x) for x in some
disc in the complex plane:

sup|ft(x) — ft0(x)| — x G C, |x| < 5.

Note that I does not have the isolated points (xn, 0) at which p(x0) = 0 and p has a local
maximum for x real; such points may not actually lie in the region of contact between the
membrane and obstacle, as we shall see in Sec. 5.

4. Restrictions on the singularity. With p(x) as above three conditions must be met in
order to construct the function u in the complement of /, in a uniform neighborhood of
zero:

(1) the function / in (2.3), (2.4) must be holomorphic (i.e. have no branch points) and
single-valued in the complement of /;

(2) the integral (2.5) defining u must be independent of the path of integration (since I
may have several connected components) and must equal xp on each component of
£?(i.e., there must be a unique choice of a constant of integration, or lower limit of
the integral, valid for all components of cif)\ and

(3) with (1) and (2) satisfied we must have u>\pin the complement of I.

We shall give necessary and sufficient conditions for (1), (2) and (3) to hold.
Let us first analyze (1). The mapping w = h(z) (2.2) takes the form

w = h(z) = z ± ip(z),/2 (4.1)

or, equivalently,

G(z, w) = 0
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where

G(z, w) = (z- wf + p{z). (4.2)

Therefore, h and h~' must be interpreted as mappings between Riemann surfaces R2 and
R„ for z and w respectively. Since \p"{z)| « 1 (because n > 3) we see that by Rouche's
theorem and the Weierstrass preparation theorem the following result holds.

Lemma 4.1. The Riemann surfaces Rz and for the zeros of G (4.2) are, near (z, w) = (0,
0), two-sheeted coverings of the z- and w-planes respectively, with finitely many branch
points. For each fixed z near zero G(z, •) has two roots near zero (counting multiplicity),
and similarly for each fixed w. These roots near some point (z0, w0) where G(z0, w0) = 0
can be expressed by giving w as a power series in one of z — z0 or (z — z0)'/2; similarly, z
can be given as a power series in one of w — vt>0 or (w — w0)l/2.

It is an easy matter to determine the location of the branch points of R, and Rw . Those
of Rz are clearly the points z0 which are zeros of p of odd order. A necessary condition that
wn be a branch point of Rw is that there exist z0 with

G(z0, w0) = ^ (z0, w0) = 0; (4.3)

this condition is sufficient if, in addition,

^(zo,wo)^0. (4.4)

The formula for G shows (4.3) is equivalent to

w0 = z0 + kp'iz,,), 4p(z0) + (p'(z0)f = 0

and that (4.4), in addition, holds if and only if p'(z0) ¥= 0. (This last condition is equivalent
to saying z0 is a simple zero of 4p + (p'f, since \p"\ <sc 1.)

If z0 satisfies (4.3) with p(z0) = p'(z0) — 0, when is w„ = z0 a branch point of /?„? Let

p(z) = (z - z0)mq(z)2, m> 2, q(z0) # 0,

|?(z0)| ■« 1 if m = 2

near z0. If m is even then G = 0 is equivalent to the two equations

z — w = ±i(z — z0)m/2q(z) (4.5)

which each have holomorphic solutions of z as a function of w near (z0, w0); therefore w0
is not a branch point. If m is odd, however, the solution of (4.5) is given as

z = w±i(w- w„)m,1q{z„) + 0(| w - w„\(m+l)/2)

which is not homomorphic; therefore vv0 is a branch point. Note here that the order m > 2
of the zero z0 of p is also the order of z0 as a zero of 4p + {p'f. We summarize these results
in a lemma.

Lemma 4.2. The branch points of Rz are precisely the zeros of p of odd order. The branch
points w0 of R„ are given as

H>0 = z0 + i/>'(z0)
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where z0 is an odd-order zero of the function

r(z) = 4-p(z) + (p\z))\

A point z0 is a zero of p of order m > 2 if and only if it is a zero of r of order m > 2.
Locally z = h~\w) is a holomorphic function of w away from the branch points of Rn,

but never at the branch points. It follows that a necessary condition for f(w) to be holo-
morphic in the complement of /, and for (1) to hold, is that all branch points of Rw lie in I.
If this is so then in each component of the complement of / there are locally two holo-
morhpic choices for h \w), and so for /(w), corresponding to the two unramified sheets of
R„ there. Along the non-singular part of ^(i.e. except at points w0 e ^which are real non-
simple zeros of p) there is locally a unique choice of / satisfying /(w) = vv on but this
may not hold on all of ^(possibly if / is not connected, for example). This means that the
branch points of Rw lying in / is not a sufficient condition for (1) to hold.

Lemma 4.3. All branch points of R„ lie in I if and only if all odd-order zeros of r(z) =
4p(z) + (p'(z))2 are real. This is true if and only if all odd-order zeros of p(z) are real.

Proof. Let w0 = x„ + iy0, x0, y0 £ R, be a zero of order m > 3 of p where m is odd.
Then vv0 is a branch point of Rw . If w„ is real then clearly w0 e /, so suppose w0 $ R. Re-
call here that n> 3 so we may assume in sime disc in C there is a sufficiently small bound
forp", say \p"(z)\ <a« 1. Now estimate:

l/>C*o)| = |p(.Xo) - P(y»o)\ - i <x2\xo - w0|2 = \ a2y02 < y0\

The last inequality shows w„ ̂  I, as required.
Now suppose z0 = z, + iz2, z,, z2 G R, is a simple zero of r(z) and w0 = z0 + j p'{z0) is

the corresponding branch point of Rw . Note that z —» z + \p'(z) is a local diffeomorphism
preserving the real axis, so z0 is real if and only if h>0 is real. First suppose z0 is real; then

P(wo) =p(zo) + (p(w0) - p(z0))

= ~ j(P'(Zo)f + (P(W0) - p(z0))
(4.6)

= ~ i(/(2o))2 + p'(z0)(w0 - z0) + O(ct2\w0 - z012)

= \(p'(z0)Y + O(a2(p'(z0)Y).

Since p'(z0) ^ 0 we conclude p(w„) > 0; hence vv„ G I.
If now z0 is a non-real simple zero of r we must show y02 > \p{x0)\ to conclude wa ̂  I.

From the estimate (4.6) immediately above we obtain

p(x0) =p(w0) + (p(x0) -p(w0))

= P(xo) ~p(w0) + C%'(20)|2)

= —ip'(w0)y0 + O(ay02 + \p'(z0)\2)

= —ip'(z0)y0 + O(ay02 + \p'(z„)\2).

In order to show y02 is greater than the norm of this last quantity it is sufficient to show

p'(z 0) = 0(ayn). (4.7)
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To this end consider

0 = r(z0) = r(z, + iz2)

= 4p(zx + iz2) + (p'(zi + jz2))2

= 4/>(Z|) + 4;//(z,)z2 + (^'(2,))2

+ 0(az22 + |azy(z,)|).

Taking the imaginary part and cancelling z2^0 gives p'(z,) = 0{az2) and hence

p'(z0) = p'(z,) + 0(a\z0- z,\)

= 0(«z2). (4'8>

Finally, we estimate

\zi ~ yo\ = |Im(z0 - w0) | < |z0 - w0|

= O(p'(z0))

= 0(az2)

which together with (4.8) implies (4.7), as required.
To justify the last statement of the lemma, recall first that multiple zeros of p and r

coincide. Also note from the argument principle that p and r have the same number of
zeros (counting multiplicity) near z = 0, and so have the same number of simple zeros. By
Rouche's theorem we establish a one-to-one correspondence between these simple zeros
so that real zeros of p correspond to real ones of r, and non-real ones to non-real ones. Let
z0 be a simple zero of r and set a = |r'(z„)| > 0. An easy estimate shows z0 is the only zero
of r in the a-disc about z0. One also sees easily that p'(z0) and r'(z„) are of the same order,
in fact 4//(z„) = r'(zu)( 1 + O(a)). Now on the boundary of the a-disc

r(z» + ae'") - 4p(z0 + ae'") = (p'(z„ + ae'")f = (p'(z„) + O(aa))2

= (\r'(z0))\l + 0(a))^0

so p also has exactly one zero in this disc. If z0 E R then this zero of p must also be real. If
z0 $ R then the estimate (4.8) applies and the a-disc is disjoint from the real line; hence
the zero of p is not real. This completes the proof of the lemma.

As mentioned above, even if the conditions of Lemma 4.3 hold there may not exist a
function / holomorphic in the complement of I and satisfying /(w) = w on dl; if there
is, it must have the form 2/i '(w) - w for some branch of h '. We give necessary and suf-
ficient conditions for / to exist, and therefore for (1) to be satisfied.

Theorem 4.4. Assume all odd-order zeros ofp are real, as in Lemma 4.3. Then there ex-
ists a branch of h [(w) (4.1) holomorphic and single-valued in the complement of / such
that f(w) = 2h~'(w) — w satisfies /(w) = vv on ^ if and only if p has the following property:

if z, < z2 are real and p(zj) > 0,

j = 1,2, then the number of zeros of p in the (4.9)

interval (z,, z2) C R is a multiple of four.

Hence the hypothesis of Lemma 4.3 together with (4.9) are necessary and sufficient condi-
tions for (1) to hold.
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Proof. Suppose first all real zeros of p are simple and all non-real zeros have even or-
der; note the hypothesis of Lemma 4.3 is satisfied. Then / consists of finitely many con-
nected components I,, I2, — , ld corresponding to the disjoint intervals in R where p is
positive. The boundaries % = dl, are smooth curves. Assume {/,} is ordered so that for
increasing j the real parts of points in 7y are increasing.

For any w G d/ with, say, Im r> > 0 there are two distinct values of h~'(w), namely
h~'(w) - Re w and one for which h~'(w) (£ R. If w G R but w $ I (sop(w) < 0) again there
are two distinct values: both are real, one satisfies h'\w) < w and the other w < h~'(w).
This can be seen, for example, by considering a line segment

(z, ,z2)CR

where

p(z,)= p(z2) = 0, p(z) <0 for z G (z,, z2). (4.10)

These two branches of h~l correspond to the choices ip(z)"2 > 0 and ip(z)w2 < 0 respec-
tively.

Select points w, 6 Im w, > 0 for j = 1,2 and let h~\w) denote the branch of h~\ in
the upper half plane intersect the complement of I, for which h~\w>) = Re w,. We as-
sume, in fact, h~' is single-valued and holomorphic in a simply connected region €>'con-
taining points in the upper half plane not in I. By analytic continuation h~'(w) = Re w
and fj(w) = w for w E %C\ (7where f/w) = 2h~\w) — w. We claim that /i,"' and h2~' are
different branches of h~l. To prove this let z, E. R fl ^ be the rightmost point of 7,, i.e. the
point with maximum real part, and z2 G R fl ^ the leftmost point of I2. Then z, < z2 and
(4.10) holds. Now h~'(zj) = z; so we may study h~l near z, by solving

G(h-\w), w) = 0

near w = z}. A simple calculation gives

hj-\w) = zj+0((w-zjf).
From this it follows that (— iy(A,"'(w) — w) > 0 for w G (z,, z2) near zy, and hence for all
w G (z,, z2). Thus, h~* and h2 ' take different values on (z,, z2), and so are different
branches of h~'. We conclude from this that if a branch of h~' satisfies h~\w) = Re w
(equivalently /(w) = w) on some %, then this is satisfied only on alternate 5^'s, that is, if
and only if k — j is even. Moreover, we see h~' is single-valued in the complement of I, for
by analytic continuation on a given % either h~\w) — Re w identically holds, or does not.

Now to complete the proof of the theorem consider any p(z) satisfying the hypothesis
of Lemma 4.3 and suppose there exists a branch of / for which f(w) = w on all of I. Select
real numbers z, < z2 for which p(z) > 0 and let w, = z, + ip(z,)'n be the corresponding
points of dl in, say, the upper half plane. Perturb the coefficients a0, , a„., (3.2) by a
small amount to obtain

p(z) = (z" + d„_|Z""' + ••• + d0 )b(z)2

p(z) > 0, Wj = z, + ip(z,)'/2

so that all real roots of p are simple and the hypothesis of Lemma 4.3 still holds. (One
must take care, for example, to perturb a double real root of p into two simple real roots of
p, not into simple complex conjugate roots.) Then there is a branch of f, uniformly near
the above branch of /, which satisfies /(w,) = w,, j = 1,2. This implies that w, and w2 lie
on curves &ki and (in the above notation but with p replacing p) with k, - k2 even; or
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equivalently that the number of roots of p on (z,, z2) C R is a multiple of four. But then
the form of the perturbation implies also that the number of roots of/? on (z,, z2) is a mul-
tiple of four.

A similar argument gives the converse: if (4.9) holds then there exists / with f(w) = w
on This then completes the proof of the theorem.

Remark. A consequence of Theorem 4.4 is that for (1) to hold p cannot have a real
zero of order 2 (mod 4) which is a local minimum. In particular, n = 2 (mod 4) in (3.1)
cannot occur.

5. Further restrictions. Assume henceforth that p satisfies the hypotheses of Theorem
4.4 and condition (4.9) so there is defined a unique /, holomorphic in the complement of
/, for which f(w) = w on & = dl. We wish to study the integral

m(w) = — Re J f(a)da, w (£ / (5.1)

which represents, at least locally, a solution to the obstacle problem.

Lemma 5.1. The integral (5.1) defines a single-valued harmonic function on the com-
plement of I. On each connected component of u - 4* is constant.

Proof. Any closed curve Y in the complement of / can be deformed to one ro con-
sisting of arcs in Sfand arcs joining different connected components of "rf. The arcs joining
different components can be paired off so as to cancel; that is, T0 is homologous to a union
of closed curves r,, ••• , lying entirely in Thus,

so we must show

But /(a) = a on % so

f f(a)da = Yj [ /(a) da
j- i J i

Re J f(a)da = 0.

Re j|V(a) da = Re J a da = ^ J d\a\2 = 0.

To see that u — is constant on each component of ^ note that on %

d(u — \p) — Re (w dw) + ^ d\w\2 = 0.

In order now for (2) to hold the constant values of u — \p on various components of &
must be the same, namely zero. We calculate the difference of these constant values for
two adjacent components of ft as follows: let z, < z2 be real numbers satisfying

/>(Z|) = p(z1) = 0 are zeros of odd order,

p(z) < 0 for z G (z,, z2) C R.

Thus, z,, z2 G ^and (z,, z2) n / = <j>. For (2) to hold it is necessary and sufficient that (u —
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"/OU*2 = 0 for all such z,, z2. We calculate this quantity using (2.5) and noting h~\z,) = z,
and h(z) is real on (z,, z2).

(« - W.,*1 = \ Re(A(z)%," + \ \h{z)\X;> - 2 Re f 'zh'(z) dz

= z22 — z,2 — 2 j/* zh'(z) ii </z

= —z22 + z,2 + 2 J h(z) dz

= — z2 + z2 + [ z + ip(z)'n dz

= 2/ l p(z)W2 dz. (5.2)

Therefore, we can state necessary and sufficient conditions for (2) to hold.

Theorem 5.2. Let p satisfy the hypothesis of Theorem 4.4, and condition (4.9), so that (1)
holds. Then with the right choice of a constant of integration (5.1) defines a single-valued
harmonic function in the complement of / with u = ip and grad u = grad if/ on ^ (that is,
(2) holds) if and only if p has the following property:

if z, < z2 are real zeros of p of odd order, and p(z) < 0 for z £ (z,, z2), then

jf (~p(z)Y/2 dz = 0

where (—p(z))W2 is holomorphic in (z,, z2).

We have, thus far, obtained necessary and sufficient conditions for (1) and (2) to hold.
With these conditions there is defined uniquely the function u as described in Theorem
5.2. Near points of & which are not cusps (say where Imtc^O) we have noted that u> \p
holds in some one-sided neighborhood in the complement of I. But this may not hold
near a cusp, and may not hold far away from f^-that is, the region where u > \p may not
have a uniform size even for perturbations p ofp0 satisfying (1) and (2). The following re-
sult of Kinderlehner and Nirenberg describes the situation near cusps arising from odd
order zeros of p.

Theorem 5.3 (Kinderlehrer and Nirenberg [10]). Let z0 £ R be a zero of p of order 2m +
1, m > 0. If m is even then u>\p in some neighborhood of z0, in the complement of I. But
if m is odd there are points in the complement of I arbitrarily near z0 with u < \p. In partic-
ular a necessary condition for (3) is that p have no real zeros of order 3 (mod 4).

Proof. We present only the case where m is odd, say m = 2a + 1. Assume z0 = 0 and
p{z) = c2z4a+3 + 0(z4a+4) where c > 0. Then for the branch of h~' with h~'(w) = Re w, w £ %
we have

h(z) = z + (-p(z))l/2, z < 0

= z + c(—z)2"+3/2 + 0{z2a+2).
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Thus, from (2.5) for z < 0 (or equivalently w = h(z) < 0)

u{w) - Mw) = i Re (h(zf) + ^\h(z)\2 - 2 Re fjh'(Z) d{

= h(z)2- 2
Jo

4a + 5 v '

<0.

This proves the result. The essential difference when m = 2a is even is the square root of
—p takes the opposite sign:

h{z) = z - (~p(z))W2, z < 0.

It thus follows from the above results that the values of n for which perturbations of
the cusp

f = Po(x)
(5.3)

= xnb0(x)2, b0(0) > 0

can be studied are limited to the values n = 0 or 1 (mod 4). If n is a multiple of four then
(5.3) describes a double cusp, actually two analytic curves tangent at one point but not
crossing. The complement of I consists of two regions, one above the upper curve, the
other below the lower one. The function u(w) defined in these regions satisfies u > \p there,
so one may begin to study perturbations of the cusp as described in Sec. 3. Similarly, The-
orem 5.3 guarantees that u > \f/ in a neighborhood of zero, in the exterior of I, if n = 1
(mod 4).

Assume then n = 0 or 1 (mod 4) and consider a disc A about zero with small radius; its
circumference dA intersects the curve , corresponding to the unperturbed problem y2 =
p0(x), transversally. At the intersection points u — \p vanishes exactly to second order:

u - = ^(u - \P) = 0

^(w-^)>0
on dA D ^ (5.4)

where d/ds means differentiation along dA. And because n = 0 or 1 (mod 4) we have, in
fact

u-\p> 0 on dA — I0 . (5.5)

For the perturbed problem, with ft described by y" = p(x), it follows from transversality
arguments that (5.4), (5.5) continue to hold, with &0 and I0 replaced with ^ and I.

Therefore, ifp is such that (1) and (2) hold, as described in Theorem 5.2, the only way
(3) could fail is if

min (u(w) — \p(w)) <0, w E A — I.

From the above remarks this cannot happen on dA - /; and also u — if/ = 0 on ^ = d/.
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Therefore, any negative minimum w0 of u — \p must occur in the interior of A — I, and in
particular

grad(w — \p) = 0 (5.6)

at that point. From (5.1), (5.6) is equivalent to /(w0) = vv0, that is

h~'(w0) = Re w0.

This implies z0 = h~'(w0) is real, and p(zn) > 0; and this says that either w0 G ^in which
case u{wu) — \p(w0) = 0 is not negative, or that

p(z0) = 0 and
(5.7)

z0 G R is a local maximum of p.

In case (5.7) holds we observe that w0 = z0 6|E I by (3.4) (this is the reason for taking the
closure of the interior in that formula). Therefore, it suffices that u(z0) — \p(z0) > 0 at each
z0 given by (5.7) for (3) to hold. The calculation of u(z0) - \p(z0) is similar to the calcu-
lation immediately preceding Theorem 5.2.

In fact, let z, < z2 be real zeros of p such that p < 0 in (z,, z2); then as in (5.2) h~\zj) =
Zj and

(u — ̂ )|2|*2 = 2i p(z)'/2dz = 2 £ (—p(z))>/2dz.

Moreover, the choice of sign for (—p(z))W2 is as follows: if z, a zero of order 1 (mod 4) then
(—p(z))'/2 > 0 immediately to the right of z, ; and if z2 is such a zero, (—p(z))[/2 < 0 imme-
diately to the left of z2. This is as in the proof of Theorem 5.3, and gives a consistent
choice of sign for (-p),/2 as long as (1) and (2) hold and p has no zeros of order 3 (mod 4).
If z i or z2 is an odd-order zero of p then it lies on % so u - \p = 0 at that point. In order for
u — \p > 0 at the other point,

/
(-p(z))'/2 dz

must have the correct sign. This gives necessary and sufficient conditions for (3) to hold.

Theorem 5.4. Let (1) and (2) hold as described in Theorems 4.4 and 5.2. Then (3) holds
also if and only if p has the following properties:

(a) p has no zeros of order 3 (mod 4);
(b) on a maximal open interval of R where p < 0, define (—p{z))w2 to be holomorphic,

positive immediately to the right of an odd-order zero, and negative immediately
to the left of such a zero; then whenever z„, z, G R are even-order and odd-order
zeros respectively with p < 0 in between, we have

f¥ Zn

(—p(z))>/2dz < 0.

We have, therefore, described in Theorems 4.4, 5.2 and 5.4 necessary and sufficient
conditions for the curve % to be a free boundary for the obstacle problem, defined in
some uniform neighborhood of the origin. We have noted the number n (5.3) describing
the unperturbed cusp must equal 0 or 1 (mod 4); the simplest non-trivial case is thus
n = 4, and the next simplest n = 5.
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6. The cases n = 4 and 5. We give a more detailed analysis of these simpler cases. Re-
call the situation for general n: we are considering perturbations

y2 = p(x) = (xn + + ••• 4- Oo)b(x)2 (6.1)

of the cusp

y2 = p0(x) = x"b0(x)2

where p and p0 are real analytic, bn(0) > 0, a, E R are near zero, and b and b0 are uni-
formly near on some small disc:

sup|6(x) - 60(x)| < e, x £ C, |x| < S.

Here n = 0 or 1 (mod 4).
For small values of n it is easy to write down normal forms for p to satisfy the condi-

tions derived above; the parameters a, /?, y and 5 are real and near zero. When n — 4 there
are two cases:

(A4) [(x — a)2 + ft2]2b(x)2; I consists of two regions on either side of the real axis;
(.B4) (x - a)(x - p)\x - y)b(x)2, a < < y,

t
(x — a)l/2(x — p){y — x)i/2b(x) dx = 0

uniquely determines (i = /i(«, y, b)\ I consists of two regions on either side of the vertical
line Re x = /?.

If, in addition to symmetry about the real axis, we require symmetry about the imagi-
nary axis these formulas are simpler:

(A*ym) (x2 + ($2)2b(x)2, b(x) = b(-x);
(5„sym) x2(x2 - a2)b(x)2, b(x) = b(-x).

In this case necessary and sufficient conditions for

p(x) = (x4 + a2x2 + a0)b(x)2

are that b is an even function and that

a0 = <j>(a2) =
0, a2 < 0

ol2/4, a2 > 0.

The function <£ describes a C curve in the (a2, ao)-parameter space tangent to the a2-axis
at the origin.

When n = 5 three normal forms occur:
(A5) [(x — a)2 + fi2]2(x — y)b(x)2; I consists of one region opening out to the right;
(Bi) (x - a)\x - p)\x - y)b(x)2, ot</3<y;

s:(x — a)(x — /?)(y — x)U2b{x) dx > 0;

I again forms one region opening on the right;
(C,) (x - a)(x - fi(x - y)2(x - S)b(x)2, a < p < y < S,

r8
(x —a)l/2 (x - p)in (x - y)(S - x)W2b(x)dx = 0
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uniquely determines y = y(a, /?, S, b)\ I forms a large region on the right and a small is-
land to the left.

The normal forms for n = 4 each have two independent real parameters; for n = 5
there are three. In general, there are n/2 such parameters when n = 0 (mod 4) and (n +
l)/2 when n = 1 (mod 4). It is interesting to examine the set of admissible parameters
a„_,, ••• , a0 in (6.1) given by the normal forms for, say, a fixed b\ in the n = 4 symmetric
case this set was a C curve (6.2) parameterized by a2. Consider the general case for n = 4.

For the (A4) normal form a direct calculation gives

a3 = —4a a2 = 6a2 + 2 ft2, a, = —4a(a2 + ft2), a0 = (a2 + /?2)2.

The range of a2, a, as a and ft vary is precisely given by

a2 > j a32 (6.3)

and in that region «0 and a, are uniquely determined:

«i = i «3(4a2 - a32), «o = a (4a2 ~ a32)2- (6.4)

For the (B4) form let /S = a + \a and y = a + a where a > 0 and \ = A(«, a, b) G [0, 1]; the
defining condition in (B4) for X becomes after a change of variables

J x3/2(l — x)>/2b(ox + a)dx
A =y> = ± + 0(a+M), (6.5)

/ x'/2(l — x)W2b(ax + a)dx
J0

so let

H = n(a, a, b) = X — ̂  = 0(|a| + a).

Clearly n is smooth in (a, a). Again, by direct calculation we have

a3 = —a — 2/? — y = —4a — (2 + 2/i) a,

a2 = ay + 2/? (a + y) + fi2 = 6a2 + (6 + 6|u)aa + (| + 3/m + ji2)a2, (6.6)

a, = —2a/3y — j82 (a + y), a0 = a/S2y,

and so

iai2 ~ «2 = (i + \ ^ 0.

It is easy to see that this gives a one-to-one correspondence between (a, a) with a > 0 and
(a2, a3) with | a32 - a2 > 0; in fact introduce variables £ and r\, and consider the system of
equations

£ = [^ + ^ /i (a, a)2]l/2a, tj = -4a - [2 + 2ju (a, a)] a. (6.7)

We see (6.7) can be solved by the implicit function theorem to obtain

a = a*(l ij) = -J- tj - $ + — , a = o*(£, 17) = 2£ + ••• (6.8)

and so

a = a* (d a32 - a2)'/2, a3), a = a* ((j a,2 - a2)'/2, a3). (6.9)
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Note here the following facts:

«*(0, T)) = ~ 7),

^ ,0-') - T ['+" (x o)] [i+1' (i1 '■ o)r • <6'l0)
»*(0> V) = °»

I'0-''-
From the expressions

/? = « + \ a + n(a, a)a, y=a + o (6.11)

for (i and y it is now possible to consider these as functions /?*(£, 7j), y*(£, tj) of £ and 7j;
and from (6.6), a, and Oo are given as functions «,*(£, ij) and «<,*(£, tj). Therefore, in the
region J a,2 > a2, a, and a0 are uniquely determined from (a2, a3):

«l = «32 ~ ot2)'/2, a3)

(6.12)
«0 = «0*((i a32 - a2y/2, a3).

This is as was shown for the complementary region (6.3), (6.4). In fact, the functions (6.4)
and (6.12) defining a, and ao in the two regions of the (a2, a3)-plane fit together to form a
C' function.

To prove this last fact, it is enough to check that the values of the functions (6.4),
(6.12) and their a2-directional derivatives are equal along the curve a2 = f «32; so it is nec-
essary and sufficient that

1 3 da* \ n d2<x*
16'' "Sj-W")-0- -jp
1 4 da0* ^ « 32«0* ,n , -1256 I, — (0,tj) = 0, — (0,,)- —

«.*(°. V)= 77 V\ (°> V) = 0, -^r~ (0, tj) = —tj, (6.13)

Showing this is a direct though tedious calculation. The following identities simplify mat-
ters somewhat: from (6.6) and (6.7)

2a* (fc tj) + 2/3*(i tj) + o*(£ tj)
= 4a*(£, Tj) + 2a*(i tj) + 2/ia*(£, tj)

= -tj

where n = /t(«*(£, tj), a*(£, tj)). In particular,

/?*(0, tj) = ^ tj,

y/S*(0,7j) a"«*(0,7j) l yq*(0, tj)
ar ar 2 d£m ~ '
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These expressions and the corresponding one

3V(0, ij) d"a*(0, rj) dTo*(0, r,) _
dt ~ ar d? ' '

for y (6.11) allow one to check (6.13) by writing everything in terms of a*, a* and their
first derivatives (6.10). This is now straightforward so we omit the details.

Therefore, we see that a0 and a, are uniquely determined C" functions of a2 and a3
near the origin; also the first derivatives of these functions at a2 = a3 = 0 are zero. This is
summarized in the following theorem.

THEOREM 6.1. Let 2 = 2,b denote the set of («0, a,, a2, a3) €E R" near the origin for which
the function p(x) (6.1) with n = 4 is in one of the normal forms (A4) or (fi4). Then 2 is a C'
(but not C2) manifold of dimension two, tangent to the (a2, a3)-plane at the origin. The
normal form (A4) occurs when a2>| a.2 and the form (B4) when a2 < I a32.

We remark that if b is allowed to vary in the appropriate way, say in the Banach space
of functions holomorphic in the disc |z| < 5 in C, and continuous in \z\ < S, with the su-
premum norm, then the manifold varies in a C' manner. That is, the functions a,*(a2,
a3, b) and a0*(a2, <*3, b) describing are C' in (a2, a3, b). For general n we have the
following conjecture.

Conjecture.' For n > 4 the result analogous to Theorem 6.1 holds. When n = 4m, oio,
••• , a2m_L are C1 functions of (a2m , ••• , a4m_,) E R2m; when n - 4m + I, a0, ••• , a2m_, are C
functions of (a2m , ••• , a4m) G R2rn+[.

In the next section we shall return to the obstacle problem; some formal calculations
there strongly support this conjecture.

7. Generic bifurcation—a formal basis. Below we give a formal perturbation analysis
of the obstacle problem of Sec. 2. We state again that our interest and motivation goes
beyond a formal analysis, however—such calculations are a necessary first step before a
rigorous treatment (such as from the restricted unfolding viewpoint [4, 5, 6, 7, 16]) can be
made. In particular, the formal analysis is necessary to obtain candidates u~ and y+, as in
[6], giving a priori estimates for the true solution u and location of the free boundary dl.

Recall the situation as in Sec. 2. On the smooth bounded domain C R2 is given the
boundary condition

g : di2—»R

so that the membrane there is above the obstacle:

tp(w) < g(w) on dB

-1
*KW) = T" M2-

The solution u(w) satisfies

u: Cl—> R,

u = g on dfl,
1 We have recently proved this conjecture and obtained some bifurcation results for general n [17].
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u > ^ in S2,

Am = 0 in £2 — /,

I = (w £ S2| u(w) = ^(w)},

u is C' in £2.

The fact that u is C" across the free boundary dl means, in particular, that u solves the
Dirichlet problem

Am = 0 in - I,

u = g on dS2,

u = \p on dl

and, in addition

du/dv = d^/dv on dl

where v is the outward unit normal on dl.
Now consider a particular problem with datum g0 and solution u0; let g0 be perturbed

so there is a resulting perturbation of u0:

g = g0 + eg, + o(e), m = M0 + cm, + o(e);

the free boundary d/0 is also perturbed to dl:

w E dl0 moves to w + eN(w)v + o(e) e dl

N: dl0 —» R.

The differential equation describing m, and N was given by Schaeffer [13]; one first has

Am, = 0 in — 70, m, = g, on dfi. (7.1)

Then differentiating the formulas

u0(w + eN(w)i>) + eM|(w) = \p(w + eN(w)v) + o(e),

~ (w + eN(w)p) + €^(w)=~^(w + + o(e)

and noting u0 — xp vanishes to second order on dl0 gives

m, = 0 on dl0 (7.2)

^ = AW-u0)N
"=-2 N 011 dI°■ (7'3)

Thus, (7.1), (7.2) is a Dirichlet problem for m, , and (7.3) uniquely determines N.
We wish to relate the function N(w) describing the perturbation of the free boundary

to a perturbation of the function p(z) describing a cusp on the boundary. We assume
henceforth, as was the case in Sees. 3 through 6, symmetry with respect to the x = Re w
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axis; if and g are symmetric, then u and I will also be. Let the unperturbed boundary dl0
contain a cusp, given locally as in Sec. 3:

/ = p„(x) = x"b0(xf.

The perturbed boundary is given to first order as

y2=p0(x) + epx{x)

= x"b0(x)2 + + ••• + /?0 )b0(x)2 (7.4)

+ 2ex"b0(x)bl(x),

where e£>, is the perturbation of b0, and e/J, represents the coefficient a,. At w0 = x0 + iy0 £
dl0 the unit outward normal v to /0 is

v = [(pa'{x»)Y + 4/>0(x0)rl/2(-/>o'(*o), 2p0(x0)W2).

(Suppose here p(x0) > 0 and choose p(x0)'/2 = y0 > 0.) Let the point w0 move under the
perturbation to

C*0 + eJC,, y0 + ej,) = (x0, y0) + eN(w0)v,

then to first order

(Vo + ty,)2 = Po(x0 + £*:,) + e/> ,(*<>).

Equating terms in e gives

x, = -Ar(w0)[(p0'(jc0))2 + 4pn(x0)]-'/2p0'(x0),

yt = 2N(w„)[(p0'(x0))2 + 4p0(x0)]-,/2p0(xoy/2,

2y<iy, = Po'(x0)x i +/7,(jc0),

so solving for p, gives

Pi(Xa) = iV(w0)[(Po'(-«o))2 + 4p0{x0)\l/2. (7.5)

There remains now the question of analyzing the function A^w,,) near the cusp. Two cases
occur:

n = 4m. Here dl0 forms two analytic curves tangent at the origin, and not crossing. The
harmonic function », obtained by solving the Dirichlet problem (7.1), (7.2) is analytic up
to dl0 so, in particular, N = -l/2(dul/dv) is an analytic function of the parameter x = Re

N(w) = ~r fr= ~y (A° + A'X + A2x2 + -)•

From (7.4) and (7.5)p,(x) is determined:

Pi(x) = (Am-i*4"""1 + — + Pa)bo(x)2 + 2x4mb0(x)b,(x)

= -(A0 + A,x + A2x2 + •■•)(x2mbo(0) + 0(x2m+')).

We see that this forces

Po = Pl = "■ = film-1 = 0
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while there is no essential restriction on the values of (l2m , •••, . This fact is the basis
for the conjecture of Sec. 6, as /?, represents the first-order variation in a, from a, = 0.

n = 4m + 1. Since dl0 forms a sharp cusp at the origin in this case u, may not be ana-
lytic up to this cusp—(dujdv) is unbounded in general. It is necessary to unfold the cusp
with the conformal mapping

"=k(o=r+iP(?r
which locally maps the real f-axis onto dl0, taking Im f > 0 to the exterior of 70. Then

v(f) = «,(&(£))
is harmonic for Im f > 0, even in Re f, and vanishes for f real. Letting vt and vw denote
unit normals to Im f = 0 and I0 respectively, we have

(7.6)
= ^^[4+/Kfrw))2r,/2r'— 1 dv

2 dvt

= ~^[4+p(xr(p'(x)?rnr

where f2 = x = Re w in the last formula. Also, because v(£) is even in Re f and analytic,
for f real

^r, = (5o + 5,r + £2r + -)r'
dv?

= (B„ + B, x + B2x2 + ■•■)x~y2.

Therefore, from (7.5) and (7.6)

P*(x) = + ••• + p0)b0(x)2 + 2x4"'+lfc0(jc)i,(j<)

= (B0 + B,x + B2x2 + -)(x2mbo(0) + 0(x2m+')).

Again,

Po = P\ = •" = P2m-\ = 0
while [i2m , •••, p4m are essentially arbitrary, in accordance with the conjecture.

In summary, the formal perturbation scheme above associates to a perturbation g0 +
eg, of the boundary condition a corresponding perturbation p0 + ep, of the function de-
scribing the free boundary near a cusp. Moreover, p, depends linearly on g, and has the
form

Pl(x) = (J32mx2m + - + Xm >)bH{xf + 0(x4m)

when

p0(x) = x4mb0(x)2
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and the form

/>,(*) = (fi2„Xm + - + /34mx4m)b„(x)2 + 0(x4m+l)

when

Po(x) = x4m+'b0(x)2.

In particular, the coefficients fi, may be regarded as derivatives /?, = da/dc of a, for a vari-
ation of g in the direction g, .

8. Generic bifurcation—one-parameter unfoldings. We continue here the formal anal-
ysis of Sec. 7. Given a perturbation g(w,e) = g0(w) + eg, (w) + ••• of the boundary condi-
tion, quantities [1, = da/de depending linearly on g, are calculated. How does this knowl-
edge, coupled with the knowledge of the admissible normal forms for p, indicate how the
singularity unfolds? In particular, what normal forms occur for generic perturbations, and
how does one characterize such perturbations? The analysis in this section concerns the
cases n = 4 and 5, and describes the generic unfoldings for perturbations depending on
one scalar parameter e. In Sec. 9, the case of a two-parameter perturbation is considered
where the parameters e, and e2 vary independently in a neighborhood of the origin.

Theorem 6.1 makes the case n = 4 very clear; since the boundary between the cases
(A4) and (B4) is the curve a2 = $ a32, the natural generic condition is that (a2, a3) move
across the curve transversally, that is, da2/de ^ 0. For e on one side of zero (A4) should be
encountered, and (B4) for € on the other side. In fact, set

a2 = e, a3 = —4 ce + o(e)

(«o, a,, a2, a3) e 2, so a0 , a, = o(e)

for some real constant c. For e > 0 p has the normal form (A4); since a3 = -4a and a2 =
6a2 + 2/S2 it follows a ~ ce and /?2 ~ { e. Therefore,

p(x) = [(x — ce + ""J2 + \ e + •■•]2b(x, e)2, e > 0.

(We let b depend on e, presumably in a C" manner.) When e < 0 (B4) occurs; in that case
from (6.8) and (6.9) a (—<e)'/2 and y = a + a ~ (—e)l/2 and from (6.6) and (6.11)

o -11 1P = -4- «3 + j = ce + 2 ^CT +

Expanding /x = A — { (6.5) to first order about a = a = 0 and using the asymptotic forms
for a and a immediately above then shows fi ~ c'e for some constant c'. Thus, p has the
form

p(x) = [(x - c'e + ■■■)2 + e + •••](* - c'e + e)2, e<0.

Roughly, the parameter a3 causes a translation of the free boundary to the left or right, as
seen by the term x — ce + ■•• above. The parameter a2 describes, near the cusp, whether
the membrane moves down (A4) or up (B4) relative to the obstacle. A particular case when
the generic hypothesis dajde ^ 0 holds is when dg/de = g, is of one sign; if g, < 0, so the
membrane is pushed down, then applying the maximum principle to m, shows dajde =
&>0.

Now let n = 5 and g = g0 + eg, + again depend on the scalar parameter e, so quan-
tities fi2, /?3 and (i4 are defined, and fi0 = /?, = 0. The generic hypothesis we consider here
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is yS2 ̂ 0; in this case the normal form (A5) appears for both e < 0 and e > 0, as the follow-
ing theorem indicates.

Theorem 8.1. Let

p(x) = (x5 + a4x4 + ••• + ato)b(x)2

satisfy one of the normal forms (A}), (B5), (C5) and be such that

max (|a3|, |a4|, ||&-/>0||s} == C|a2| (8.1)

for some constants C and 5, where 11 • 11 s represents the supremum norm in the Banach
space of functions holomorphic in some complex disc |x| < 5. Then for |oo|, |a,| and |a2|
sufficiently small p cannot be in the normal forms (B.) or (C5).

Proof. First translate the variable x by replacing it with x - aJ5. This has the effect of
eliminating a,, transforming a3 and a2 to a} = a3 + 0(a42) and a2 = a2 + 0(a2 + a,2), and
transforming b to 6(x) = b(x — aj5). The hypothesis (8.1) still holds, possibly with larger
C and smaller S. Also, p is still in the same normal form after such a transformation.

Therefore, without loss of generality a4 = 0. Suppose first p is in the form (Bs); so

a4 = —2a — 2/3 — y = 0,

a, = -2a2 - ay - $ y2, (8.2)

a2 = a2y + | ay2 - | y3.

The conditions a < /? = — a — y/2 < y restrict a and y:

p = -^Ea a < 0. (8.3)

A further restriction is the inequality

J (x — a)(j>c — /?)(y — x)i/2b{x) dx > 0

which implies

/? JjX~ a^Y ~ dx

a (y — a) J (x — a)(y — x)i/2b(x) dx

I /(I ~y)wldy+ £ y{ 1 ~y)"2dy

I y(l ~y)W2dy
+ Ofla| + |a - y| + |«2|) (8.4)

= y + + °dal +1« - y| +1«2|)-

The error term of order |a| + |a — y| + |a2| arises from the charge of variable in the in-
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tegration and from 11 b — b011 s = 0(|a2|). In terms of p (8.4) is

p > | + 0(\a\ + |a - y| + |a2|). (8.5)

Now Eq. (8.2) for a2 gives

«2 = a3 (~P + j P2 + ^ P j (8.6)

and so for some C, > 0, |a2| < C,|«|3. But then

= a21-2 + p - | p2j, -2 + p - | p2 < 0 in | j, 4J (8.7)a3

~Y (a + /? + y) = —

+ /B

where 4>: [0, 00] —» R is the function

/' 0 + a)l/2//2(l -y)'/2dy
Jo0(a) =

/ 0 + <0*0

l/2y/2(i -^),/2^

implies |a3| > C2|a|2 > C3|a2|2/3, contradicting the hypothesis (8.1).
The case forp in the form (C5) proceeds similarly. Again assume a4 = 0 so

a4 = —a — j8 — 2y — 8 — 0. (8.8)

From this fact it follows that

«3 = - WjB2 + 08 - a)(j3 - 8) + (j8 - y)2 + 2(J3 - a)(j8 - y) + 2(J3 - y)(j8 - 8),

a2 = 20/33 - 3J3(a} + 10/?2) + 2(jB - a)(jB - y)(J3 - 8) (8.9)

+ 08-a)08-y)2 + 08-y)2(y8-S).

The integral condition in (C5) determining y is

f (x — a)'/2(jc — ft),/2x(8 — x)'/2b(x) dx
 

I (x- a)w2(x - P)in(8 - xy/2b(x) dx
J/i

f(y+ //2o - yy/2b«s - P)y+P) dy
= (8~^ r ) B — a('/2 + (8'10)jf (>'+frf) yl/2(l-yr2b((8-fi)y + /})dy

= (S - /?) [$ + 0(|>8| + |6 - /?| + |«2|)
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Observe that for positive a

0<9(a)<l, ®(0)-y, 4>(oo)=I- (8.11)

In terms of new variables

ft — a E[0, oo], t = 8-/3, 0<t«: 1, (8.12)

(8.10) becomes

also note

P = j [-1 + a - 29(a) + 0(\fi\ + |t| + |a2|)];

y~P = t[®(o) + Oflfl + |r| + |«2|)]. (8.13)
Therefore from (8.9) a3 and a2 can be expressed in terms of r and a:

5T~2a3 = -2a2 - [1 + 2<K(a)]a - [2 - 24>(a) + 3<D(a)2] + 0((1 + a)V), (8.14)

25r~3a2 = 4a3 + [3 + 6<&(a)]<r2 + [—3 + 8<I>(a) — 23>(a)2]a

+ [-4 + 6<D(a) + 29(a)2 - 23>(a)3] + 0(( 1 + a)if + (1 + a)2rj) (8.15)

where tj is the error term of order |/?| + |t| + |a2|. From the hypothesis |a3| < C|a2| of the
theorem it follows a has an upper bound a < C4; for otherwise from (8.14), (8.15) we have
«3   1 tV and a2 ~ g- rV, a contradiction. With this bound, therefore, |a2| < C5|t|3
holds by (8.15); and in (8.14)

—2a2 — [ 1 4- 24>(<r)]a — [2 — 29(a) 4- 3<I>(a)2] <0 on [0, oo)

(which follows from (8.11)) leads to the estimates |a3| > C6|t|2 > C7|a2|2/\ This con-
tradiction completes the proof of the theorem.

Therefore a generic one-parameter perturbation gives rise to the normal form (A5); in
fact the parameters a, /?, y in this form can be given quite explicitly, as the following theo-
rem shows.

Theorem 8.2. Let

p(x, e) = (x5 + a4(e)jc4 + ••• + a0(e))b(x, e)2

satisfy one of the normal forms (A 5), (fi5), (C5) for scalar e near zero (and on either side of
zero). Suppose as e —» 0

a2(e) ~ e, max {|a3(e)|, |a4(c)|, 11 b - b0 \ | s) < C|e|, a0(e), a,(e) -» 0.

Then, in fact, p has the normal form (As), and

p(x, e) = [(x - a)2 + P2]2(x - y)b(x, c)2, a ~ ( ,
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Proof. By Theorem 8.1 p must be in the form (A5). By direct calculation

2 2
a4 = -4a - y, a3 = j «42 + 2/?2 - - (a - y)2,

-4 3 4 4
a2 = — a43 + j a3a4 + — (a - y)3 + j (a - y)/?2,

so by the hypotheses on a/e) it follows that

-4a-y= 0(e), (8.16)

2/?2 - | (« - y)2 = 0(e), (8.17)

^(a-y)3 + j(a-y)/l2~e. (8.18)

Substituting for fi2 in (8.18) from (8.17) gives

■(t
(8-19)

so from (8.16) we have

1 /25e\,/3 /c\,/3" ~ 5 ( 8 ) (40)

and y 4a. Finally, (8.17) and (8.19) give

which completes the proof.

9. Two-parameter unfoldings. Our final topic is a formal analysis of the case n = 5
under a generic two-parameter perturbation g(w, e) = g0(w) + e,g, ,(w) + €2gI2(w) + o(|e,| +
|e2|) of the boundary conditions. The parameters e, and c2 vary independently near zero,
that is, c = (c,, e2) varies in a full neighborhood of the origin in R2. The object is to de-
scribe the form of the singularity in terms of the parameter e; in particular, to decide
which regions of the e-plane correspond to the normal forms (As), (B5) or (C5). We shall
see that each of these forms will occur. In particular, the contact set I has one large con-
nected component for (As) or (B5) and has a large component (the mainland) and a small
island nearby for (C5). The transition from (As) to (C5) occurs as the island breaks away
from the mainland; from (Bs) to (C5) it occurs as the island rises out of the sea.

The generic condition imposed is that a2 and a3 vary independently with €, and e2,
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that is, |d(a2, a3)/d(€, ,e2)| ̂  0. This can be normalized to

d(a2» «3) _ /1 0
d(e,

A further normalization is to assume

a4 = 0.

This can be accomplished by a translation, i.e., by replacing x with x — aj5; then a2 and
a3 change by orders 0(a32 + a42) and 0(a42) so (9.1) still holds and the description of the
bifurcation set in the e-plane remains the same.

The analysis below is roughly the analogue for n = 5 of the case n = 4 considered in
Sec. 6, culminating in Theorem 6.1. In effect we are taking the cross-section

Zt° = n {a|a4 = 0}

of the set 2 of all (a0, a,, a2, a3, a4) €E R5 for which p(x) is in some normal form (As), (55)
or (C5). The question of interest is to characterize those (a2, a3) G R2 which occur in each
of these forms. To simplify matters we neglect the higher-order terms arising from the
non-zero factor b(xf in p(x) by assuming b(x) = fc(0) > 0 is constant. We shall show there
is a continuous one-to-one correspondence between (a2, a3) e R2 near the origin, and co-
efficients (ao , a i, a2, a3, 0) £ R* corresponding to some normal form; that is, 2„°, for b(x)
constant, is the graph of a continuous function expressing ao and a, in terms of a2 and a3.
Moreover, the regions in the (a2, a3)-plane corresponding to the various normal forms are
given as follows:

V '/3
, 2/3CA5): «3 > - a22

(Bs): - a22/3 < a3 < - a22/3 and «2 < 0

(Cs):
a3 < - a22/3 when a2 < 0

/ 5 \1
a3 < — I — I a22/3 when a2 > 0.

The transition from (A5) to (C5) occurs along the curve

5
2a33 = - f a22, a2 > 0 (9.2)

and from (B5) to (C5) along

729
«33 — «22> (9.3)

This is illustrated as a bifurcation diagram in Fig. 1. Presumably this question could be
analyzed without assuming b(x) to be constant, that is, by studying a two-dimensional
embedding (e2, e3) —* with possibly b(x) = b(x, e) also depending on e in a C' manner.
This should lead to regions bounded by transition curves with asymptotic forms (9.2) and
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normal forms A5 or B5 0j[l

normal form C5

Fig. 1. Generic two-parameter bifurcation for n = 5.
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(9.3). Our interest at this point, however, is in the derivation of these formulas rather than
their generalization, so we do not do this.

Consider first the normal form (As); here 0 = a4 = —4a — y so y = —4a. Then

a3 = - 10a2 + 2/32, a2 = 4a(5a2 + /?2). (9.4)

A continuous one-to-one parameterization of the part of 2° corresponding to (A5) is given
by letting

|a| 1, 0 < yS « 1;

for such a and /?, (9.4) gives a local homeomorphism onto the region

mapping /? = 0 onto the boundary of this region.
For the case of (Bs) the corresponding formulas were derived in the proof of Theorem

8.1:

a3 = a2 A"|(p), a2 = a}K2(p), 0<-a<3Cl, |<p<4

where

^i(p) = -2 + p~^p\ K2(p) = -p + j p1 + ^ p3

as in (8.3), (8.5), (8.6) and (8.7). For p = 4/3 and 4 this describes curves a3 = - (9/21/3)
a22/3 and a3 = — (5/2)l/3a22/3 respectively, where a2 < 0. To show the region between these
curves is covered in a one-to-one manner it suffices to show that the function

A (p) = a33/a22 = K,(pf/K2(p f

satisfies dA/dp <0on [4/3,4]; and since K2(p) < 0 and A",(p) ̂  0 there, this is equivalent
to showing

dK, dK2 3 , 11, , „2K^-2K^--2'+T'+3"-4SO-

But this is clear since
-3
2 p3 + y p2 + 3p - 4 = -(p - 4) p - lj (p + 1).

For the (C5) normal form we have again from (8.12), (8.14) and (8.15) in the proof of
Theorem 8.1

a3 = r2A:3(a), a2 = T3K4(a) (9.5)

where

5K,(a) = -2a2 - [1 + 2$(a)]a - [2 - 24>(a) + 34>(o)2],

25K4(o) = 4a3 + [3 + 60>(a)]a2 + [-3 + 8<I>(a) -20>(a)2]a

+ [-4 + 60(a) + 20(a)2 - 23>(a)3]. (9.6)
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At a = 0 and oo the curves a3 = — (9/2'/3) a22/3, q2 < 0 and q3 = — (5/2)1/3q22/3, q2 > 0 are
described. (To handle the situation near a = oo introduce variables a, = 1/a and t, = or
where 0 < a, and 0 < r, <3C I.) Because K3(o) < 0 on [0,oo] it would be sufficient to have

3 A(9.7)

to show we have a one-to-one mapping onto the region between these curves. We could
prove this directly as in the (B5) case, but this is not feasible as it entails rather difficult
calculations involving the non-elementary function $ and its derivative. An indirect
method of proving (9.7) is better.

Express a, and «0 in terms of r and a using (8.12); this gives

a, = r4A5(a), «0 = rKh(a) (9.8)

where K5 and Kt, are certain polynomials in a and <I>(ct). We may consider the formulas
(9.5), (9.8) for q, as a composition

(a, t) —> (£, tj, f) ->• (q3, a2, a, , a0)

where ((8.12), (8.13))

£ = /? — a= to, r\ = fi — y — — t<&(ct), £=/3 — 8= — t (9.9)

and from (8.8)

£ = j(£ + 2t, + £). (9.10)

Let Af(a, r) and N(o, r) be two by two matrices defined by

I t2K' 2tK,\
d(q3, a2, a,, a„)

d(a, t)

v3

t'K4' 3t 2k4

t4K5' 4t3K5

\ T5K,' 5T%

M

N ,

I a(q3, a2, a, ,q0) 3(g, i), £)

d(i V, D 3(a, t)

Thus (9.7) is equivalent to showing det M > 0 for r t6 0; we show in fact, det M ^ 0 for r
0 and a e (0,oo). To see that this determinant is positive note that (8.11), (9.6) give K4(0)

= -4/343 but K4(o) > 0 for large a, so that for some a0, K4(o0) = 0, K4'(a0) > 0; but also
K3(a0) < 0.

The proof that M is non-singular proceeds in three steps. First note d(£,?7,f)/d(a,r) has
zero kernel; in fact,

d(£,f)/d(a,r) is non-singular. (9.11)

Secondly, we show from (9.11) that

ker(^)={0}; (9.12)

and finally, we shall show

ker M C ker N (9.13)

from which it follows det M ¥= 0.
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Suppose for some

t0 ¥= 0, o0 > 0 that |a' j 7^ 0

lies in the kernel of

Letting

gives identically in x

P(x,o,t) = x5 + a3jc3 + a2x2 + a,* + a0

dp(x, o0 , T0) ^ + dp(x, a0 , T0) ^ = Q (9 14^

Regard the simple zeros a, /? and S of p as functions of a and t given by (9.9) and (9.10)
and, using (9.14), differentiate p = 0 at these points in the (a,, t,) direction. It follows that

| is in the kernel of d(a,/3,8)/d(o,t),

and therefore of d(£,£)/d(a,t) = d(J3-a,/3-8)/d(o-t), a contradiction. Thus (9.12) holds.
Now, let

j lie in the kernel of M = d(a3 ,a2)/d(a,r),

so at (a0, t0), (dp/da) a, + (dp/dt) t, is linear in x. Differentiatingp = 0 at the double zero y
shows this linear function vanishes at y, so

OO OT

for some c. And differentiating the integral condition

r (-Py/2dx=o

in the (a, ,t,) direction gives

0 = f / o 'To)y'/2(x - y)dx

= | J* (x - a)',/2(x - /3)~,/2(S - x)~'/2dx

implying c = 0. Therefore, (9.15) vanishes, so

(::)
also lies in the kernel of N, proving (9.13). Therefore, (9.7) holds.
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