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Abstract. The technique of homogenization is used to derive the effective properties
of laminated composites. A new probabilistic justification for homogenization using the
concept of random evolutions is provided and indicates that the effective properties of de-
terministic periodic composite and those of a randomly perturbed periodic composite are
the same.

1. Introduction. When studying the behavior of an heterogeneous material one of-
ten attempts to replace it by an homogeneous material, the behavior of which approxi-
mates in some way that of the original heterogeneous one. The properties of this “equiva-
lent” homogeneous material are then termed effective (or bulk) properties of the
heterogeneous material.

This idea, which is very old and can be traced as far back as to Poisson [1], has been
entertained by many authors, among whom we mention Maxwell [2], Rayleigh [3], and de
Vries [4]. For a more extensive survey, we refer to the article by Babuska [5]. Recently,
with the ever-increasing use of composite materials in engineering applications, the ques-
tion of effective properties has attracted much attention from mechanicians (see [5] again
for reference to these works).

The technique of homogenization, which allows one to define effective properties of
periodically heterogeneous materials, was introduced by Babuska [5, 6 and the references
therein] and Sanchez-Palencia [7]. Lions and co-workers, using the notion of G-con-
vergence introduced by DeGiorgi and Spagnolo [8 and the references therein], have re-
cently provided a functional analytic justification for the technique of homogenization
(see for example [9, 10] and the references therein). See also [11] for a recent extension of
the ideas underlying homogenization. Effective properties of materials with random heter-
ogeneities have also been defined by various authors. Let us mention here as typical the
works of Hashin et al. [12], Kroner [13] and Beran [14].

In this article we specialize in Sec. 2 the results of homogenization to the case of a lam-
inated periodic composite material. We consider propagation of waves normal to the lay-
ering and obtain the homogenized wave equation (which specifies the effective properties
of the composite) by using a multiple scale expansion in Part B and functional analytic
arguments in Part C. Part A gives a brief description of homogenization in the present
context.
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In Sec. 3 we consider the random laminated composite. The results, based on the con-
cept of random evolutions [15], are twofold: on the one hand, they provide a new probabi-
listic interpretation and justification for homogenization. On the other hand, they provide
a means of obtaining effective properties for random composites. Of particular signifi-
cance is the fact that they show that the effective properties of the random composite
which is periodic in the average are the same as those of the deterministic average peri-
odic composite. Thus our results indicate that the periodicity assumption which underlies
homogenization is not crucial in determining effective properties, since effective proper-
ties for the periodic composite and the randomly perturbed periodic composite are the
same.

2. Effective properties of laminated composites via homogenization.
A. The homogenization problem. The differential equations governing one-dimen-
sional wave propagation in a linear elastic medium are

da/dx = p(av/ar), av/dx = de/ot, o = ne. 2.1

Here, x is the direction of propagation, o(x, #), e(x, t), and v(x, ) are the normal stress,
strain, and velocity respectively, while p and 7 are, respectively, the density and elastic
stiffness of the elastic medium.

If the medium is made up of a periodic layering of sheets normal to the direction of
propagation, each of linear elastic material with constant properties (o and 7), the density
and stiffness for this laminated composite are periodic functions of x:

px+p)=p(x),  n(x+p)=n(x), 22)

where p is the period, i.e. the thickness of the basic cell for the composite. The problem of
homogenization consists in investigating what becomes of Egs. (2.1) as p — 0.
More precisely, let us rewrite (2.1) as

o 4 do
~1 =21,
ar  ax [p ax 23)
and let us introduce a new length scale
y=2x/¢ 2.9)
where ¢ > 0 is a parameter, so that (2.3) can be written as
00y, d [ L, . d0(x, D)
1 - 1 A ARTA BN
) SR = o) 20 @5)

The problem of homogenization then consists in studying Eq. (2.5) as ¢ — 0. In (2.5) the ¢
superscript indicates the dependence of o on e.
Remark 2.1. We could have just as well rewritten (2.1) in terms of strains as

e 9

or  ax
instead of (2.3). It turns out that (2.3) is easier to work with than (2.6) while leading to the
same results.
Remark 2.2. As ¢ — 0, the periodic variations of p and 7 in (2.5) become more and
more frequent, so that the study of (2.5) as ¢ — 0 does indeed provide us with information
about (2.1)asp— 0.

- (ne)], 2.6)
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B. Homogenization via multiple scale expansion. Noting that, in view of (2.4), the op-
erator d/dx applied to a function of both x and y becomes (9/9x) + ¢ '(d/dy), we can re-
write (2.5) as

620‘

=p"'(y) 7o + e'p

—1
(y) axz axa y

d ao* d ao*
~l — —1 —_— + -2 -1 — 1. .
ay[p ) ax] £ ay[p » 6y] 2.7)
Upon expanding o* in powers of ¢ as
o’ (x, ¥, 1) = ao(x, y, 1) + €0,(x, y, 1) + €0x(x, y, 1) + -+,

where o, i =0, 1, 2, --- are periodic of period p in y, and substituting in (2.7), one obtains
7'(y) gz (0o + €0, + €0, + ) =[e724, + € '4, + A,)(0, + €0, + E%0, + ), (2.8)

where

2 PN I ) g
a=glrogl  a=glo g e @9

&
=p"'0) ax?

Identifying terms in (2.8) involving equal powers of ¢ leads to the following equations
fore,,i=0,1,2, -:

A0, =0, (2.10)
Ayo, + Ao, =0, 2.11)
Ay0, + A0, + A0, = 7' (P)(00,/ ). (2.12)

Upon recalling the y-periodicity of 7, p, and g, , the solution of (2.10) is easily found to
be of the form

0o = 5(x, 1) (2.13)

where 6 is some arbitrary function of x and ¢.
By substituting (2.13) in (2.11) and taking (2.9) into account, the solution of (2.11) is
obtained in the form

0, = f(y)(85/x) + &(x, 1) (2.14)
where f(y) is the y-periodic solution of

AJ=—%m%m @.15)

and & is some arbitrary function of x and ¢.
Integrating (2.12) over one period, one easily sees that it has a y-periodic solution iff

[
Y

or, taking (2.13, 14) into account, iff

_.)62___/ [ e ay

6200

"(y) — A0, — A,00|ldy=0

al

P (2.16)
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where
— _l y4p .
@ )—p[ 7') dy @.17)

is the average of 7' over one period. Now, recalling (2.15) and the y-periodicity of f, one
easily finds

affay=p/p — 1 (2.18)

where
_ l/,V+p
=— d 2.19
=y ° ly (2.19)

is the average of p over one period. Substitution of (2.18) into (2.16) yields the homoge-
nized equation

(8%6/9r*) = (n/p)(8°6/3x?) (2.20)
where we have set

=" (2:21)

A comparison of (2.20) with (2.3) (in the case of constant n and p, i.e. 36/ = (n/
p)(80/0x?) indicates that the effective properties of the laminated composites are specified
by 7 and p.

In the case of a composite made up of a periodic layering of sheets of two different
materials with properties 7,, p, and 7,, p, and thicknesses a, and a,, respectively, for-
mulae (2.17), (2.19) and (2.21) yield

. _(ata)nm

= 2.22
1 antan, ( )
__ap tap,
p= —al Ya, (2.23)

from which the effective speed of propagation ¢ is obtained from ¢ = 7/p as

¢=(a, + a)cc; {[(a/p)e’ + (ar/pr)c)’] (ap, + axp,)} ~'7 (2.24)

where ¢ = n,/p;, i = 1, 2. Thus, we recover formula (2) in [16].

C. Homogenization via energy methods. We rederive the results of Part B by using
functional analytic arguments. This new derivation will actually serve as a justification for
the asymptotic expansion of Part B.

For the sake of simplicity, we consider the homogeneous initial boundary-value prob-
lem for the inhomogeneous version of Eq. (2.3), i.e.

o _df a0

o~ ox o + g(x, 1) (2.25)

in (x, 1) € (0, X) X (0, T) = Q% (0, T) = Q, where X and T are finite, together with the
boundary conditions

o0, )= 0o(X,1)=0, tE (0, T) (2.26)
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and the initial conditions
o(x, 0) = (9a/31)(x,0) =0, x € Q. 2.27)

Remark 2.3. Of course, problem (2.25-27) could be recast in an equivalent in-
homogeneous initial boundary-value problem for the homogeneous equation. The aux-
iliary conditions as well as the inhomogeneous part of the equation play no role in the ho-
mogenization problem. As a matter of fact, we could have considered, in Part B, Eq.
(2.25) instead of (2.3), the only modification being the addition of g to the right-hand side
of Eq. (2.12), and we would have obtained the homogenized equation

(8°6/9r%) = (n/p)(d°6/9x*) + g

instead of (2.20).
The imhomogeneous version of (2.5) is
1" (x/e)(d0° /o) —A'c=g (2.28)
where

e 9 - (x)9
i S W

Introducing the bilinear form associated to A° on H,'(®) = {u € H'(R): u satisfies
(2.26)} where H' is the usual Sobolev space of square integrable functions with square-
integrable (distributional) first-order derivatives,

. - o) ou v
@@ v) /9 p (s)ax axdx’
we can rewrite problem (2.28, 2.26) in the equivalent variational formulation

(7' (&0°/9), v) + a'(o", v) = (& v), v € H\(Q), (2.29)

where 77!, p~'€ L™(R) and are strictly positive and g € L*0, T, L*(2)). (For more details
on the notation, see for example [10].)

Taking v = d¢°/at in (2.29), integrating from 0 to T and using Gronwall’s inequality
(cf. [17, p. 19]), we obtain the energy inequality

[lo"()||* + |0o(8)/0t> = C

where || || and || denote the norm in ¥ = H,'(Q) and H = L*() respectively, and C'is a
constant, from which there follows that ||0"]| 2071, and ||80°/8¢|| 2071, are bounded as well
as ||0°6/00||,20.7.v+ in view of (2.28) (¥’ = dual of V). Thus, we can extract a subsequence
(again denoted o°) of o* such that o — G, 30"/t — 36/dt, 3o/ — 3*G/ar* weakly in L*(0,
T; V), L0, T, H), L*(0, T; V") respectively.

Let

p " =p7'(x/e), nT'=n"'(x/e), & =p.'(30°/0x). (2.30)
Then (2.28) can be written as
1. '(9%0'/3r") — (8¢'/9x) = g. (2.31)

Since ||&]| 0. 18 also bounded (as can be seen from the last of (2.30)), we can also ex-
tract a subsequence again denoted ¢ such that & — ¢ weakly in L(0, T; H). Thus, we can
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take the limit as ¢ — 0 in (2.31) to obtain
(n7)(@6/3r) — (8¢/9x) = (2.32)

Eq. (2.32) is the homogenized equation correspondmg to (2.28). All that remains is to
find £ The details being lengthy, only a sketch of the determination of ¢ will be given
here. (The method is similar to that of [10] for the case of a parabolic equation and the
reader is referred to that article for more details.)

Let us define as in (2.15) f as the y-periodic solution of

Af = ——[ -'(y) - ——( () 233)

and let
w(x) = ew(x/e) = x + ef (x/¢)
so that
Aw, = 0. (2.34)
Let ¢ € D(Q), the space of C~ functions with compact support in Q, take the scalar

product of (2.28) with ¢w, and subtract the scalar product of (2.34) with ¢o*, simplify and
integrate between 0 and T to get after further simplifications

_ o Bt [¢ B — [0 B % i [
/; N at dxdt+ | & ax w.dxdt st dy ox o‘'dxdt = A (g owdt. (2.35)

In view of the weak convergence of o and its derivatives and of { and the strong con-
vergence of w, to x in L*(Q), the first two terms in (2.35) are seen to converge respectively
to

—1y 90 64) 3
/; (n ) o x dxdt and /; ¢ axxdxdt.

Also, since p,”'(dw./dy) — (p™'(y)(dw/dy)) weakly in L(Q) (where the overbar indicates
average over one period) and upon evaluating the right-hand side of (2.35) using (2.32),
one obtains from (2.35) in the limit and after further simplifications

( () "W) / 0% it = / todxd. (2.36)
Since (2.36) was obtained for arbitrary ¢ € D(Q) there follows
(07" (")(8w/ay)(95/6x) = £. 2.37)
Substituting (2.37) in (2.31), we obtain, in view of (2.32) and the definition of w,

o= [T (v D)

y
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which, upon using (2.18) as well as (2.19), (2.21), yields the homogenized equation (cf.
Remark 2.3)

&6/9x> = (0/p)(6/9x’) + g.

Thus, we recover the results of Part B: the effective properties of a laminated composite
are p and 7 as defined by (2.19) and (2.21) respectively.

3. Effective properties of laminated composites via random evolutions. In this sec-
tion, we provide a new probabilistic justification of homogenization. Another probabilis-
tic interpretation has already been mentioned for the case where the periodic coefficients
of the equation to be homogenized (p and 7 in the context of the present article) are
smooth enough [18]. Unfortunately, this is not the case for laminated composites. Our in-
terpretation does not require such smoothness assumptions and furthermore, it is of inter-
est in its own right as it allows one to define effective properties of laminated composites
with randomly imperfect periodic structures. For the sake of simplicity, we will restrict the
analysis to a two-layer laminated composite.

Consider then a laminated composite made up of alternating layers of reinforcing
(subscript 1) and matrix (subscript 2) material. The layers are assumed to be homoge-
neous with known deterministic properties (p, 1, i = 1, 2) but with randomly varying
thicknesses with averages (i.e. expected values) a, i =1, 2.

Upon considering steady oscillatory waves of circular frequency w, the reduced wave
equation governing the propagation of waves perpendicular to the layering can be written
as

dV/dx = AV, x inlayeri, i=1,2 3.1

2wl ]
V= , A= (3.2)
> —pw® 0

where U and Z are the displacement and stress amplitudes respectively.
Eq. (3.1) can be written as a random evolution as

dV/dx = A(Z(x))V (3.3)

with

where Z(x) is a Markov chain with state space {1, 2} and 4(Z =i) = A4,. (For more details
about the above model, the reader is referred to [19] where it was originally proposed as a
model for wave propagation in randomly imperfect periodic structures and was studied in
the context of Floquet theory.)

Thus, the wave propagates in a reinforcement layer over a random distance a, with
expected value a, until the Markov chain Z jumps to state 2, at which point it propagates
in a matrix layer over a random distance a, with expected value a, until the chain Z
jumps back to state 1 and the process is repeated.

The Markov chain Z(x) governing the switching between different layers will be taken
to be a generalized telegraph process with infinitesimal matrix

—a,”' a
0= [ ' 1 : (3.4)
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Thus, the switching from reinforcement to matrix layers occurs at distances which are dis-
tributed according to a Poisson process with intensity a,”' while a Poission process with
intensity a, ' governs the switching from matrix to reinforcement layers.

If ¥, denotes the conditional expectation of V given that propagation started in a layer
i, then a straightforward application of Theorem 2 in [15] yields

2
av/dx=AV,+ Y q,V,. (3.5)

=1

To obtain the effective properties of such a random laminated composite, we use the
same idea as that underlying homogenization: we speed up the switching process. To this
end, we replace the matrix Q by eQ and let € — oo.

Remark 3.1. In the above, effective properties refer to the properties of a deterministic
homogeneous material in which wave propagation approximates in some way the ex-
pected wave propagation in the random composite.

Remark 3.2. When Q is replaced by €Q, a, is replaced by € 'a;,, i = 1, 2 so that as € —
oo, the average thicknesses — 0.

With Q replaced by €Q, Eq. (3.5) becomes

2
dv/dx=AV,+€Y q,V, . (3.6)

J=i

To study the behavior of (3.6) as € — oo, we use Theorem 2.1 of [20] (or more generally
Theorem 2.1 of [21]) to obtain that as e — oo the solution to (3.6) converges to the solu-
tion of

dV/dx = AV 3.7

where 4 is the expected value of 4(Z) with respect to the ergodic measure for the Markov
chain Z.

The ergodic measure for the Markov chain Z with infinitesimal matrix (3.4) is easily
shown to be defined by P {Z =i} = a,/(a, + a,), i = 1, 2 so that

A= (aA, + a4,)/(a + a,)

or, making use of the second equation in (3.2),

o &
A-[_W OJ, (3.8)

where 7 and g are as defined in (2.22) and (2.23) respectively. A comparison of (3.8) with
the second equation in (3.2) indicates that the effective properties of the random lami-
nated composite are specified by 7 and g and thus coincide with the effective properties of
the periodic composite considered at the end of Sec. 2, Part B and obtained by homoge-
nization. Thus, the results of this section provide a probabilistic derivation of the results
of Sec. 2. Furthermore, they also indicate that the effective properties of a random com-
posite which in the average (with respect to the ergodic measure) is periodic are the same
as those of the deterministic average periodic composite as obtained by homogenization.
Thus, whenever effective properties are adequate to describe the behavior of a laminated
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composite (e.g., propagation of large wavelength waves in a composite made up of thin
layers) the effects of randomness can be disregarded, at least insofar as expected values
are concerned.
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