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ON THE NUMERICAL SOLUTION OF SINGULAR INTEGRODIFFERENTIAL
EQUATIONS*

By N. I. IOAKIMIDIS AND P. S. THEOCARIS (The National Technical University of Athens)

Summary. A method of numerical solution of a sufficiently wide class of Cauchy-
type singular integrodifferential equations along a straight finite interval is presented.
This method consists of approximating the integrals in such an equation by using appro-
priate numerical integration rules and appropriately-selected collocation points and re-
ducing such an equation to a system of linear algebraic equations. This technique consti-
tutes a direct generalization of the corresponding methods of numerical solution of
Cauchy-type singular integral equations and presents some advantages over the classical
Multhopp method of numerical solution of Cauchy-type singular integrodifferential equa-
tions, to which it reduces in some special cases. An application to a specific equation is
also made.

1. Introduction. The numerical solution of singular integral equations with kernels
presenting Cauchy-type singularities (called in what follows simply singular integral
equations) by reduction to systems of linear algebraic equations by approximating the in-
tegrals through the use of numerical integration rules and applying the resulting equa-
tions to appropriately selected collocation points has recently become the subject of in-
tensive research. Kalandiya [1, 2] has used a variable transformation and further
interpolation techniques for such a reduction, applicable to singular integral equations of
the first kind along the interval (—1, 1) reducible to Fredholm integral equations. Further,
Erdogan and Gupta [3] succeeded in getting rid of the variable transformation, and thus
in working along the real integration interval (—1, 1). Theocaris and Ioakimidis [4] proved
that the method of Erdogan and Gupta was in reality equivalent to the application of the
Gauss-Chebyshev numerical integration rule to Cauchy-type principal value integrals. In
the same work, they also developed a new technique for solving singular integral equa-
tions, based on the Lobatto-Chebyshev numerical integration rule.

Several more publications concerning wider or different classes of singular integral
equations along a real integration interval have also recently appeared, together with the
extension of almost every numerical integration rule for regular integrals to the case of
Cauchy-type principal value integrals proposed by Ioakimidis and Theocaris [5]. A con-
siderable number of these contributions were due to Theocaris and Ioakimidis, who in a
series of publications (see e.g. [6-10]) have generalized the results of [1-4] to the most gen-
eral cases of singular integral equations of the first or the second kind, with constant or
variable coefficients, with regular of generalized Fredholm kernels (besides the Cauchy
kernels), with weight functions presenting complex singularities at the endpoints of the in-
tegration intervals or pairs of such singularities, etc., so that any practical case of singular
integral equations could be faced. Although any numerical integration rule can be used
for the solution of singular integral equations (Gauss, Radau and Lobatto rules, rules
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with completely preassigned abscissae, etc.), particular attention was paid to Gaussian
rules (and especially Lobatto-type rules) associated with the weight function w(x) = (1 —
jc)°(1 + x)'\ the corresponding Jacobi polynomials and the associated interval (—1, 1). In
almost all these cases, the existence of an appropriate number of collocation points inside
the integration interval was proved. Of course, in the case of complex singularities a, fi, by
using a theorem of analytic continuation, the use of collocation points outside the in-
tegration interval was seen to be permissible [8], [9] is a review of the results of Theocaris
and Ioakimidis on the numerical solution of singular integral equations. Several more re-
cent publications by the same authors are mentioned in [10].

Finally, in [11] the results of several of the above-mentioned publications have been
derived by a similar method and also by using Jacobi-type numerical integration rules.
The aim of this paper was also to make possible the use of an arbitrary number of pre-
assigned abscissae lying outside the integration interval (-1, 1). Unfortunately, the lack of
practical interest and physical meaning in this case, together with the inability to deter-
mine an appropriate number of collocation points, restrict the practical usefulness of the
results of [11].

It is the intention of this paper to show that the direct methods of numerical solution
of singular integral equations can also be used for the numerical solution of singular in-
tegrodifferential equations. Such equations appear in several problems of mathematical
physics and, particularly, in fluid mechanics problems [2, 12], as well as in several plane
elasticity problems [2, 13, 14], Unfortunately, to the authors' knowledge, only one method
for the numerical solution of a special class of these equations has been proposed, by Mul-
thopp [12]. The method of Multhopp is also described in [13] and [2], in the latter together
with a proof of its convergence. This method has the disadvantages that it is not general
enough, that it makes use of a variable transformation, exactly as made in [1] for singular
integral equations, and also that in this method the evaluation of the singular integral (the
only integral in the equation considered by Multhopp [2, 12, 13]) is evaluated by using
interpolation techniques and not Gaussian integration rules.

Although these disadvantages of Multhopp's method of solution of singular in-
tegrodifferential equations are not of critical importance, the authors think that it is
worthwhile to show the applicability of the results of [3, 4] to the numerical solution of
singular integrodifferential equations sufficiently more general than that considered by
Multhopp. Perhaps the results of the present paper may also be found interesting by any-
one wishing to solve singular integrodifferential equations more general than that consid-
ered here by applying the methods described in [6-10] for simple singular integral equa-
tions. The critical difficulty encountered in the present paper is the lack of appropriate
collocation points along the integration interval. This difficulty will be faced by using the
same collocation points used for the numerical solution of singular integral equations.
This will become clear in what follows. Finally, a simple application of the method of the
present paper will be also made.

2. Description of the method. We consider the singular integrodifferential equation

B(x)<p(x) + [ dt + C(x) [' -2^ dt+ /' D(t, x)<p'(t) dt
J-\ t X i/_! t X »/_ 1

+ J E(t, x)(p(t)dt — f(x), — I < jc < 1, (1)
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where B(x), C(x), D(x), E(x) and f(x) are known functions along (—1, 1) and q>(x) is an
unknown function to be determined. This equation is sufficiently more general than the
Multhopp singular integrodifferential equation [2]

nx) i
B(x) 1-n

= —1 < x < 1, (2)

where B(x) and f(x) are known functions and T(x) the unknown function.
Evidently, if the known functions in Eq. (1) are regular along the interval (—1, 1), the

same will hold also for the unknown function q>(x) and its derivative <p'(x). As regards the
behavior of <p'(x) as x —* +1 or — 1, this depends on the behaviors of the known functions
near the same endpoints of the interval [—1, 1], Of course, it is necessary that <p'(jc) does
not present strong power singularities as x —* ± 1. This is necessary for the existence of the
first integral in Eq. (1) and will be assumed fulfilled. Then, near x = ±1, we will have:

<p'(x) = (1 - <p'(x) = (1 + xf&^x), <*,/?>-1, (3)

where a and /3 are constants and $„(*) and ®n(x) functions tending to finite limits as x —»
+ 1 and —1 respectively. Furthermore, in order that the solution y(x) of Eq. (1) be
uniquely determined, two conditions are necessary. Following the development of [2], we
assume that

cp(l) = <p(-l) = 0. (4)

Analogous conditions can also assure the uniqueness of the solution of Eq. (1), but here
only conditions (4) will be considered.

Next, analogously to [2], we assume that a = /3 = — \ in Eqs. (3) and we approximate
<p(jc) by

<p(x) = w*(x)g(x), (5)

where

w*(x) = (1 - x2Y/2 (6)

and g(x) a new unknown function assumed regular along the whole interval [—1, 1], If this
assumption is not true, then the approximation of <p(x) by the numerical solution to be
obtained will not be very good near x = ± 1. But because of Eqs. (4), this is not of much
importance. Furthermore, in this paper we will prefer to replace g(x) in Eq. (5) by

/j(x) = (1 -x2)g(x). (7)

Then we have:

<p(x) = w(x)h(x), (8)

where:

w(x) = (1 - x2)~'/2. (8a)

Evidently, because of Eqs. (4, 8), it is clear that:

fc(l) = /i(-l) = 0. (9)
Now, in order to get rid of the derivative of <p(x) in Eq. (1), we apply the rule of in-
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tegration by parts in the integrals containing y'(x). Thus, by defining

K(t, x) = D'(t, x) + E(t, x) (10)

and taking into account Eqs. (4), we obtain the following equivalent form of Eq. (1):

Bw^)+l£^'+cw£^'i'
+ / K(t, x)<p(t)dt = f(x), — 1 < jc < 1. (11)

Now we consider the Gauss-Chebyshev numerical integration rule [3] with n ab-
scissae:

/' w(t)h(t)dt^A £ h(t,), (12)
J- I /= I

where the weights A are given by

A = -u /n (13)

and the abscissae t, by:

(/' — 0.5)77 , „r, = cos , i= 1,2, •••,«. (14)
n

Similarly, we have to use the Lobatto-Chebyshev numerical integration rule [4] with (n +
1) abscissae. This rule, for an integrand h(t) satisfying Eqs. (9), takes the form

f w(t)h(t)dt = A X h(y,), (15)»-i i-i
where the abscissae y, are given now by:

_V, = cos (in/ri), i= 1, 2, •••,«— 1. (16)
By taking further into account the development in [3-5], we can write Eqs. (12) and

(15) as

/' + K„dx)h(x), (17)
 -1 IX /-| li a

and

J' w(0 ̂-dt^A "f + ̂ ,(x)/»(x),y_, f: y,-x
respectively, where the functions K„G(x) and K„, (x) are determined by:

(18)

ir m = 7T^"->(X) ts / \ _ vTXx) ....
"c( } T„(x) ' ) (x2-l)t/„_,(x)' ('

T„(x) and U„(x) denoting the Chebyshev polynomials of degree n of the first and the sec-
ond kind respectively.

Furthermore, by differentiating Eqs. (17) and (18) with respect to x, we obtain:

£ /' "(') + K»o'(x)<p(x) + K„g(x)<p'(x), (20)
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£ /, W(t) r~xdt"A I lV^xf + K"l'(x)<p(x) + KMW(x), (21)
where

_ tt{xUUx)T„(x) - Hi _ Tr[(l-x)UUx)Ux)-n]
nG() (l-x2)Tn\x) ' ( ) (1 - jc2)t/„_,2(jc) (22)

as clearly seen from Eqs. (19). We can also note that for the points y, determined by Eqs.
(16), we have:

tf„c(X> = 0, KJ(y) = -™/(1 - yf). (23)
Similarly, for the points f, determined by Eqs. (14), we have:

= 0, *„/(*,) = tm/( 1 - f,2). (24)

The first of Eqs. (23) and (24) were already known [3, 4], The second of these equations is
derived here for the first time.

Now, by approximating the integrals in Eq. (11) by using the Gauss-Chebyshev nu-
merical integration rule for regular integrals, Eq. (12), Cauchy-type principal value in-
tegrals, Eq. (17), and their derivatives, Eq. (20), and applying the resulting approximate
equation to the collocation points yk, we obtain because of Eqs. (8) and (23):

K w.> - +•< | +• «•>]
X h(t) = f(yk), k= 1,2, - ,n- 1. (25)

In a quite analogous manner, by applying the Lobatto-Chebyshev numerical integration
rule, Eqs. (15, 18, 21), to the integrals of Eq. (11) and applying the resulting approximate
equation to the collocation points t,, Eqs. (14), we obtain because of Eqs. (8) and (24):

/ \ n / \ 7TTIMt.)B(t) - —- h(t) + A £ 1 - Cft) +*(*,<,>
iyk - t)1 yk - t,

X h(yk) = /(/,), i = 1, 2, ••• , n. (26)

Eqs. (25) and (26) constitute a system of (In - 1) linear algebraic equations with an equal
number of unknowns, the values of the unknown function h(x) at the points:

xf = cos (iir/2n), i = 1, 2, •••, 2n — 1, (27)

that is at both sets of points t, and y,. By solving this system of equations we can deter-
mine the values of h(x) at these points and, further, by using interpolation techniques
[15], along the whole interval [-1, 1],

In another way of thinking, the form of the system of equations (25) and (26) permits
us to reduce it to a system of only n linear algebraic equations with the unknowns the val-
ues of h(x) at the abscissae t,, or to a system of (n — 1) such equations with the unknowns
the values of h(x) at the abscissae yk. To do so, we have just to replace the values of h(yk),
directly available from Eqs. (25) in terms of h(t,), in Eqs. (26) or, inversely, the values of
h(t,), directly available from Eqs. (26) in terms of h(yk) in Eqs. (25). Thus, we obtain a sys-
tem of only n or (n - 1) linear algebraic equations. In the special case when C(x) = K(t, x)
= 0, Eq. (11) can also be solved by applying Multhopp's method with n points and by re-
duction to a system of n linear algebraic equations. Both our method with n abscissae and
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TABLE 1.
Numerical results for the solution of Eq. (28) by using Multhopp's method (with n = 9,19 and 29) and the

method of this paper (with n = 5, 10 and 15) for several points along the interval (-1, 1).

Multhopp's method 9 19 29

Present method 5 10 15

x <p(x)

0.000000 0.697024 0.697061 0.697062
0.309017 0.678098 0.678111 0.678112
0.587785 0.615907 0.615979 0.615981
0.809017 0.494775 0.494803 0.494806
0.951057 0.291296 0.291745 0.291750

Multhopp's method with (2n — 1) abscissae can be seen to use in this special case the same
abscissae and to produce the same numerical results. Yet we think that in general our
method, free from variable transformations, using directly Gaussian high-accuracy nu-
merical integration rules, applicable to a more general class of equations than Multhopp's
method, and probably applicable to more complicated cases than that considered in this
paper, presents in some cases advantages over Multhopp's method for the numerical solu-
tion of singular integrodifferential equations, exactly as the methods of [3, 4] present ad-
vantages over the analogous method of [1] for solving singular integral equations.

Finally, we mention that Eqs. (25) and (26) can also be written directly with un-
knowns the values of the function g(x), Eq. (5), at the abscissae t, and yk if Eq. (7) is taken
into account.

3. An application. As an application we consider the following simple singular in-
tegrodifferential equation:

<PW" t-/' ~-dt= 1, -Kx< 1. (28)Z7T J | t X

This equation was solved numerically both by Multhopp's method [2] and by the method
of this paper for several values of n. In Table 1 the numerical results obtained by Mul-
thopp's method for n = 9, 19 and 29 are presented for several values of x. The same re-
sults were also obtained by the method proposed in this paper for n = 5, 10 and 15 respec-
tively. In this special case it was seen that these two sets of results were identical although
the programs used for their derivation were completely different. Evidently, in more com-
plicated cases, Multhopp's method is not applicable any more.
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