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1. Introduction. Moving and free boundary problems for the heat equation have a
number of practical applications. Since exact solutions of the free boundary problem, ex-
cept in a few cases, are not available, a number of authors have considered the problem of
finding exact solutions for boundary conditions given on a prescribed moving boundary.
When such solutions are available we have an approximation to the free boundary prob-
lem in the sense that the solution provides a possible state of the medium, provided that
heat can be supplied externally in a prescribed way. Again, it may be of interest to ask
whether we can force the boundary to move in a given way by satisfying these additional
external requirements. Such a situation might arise for example in the thawing of pipes,
the dyeing of fibres, the immersion of plant stems in solution, or in the freezing of food-
stuffs. Progress has been made in this direction by introducing similarity variables and
transformations.

Langford [1] considered the equation

2v + 1
urr+—-—ur-u, = 0, 0 <r<R(t), 0<t<T, (1.1)

with suitable initial conditions on the interval (0, A) and given boundary conditions on
r = 0 and on the moving boundary r = R(t), where

R(t) = (A + Bt)'/Z. (1.2)

The important physical cases are v = ±1/2, 0.
Langford's solutions have been extended by Bluman [2]. In [2] general invariance

properties of a class of equations, including (1.1) in the case v = —1/2 have been investi-
gated and similarity solutions found where

R\t) = a-2/3t-yt2. (1.3)

There are a number of particular results on problems of the above type in the literature,
and in particular Gibson [3] has obtained a class of solutions of (1.1) when forcing terms
are present by apparently unrelated methods.

In the present paper we consider Eq. (1.1) for general v > —1/2, subject to moving
boundaries of the form (1.3), and indicate how a number of problems can be solved. In
particular, Gibson's results are included.

* Received July 6, 1978.
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2. Transformations of the equation. Consider the equation

U„ + * ur - u, = 0, (2.1)

in a suitable region of (r, t) space. The substitutions

u = A(r, t) w(£, t), £ = r/R(t), (2.2)

transform Eq. (2.1) to the form

w« + 2v * 1 ^ w - wT = 0, (2.3)

where

R\t) = a — 2/3t — y? , A(r, t) = JT<-'> exp (-^), J = ^ , S = (ay + /?2)l/2 > 0. (2.4)

In terms of variable separable solutions,

w = t'"+'/2) exp (~xt)Q(£), (2.5)

Q" + (x--JA-~]q = 0. (2.6)

For 5 = 0, Eq. (2.6) is Bessel's equation, and if 8 ^ 0 we obtain solutions in terms of
Whittaker functions

r/2Mx/2S.,/2(^), r,/2 wx/2M2(^pj- (2.7)

The effect of the similarity variable £ is to transform conditions on the moving boundary
r = R(t) to conditions on a fixed boundary. The form of R(t) given by (2.4) allows us to
examine interior and exterior problems in the following cases: if 5 > 0, y = 0, we have
parabolas, opening down for (3 > 0, and up for /? < 0. For y > 0, we have ellipses, and for
y < 0, hyperbolas. If S = 0, we have the limiting case of straight lines. In all cases a > 0.

3. Eigenfunction expansions. Solutions of (2.1) subject to suitable conditions on the
moving and fixed boundary will follow from eigenfunction expansions of (2.3). We follow
the notation of Titchmarsh [4],

If S > 0, set

tX = 2 x/S, (3.1)

in Eq. (2.6), so that the equation reads

Q" + (x-^=^--r]^Q = 0. (3.2)
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If S = 0, (2.6) is already of the form (3.2) with the last term inside the bracket omitted.
On any interval (rj,, tj2), 0 < 7), < tj2 < oo, the equation is regular and the procedure stan-
dard (see Langford [1]). We note the appropriate expansions on other intervals of interest.

If 5 = 0, then on (0, A) we have a standard Fourier Bessel expansion, while on (A, oo)
we have

»"> "I" /.w + */" K(y'A; ')mdy'
with

K(y, A; j) = rjl/2 {J„(ys) Y.(As) - Y„(ys)JXAs)}. (3.4)

For S > 0, v > -1/2, the expansion on (0, A) is

/(*?)= I AnV'w2MK/4,y/2(v2), (3.5)
n— I

with

Am = y~wlMw* <y>f(y)dy>

M: = ~ Mkm1 (A2), M„* = - (A2), (3.6)

and A„ are the zeros of A/V4,„/2 (A2).
In most cases it is more convenient to work with the confluent hypergeometric func-

tion F{a, b, z). Write

= V'+' exp (- f), (3.7)

(3.8)

g(v) = X C„<t>n"(ri2), 0 < r/ < A, (3.9)

where

Then we have

with

c = _ A' 20™*[A2) J%'+2> exp (-/)4>:(y)g(y) dy,

e: = ^<t>„w(A2), e* = -Jp#>/(A2). (3.io)

In particular it is useful to note that

F(y
F(v +

+ 1 + a, v + 1, ti2) vi f, A v + 1 \) 1 . _ ,,.
+ 1 +a,i>+ 1,A2) ~ ((" + 2 )] " ( )</>/(T?( )



316 R. J. TAIT

The behavior of series of the above type is best discussed with reference to (3.5) and
(3.6) since the notation there is in line with Titchmarsh [4], Set

r Iv + 1 X\
i 2 4/

X) —   (^»/«.r/2(^2)^/4.</2(V ) MX/4 p/2(A^ ) W\/4%„/2(f]2)} (3.12)
2A,/27)i/2r(f +1)

and

,, n 4,„/2(t/2) <313)

Then the appropriate Green's function is

3>(tj, X) = <p(tj, X) \p(s, X)f(s) ds + <Ktj, X) J <j>(s, \)f(s) ds. (3.14)

With X = s2, s = a + it, then on the quarter square

TTV 77 . "ITV TT
A a = «7r + — + —, At = /J7T + — + -

we have

MV4.„/2(rj2) = 2T( 1 + ^1 5""-1/2 cos - y - ^j + 0 {| i | —3/2 exp (rj | t |)} (3.15)

when n is large, 0 < 5 < rj < A, valid, according to Slater [5] for

-u/2 < arg(.v) < -n/2.

Then
(•nv tt\

VS~ T~4
7,'V 7   — +^(tj,X)= —1 - + 0[|s| 1 exp {(tj - A) |t|}], (3.16)

COS
(77V 7t\f-T—4)

<»(y. A) - - SU1+ 0||i| 'exp {(A-,) |r|}]. (3.17)

If <I>,(t7, X) denotes the part of (3.14) involving the integral from 0 to 8, and <&2(v> X) the
remainder, then, since

f p~w2Mx/4,„/2(p2)f(p) dp = 0[e |^| 1/2 exp (5 | t|)] (3.18)
Jo

following Titchmarsh [4] and Slater [5, Eq. (4.4.29)], it follows that

$1(T),X)=0[e|^|-|exp {(5-t,) |t|}] = 0(e), t,>«. (3.19)

The asymptotic estimates can now be substituted in <J>2(tj, X) and the remaining steps to
establish convergence of the series (3.5) are identical with [4].
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For the interval (A, oo) similar steps indicate that the corresponding expressions are

f(v) = 2 WKM1(r,2),
n= I

AA" W,;(A2)W*(A2)

with notation analogous to (3.5), (3.6).

/ P '/2Wa„/4.,/2 Q>2)f(P)dp,
» A

4. The ablation problem. Let / denote the interval (0, R(t)) or (R(t), oo) depending
on whether we deal with the interior or exterior problem, and T denote the terminal time,
being finite or infinite according as the boundary moves in or out. The problem

2v + 1
urr H -—ur — u, = 0, on /X(0, T), (4.1)

u(r, 0) = /(/-), on I, u(R(t), t) = g(t), 0 <t<T, (4.2)

is referred to as the ablation problem by Langford [1], and Bluman [2] in the case g(t) = 0.
R(t) has the form described in sec. 2. In general we assume a condition of the form

w,(0,0 = 0, 0 <t<T, (4.3)
on the fixed boundary. Obviously, other boundary conditions are possible.

Evidently the expansions of Sec. 3 supply a basis for the solutions of problems of this
type and extend the cases considered in [1] and [2], For example, in the case

5 = 0, g(0 = 0, R(t) — A + Bt, A >0, (4.4)

we have, in the notation of Sec. 2,

w(r, 0 = (A + Bty'v+" exp j- w(t r), (4.5)

w(£ r) = I"* S CJXfr„) exp (—A„2t), (4.6)

£ — r _ 1 1
*~R(f)' T ~ AB~ B(A + Bt)'

and the Xn are the zeros of /,(^)-
The coefficients C„ are given by

c" * (^1 <4'8»

The second part of the problem arises if a variable condition is imposed on the moving
boundary or if the differential equation is inhomogeneous with time-dependent forcing
term, a case which arises if an internal reaction takes place. Duhamel's integral allows us
to write the solution in the form

T) = £ G{p) U(i T - p)dp, (4.9)
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where F(r) = 0, and G(t) is the transformed boundary condition.
For the case above, (4.4), we have

U(i, T) = 1 - 2T t JX^xTP(\ ^" T) ' (4-10)

so that

u(r, t) = 2(A + Bt)~'r~" exp

the coefficients being given by

-Br2 ) ^ \„Q„(t)JAKr/(A + Bt)} ̂  (4 H)
4(A + Bt)j „f, JUK)

QM ' exp JjA + - bmTbw) dp (4 l2)

For a simple polynomial

g(t) = (A + Bt)a, (4.13)

Q„(t) takes the form

f'Z.„m"""exp (4" «v) <4',4)
so that if a = 0, (4.11) reduces to the expected Bessel expansion on noting that

[' I'- «P (± £ * V«) "1 - [*-' «P <^V)f p"' exp (± g)

(4.15)
If 5 > 0, t/ is given by

(8?\ ^(8e\_( S\
U(L t) = exp | 4

<>o"

<#>,/

ffl If I ■■(-¥!
(f) ~ "-'-■(!)J (4.16)

If we now take

R(t) = (A+ Bt)'n, A> 0, B> 0,

r = (|)ln|l + ^), t > 0, 5 = 5/2, (4.17)

then the solution in the parabolic case is

B IB / r .1 s
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where

Q„(t) = (A + 2)-«x-/4, f' (a + Bsf-,)/2)+w g(s)ds. (4.19)
Jo

In the hyperbolic case, we have

R(t) = {k(H-J,)(7+/2)} 1/2, k > 0, t2>t,> 0,

T"^to t2(t + t,)\ , S = ~r(t2 — /,), (4.20)
f,(/ + <2)J' 2

and it follows that
<se\

"(>■>') = Yk {(t + t>)(t + t2))-^'2>exp
[5 r2 ] S ( 2 )

" 4('+ '")) e(f) ' (4.21)

The coefficients differ slightly from the previous case and are given by

(t 4- t \-(A«/4) f'
jf (s + + t2f>-^-^g(s) exp f (2* + /, + f2)ds.

(4.22)

There does not appear to be any significant simplification in these formulae even when
g(s) is simple. For example, if we set g(s) = s in Eqs. (4.17) and (4.18) we find that u(r, t) is
given as the sum of two terms u,(r, t) and u2(r, t) where

«,(^0 = ('+ zr^TTrl/f1 + B4(r + 1 )fl\ 4(f + 1)
together with the correction term

, „ A L Bt\~("*l)/2 [B(, r2 \]

(A + Bt)

I
(4.23)

Similar results follow for other forms of R(t).

5. The control problem. Langford [1] has considered the two-phase problem

urr + 2v+ 1 ur — ku, = 0, 0 < r < R{t), (5.1)

urr* + 2v+ 1 u* - k*u* = 0, R(t) <r<A, (5.2)
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subject to the conditions

Mr(0, t) — 0, 0 < t < A/B,

u(r, 0) = /(r), 0 <r<A, (5.3)

u(R(t), t) = u*(R(t), /) = 0, 0 < t < A/B,

ur(R(t), t) - u*(R(t), t) = KR(t), 0 < t < A/B, (5.4)

in the case R(t) = (A - Bt)w2, A > 0, B > 0, supposing it possible to control the moving
boundary by supplying suitable values of u*, u* on the outer face r = A. The technique
used is to split u* into two parts

u* = u* + u,

and choose u,* to satisfy (5.2), (5.3), together with (5.4) when the right-hand side is set
equal to zero. Then we require u to satisfy (5.2); (5.3) and (5.4) then give

u(R(t), t) = 0, ur(R(t), t) = -kR(t). (5.5)

The constant k* is suppressed in the following for simplicity.
In the notation of Sec. 2, for the general form of R(t) considered there, the correspond-

ing problem for vi>(£, r) becomes

-7, 1 + ^ w — wT = 0, £>1, t > 0, (5.6)
£ "4 4

vv(l,£) = 0, T > 0,

w(( 1, T) = -kR'+1R exp (RR/4), r > 0.
(5.7)

In the parabolic case

(5.8)

Br> ) .
8(^ - Bt)j '

R(t) — (A — Bt)xn, S = 5/2,

t = —In |l - 0<t,

u = (A — Bt)~("+"/2 exp

we have

w(l, t) = 0, w>4(l, t) = 8kA'"+,)/2 exp |— ^ + l)rj, (5.9)

and the required solution reduces to the limiting case of the Whittaker equation (2.6) with
X = S(i> + 1). Then

w(& t) = SkA"+,)/2 exp J- | - S(v + l)r - ^ f pexp dp (5.10)

and as a result
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The linear case

RW-A-B,, t-0,

leads to the more complicated expression

w(l r) = - y- (f) " " r J" X"+V)/1 A 0 exp |-A (r + ̂ )) d\, (5.12)

where

K( VA, i) = /XVA, 0 n(VA) - YXA, OJXA). (5.13)
The expression (5.12) does not appear to simplify in general. However in the two-dimen-
sional case, v = —1/2, we have

G(r, t) = /c[exp [B(r -{A- Bt))} - 1], (5.14)

In the elliptic case

*(/) = (Kit + u)(t2 - t))w\ k > 0, /, > r2 > 0, (5.15)

a formal computation gives

t,(r,,)|<-,)M.(^)-a(4), (5.16)
with

where

U(r,,) - -(«) e*p (-f - (5.17)

A0=l, A„ = L„"+l (-) + L„_,

2o(0 = ^ exp dp,

2vQn(0 = " + 1, *"(-« -v,\ - p, |)

- + 1, - v,\- v, yj, v ̂  0, 1, 2,

and L„"(z) is the Laguerre polynomial. For integral values of v it is necessary to replace
F{—n — v, 1 — v, z) by the appropriate logarithmic solution of the confluent hyper-
geometric equation. For v = 0, we can obtain the correct form of QJi), n > 0, by taking
the limit as v —> 0.

The solutions above hold for R(t) > 0. As R(t) —> 0, or more generally as t approaches
its upper limit, the expressions become unbounded. This implies that, with the exception
of (5.14), the process cannot be forced to follow the path r = R(t) as far as r = 0, and must
be halted before this stage.
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6. Gibson problems. Gibson [3] considered the problem

2v+ 1
urr H  — ur - u, = F(t), 0<r< R(t), 0 <t, (6.1)

u(R(t), t) = M0, 0 < t,
ur(0,0 = 0, 0 < t, ( J

when f = 1/2 and /?(/) has the form Gt or Gsjt, for G constant. Clearly this reduces to
the type of problem considered here with u = u + u0 - g(t), and g'(t) = F(t).

Consider the solutions developed in Sees. 3 and 4. If 8 = 0, we have R(t) = A +
Bt, so that (4.10) and (4.11) give, when A —* 0,

, . . Q.fnhj. ( ■']
"('•"" «■> (- *) I TM <6-3>u(r, t) = 'r " exp ^

where

e.W-e*p {^;}/ <«,)-'«P
If in (6.4) we set p = \/B2q, g(t) = 67", and note that

g(<7)<fy- (6.4)

L^.2£_^e_, 0<{<l, (6.5)

then

IAs/p) n-i (V + p)J„+l(\n)

2"+" Iy+a( Vt) exp (-pT)dT = p 1 exp (lj, + a) > -1,

/ r*\ f°° Jf+a( \!T)Iv ( D, j , v

»('•«-Gr'r""p('t]l — expr«)

(6.6)

(6.7)

in agreement with [3], when G = 2"+"B~"~2~2aG, and v = 0,^ .
Again, if S > 0, then with the notation of Sec. 4, w>(£, t) is given by (4.9) and C/(£, r) by

(4.16). In the parabolic case

R(t) = (A + Bt)"2, T = fl-'ln|l + ^J, B> 0,
(6.8)

Kr*- I

u{r, t) = (A + Bty<>+1>/2 exp
Br2

8 (A + Bt)| Mi, T),
we obtain, on substituting the appropriate terms in u>(£, T)> and converting the integral to
one from 0 to t, on letting A—* 0,

u(r, 0-1 exp (!) r*"+1)/2 exp (- £) J) 0„(O<W ft.-' (f) , (6.9)

with

(2„(0 = rK/4 [ i""l)/2'+IV41 g(j)^. (6.10)
Jo
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Thus if g(t) = Gf we have, on using (3.11),

F(v + 1 + a, v + 1, —
u(r, t) = Gt exp (|) — M exp(^f) • (6.11)

In the hyperbolic case

R(f) = (ic(f + t,)(t + t2))w\ t2>t,> 0, k > 0,

! <# + /.)
25 /,(f + t2) ' (6.12)

u — {(? + ;,)(* + t2)} "("+1>/2 exp

and a similar procedure on letting /, —> 0 gives

u(r, 0 = ^ Wr + a-('+,,/2exp

where
—A /4 /• f

r2 _1   ^
(/ + r,) + (/ +

«= I

I"2 8 I ri \ Z /
-^+4 X  7*\ ' (613>

S.(0 = (^) V4j[' ^'«^(. + ,2)«'-1,/W4) exp | (25 + r2) g(.y)^. (6.14)

If g(0 = Gf, then on using the expansion in terms of the Laguerre polynomials

(1 + uf+l exp ( xu) = £ L„"(x) (j^) >

we obtain

\((»»+l)/2)+a ^ oo(f \ ((»'+l)/2)+a O oo

ftt;)
-.ji+i+A+n+(ij

Now again using (3.11) in the resultant double sum we arrive at

(6.15)

+ 1 + a + m, v +1, -|-j

F + 1 + a + m, v + 1,
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