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ON OPTIMAL STRAIN PATHS IN LINEAR VISCOELASTICITY*

By MORTON E. GURTIN, RICHARD C. MacCAMY and LEA F. MURPHY
(Carnegie-Mellon University)

Abstract. For a viscoelastic material the work W(e) needed to produce a given strain
e0 in a given time T depends on the strain path e(t), 0 < t < T, connecting the unstrained
state with e0 . We here ask the question: Of all strain paths of this type, is there one which
is optimal,1 that is, one which renders W a minimum? In answer to this question we show
that:

(i) There is no smooth optimal strain path.
(ii) There exists a unique optimal path in L2(0, T)\ this path is smooth on the open

interval (0, T), but suffers jump discontinuities2 at the end points 0 and T(i.e., e(0+) ^ 0,
e(T~) + e0).

(iii) For a Maxwell material the optimal path is linear on (0, T).

1. Nonexistence of smooth optimal paths. For a one-dimensional linear viscoelastic
material, which has been unstrained at all times prior to t = 0, the stress j(/) at time 1 is
determined by the strain history e(r), 0 < t < t, through the constitutive relation (cf., e.g.,
Gurtin and Sternberg [1])

s(t) = (' G(t - T)e{T)dr (1)
J 0

with G(t), 0 < r < °°, the relaxation function.
Given a value e0 / 0 of the strain and a fixed time T > 0, the work needed to produce e0

in the time T depends on the strain path e(t), 0 < t < T, from the unstrained state to e0 . In
fact, this work is given by

W(e) = fT s(t)e(t)dt, (2)
^ O

or equivalently by

W(e) = f f G{t — T)e(T)e(t)dTdt. (3)
•> o ■'o

Of course, in writing (1) and (2) (and hence (3)) it is tacit that the strain path e be smooth,
and we therefore begin our search for a minimizer within the class

5 = |fEC'[0, 71: e(0) = 0, e(T) = e0).

* Received June 12, 1978.
'A formal construction of the optimal strain path was given by Breuer [2] for the special case in which the

relaxation function is the sum of exponentials. We became aware of Breuer's work only after we had completed
the analysis presented here.

2Cf. Leitmann [4], who obtains continuous optimal paths by adding certain constraints.
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An absolute minimizer for W within this class will be called a smooth optimal strain path.
In order to state our results concisely, we assume, once and for all, that GECtO, T],

and that, for all r£[0, T],

G(t) > 0, (j(t) < 0, G(t) > 0. (4)
Theorem. There does not exist a smooth optimal strain path.

We begin by proving the following

Lemma. Let/EC[0, 7"]. Then

2(?(0) f Tf{tfdt+ [T I'C{\t - r\)Kr)f{t)drdt =

- \ [7 [TC(\t- t | )[f(t) - f(r)YdTdt + fT[6(t) + C{T- t))f(t)*dt, (5 )3
Z.J o J0 J o

and if

2<J(0)/(f) + I" C(\t - T\)f(T)dT = 0 (6)
J 0

for all ?E[0, T], then / = 0.

Clearly,

- ± f fTC1(\t- r\)[f(t) - f(T)Ydrdt = [T fTC(\t- r\)f(r)f(,)drdt
£ J Q J Q J o J o

- f JTC( \t- r\ )j{TfdTdt. (7)
J 0 ^ 0

Further,

fTC(\t - t| )dt = [t(j(t - t)dt+ fTC(t - r)dt = —26(0)+ <Xt) + 6(T - r),
o o ^ r

and hence

P frC(\t - T\)f(Tfdrdt = - 2(/(0) fTf(t)2dt + P [<?(/) + 6(T - t)]f(t)'dt. (8)

Eqs. (7) and (8) imply (5). Assume next that (6) holds. If we multiply this equation by f(t)
and integrate from / = 0 to / = T, we arrive at the conclusion that (5) equals zero; in view
of (4), this in turn implies that / = 0.

To prove the theorem assume that a smooth optimal strain path, e, exists. Then W(e)
< W(g) for all g€£S, and hence the variation

me)[{J]= £me + a0)\a.o

vanishes for every /JGjC'fO, 7"] with /3(0) = /3(F) = 0. Let /? be such a function. Then a

3Londen [3], Eq. (2.19).



OPTIMAL STRAIN PATHS 153

simple calculation shows that

5W{e)[jS] = - - r)e(T)dT - f*6(r - t)e(T)d^dt,

and, since 0 is arbitrary, the optimal path e must necessarily satisfy

f (j(t — T)e{r)dr — f (j(t — t)e{r)dT = 0.
•'O J t

If we differentiate this expression with respect to t, we arrive at

26(0)e(t) + [T G(\t- t\ )e(T)dr = 0;
^ 0

hence we may conclude from the second part of the lemma (with j = e) that e is constant.
But e(0) = 0 and e(T) = e0 7^ 0, and we have a contradiction. Thus there does not exist a
smooth optimal strain path.

Remark. We have actually established the nonexistence of a stationary point for W
over S.

2. Existence in Lt. It is clear from the preceding section that to find an optimal strain
path we must enlarge our class of admissible paths. With this in mind, we use the end
conditions

e(0) = 0, e{T) = e0 (9)

to derive an alternative expression for W(e) which does not require differentiation of e. We
begin by using (9)i to rewrite (1) in the form

s(t) = G(0)e(t) + f'0(t - T)e(T)dr.
0

Thus (2) and (9)2 imply that

W(e) = \ G(0)e20 + f e{t) ['G(t - T)e(T)drdt,
2. J 0 0

and if we integrate the second term by parts, we conclude, with the aid of (9), that

W(e) = \ G(0)el + e0 f C{T - t)e(t)dt - (J(0) f e{tfdt
L J 0 ^0

- ^ -rlHrMOdTdl. (10)

In view of the above derivation, W(e) defined by (10) agrees with W(e) defined by (3)
on the class S of smooth paths. But what is more important, (10) is well-defined on any
path e in 0, T). On such paths (10) has an immediate interpretation. Indeed, it is not
difficult to verify that the map e —> W{e) defined by (10) is continuous on L2(0, T).
Consider an arbitrary strain path e in L^O, T). Then, since S is dense in L2(0, T), there
exists a sequence {en} of paths in 5 such that en -> e in L2(0, T), and hence such that W{en)
-> W{?)- Thus the work done on any L2(0, T) strain path e is simply the limit of the work
done on any sequence of smooth strain paths which satisfy the end conditions (9) and have
e as their limit.
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An Z.2(0, T) function e which minimizes (10) over L2(0, T) will be called an optimal
strain path in L2 .

Theorem. There exists a unique optimal strain path e in L2. Moreover, eGC'(0, T) and
has limits e(0+), ^(0+), e(T'), e(T~), but e(0+) ^ 0, e(T ) ^ e0.

We begin the proof by writing (10) in the form

W(e) = A + L(e) + Q(e, e)

with

A = j G(0)e2o, L(e) = e0 f 6(T - t)e{t)dt,

Q(e, 0) = -6(0) I* e(t)0(t)dt - ]r f [ (?(|r - r| )e(r)l3(t)dTdt,
Jq £ J q J o

so that L is linear, while Q is bilinear and symmetric. Thus for e,/?GL2(0,r),

W(e + 0)~ me) = 003,0) + 2Q(e,0) + L(0).
Further, by (11 )3, (5), and (4), > 0 for all 0GC[O, T] and hence (by continuity) for
all 0(EL2(0, T). Thus a necessary and sufficient condition for e in L2(0, T) to be optimal is
that for all 0GL2[O, T],

2 Q(e,0) + L(0) = 0,
or equivalently,

f m\e*G{T-t) ~ 26(0)e(t) - f <J(|f - r | Mr)rfr} dt = 0;
and this in turn holds if and only if e satisfies the Euler equation

e06(T- t) = 26(0>(0 + fT 6(\t - t|)e(r)dr (12)
Jo

at almost every r£(0, T).
Eq. (12) is a Fredholm integral equation of the second kind; by the Fredholm

alternative (12) will have a unique solution in L2(0, T) if the homogeneous equation ((12)
with e0 = 0) has only the zero solution. Thus the existence, uniqueness, and smoothness of
the optimal solution are immediate consequences of the second part of the lemma and the
fact that, since GEC3[0, T] and (j(0) 0, any solution of (12) will belong to C'(0, T) and
have limits e(0+)> e(0+), e(T~), and e(T ).

Henceforth let e denote the optimal path. In view of the above remarks we may
assume, without loss in generality, that eEC'[0, T}. Define / on [0, T\ by

f(t) = e0- e(T - t).

Then a simple calculation shows that / also satisfies the Euler equation (12). Thus, since
the optimal path is unique, f(t) = e(t); hence

e(t) = e0 ~ e(T - t). (13)

Assume that either e(0) = 0 or e(T) = e0 . Then, by (13), e(0) = 0 and e(T) = e0, so that
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e£S. Thus e is a smooth optimal strain path, which contradicts the theorem established in
the previous section. Therefore e(0) ^ 0, e(T) ^ e0 , and the proof is complete.

We conjecture that the optimal path is monotone.
Remark. Let e be the optimal strain path in L2 . Then, since S is dense in L2.

W(e) = inf W(g)
ges

(cf. the argument given in the paragraph following (10)); that is, lV(e) is the greatest lower
bound for the work in smooth processes consistent with the end conditions.

3. Optimal path for a Maxwell material. A Maxwell material is characterized by a
relaxation function of the form

G(t) = Go, + (G0 — Gco)exp(—t/X) (14)

with Ga= > 0, G0 - G„ > 0, and X > 0. For this choice of relaxation function the Euler
equation is easily solved. Indeed, we simply differentiate (12) twice with respect to t and
conclude that e(t) = 0, and hence that e(t) = c0 + cy. We then evaluate the constants c0
and using the conditions

e(T/2) = e0/2, e0G(T) = 2G(0)e(0+) + f G(t)e(t)dt,
J 0

which follow from (13) and (12). The resulting solution is (cf. Breuer [2], Eq. (15))

e(t) = e0(l + t/X)/(2 + T/\). (15)

Thus e is linear on (0, 7) and suffers jump discontinuities of amount e0/(2 + 77A) at t = 0
and t = T. Further, the least work — that is, H^e) for e defined by (15) — is equal to (cf.
Breuer [2], Eq. (27))

W(e) = X-el g0+g~-g°
1 + 2A/7J

Note that W(e) • J G0eI or | G„eo according as T/\ 0 or

4. Kelvin materials. A Kelvin material is defined by a constitutive equation of the
form

s{t) = Ee(t) + ixe(t)

with ^ > 0. Because of the presence of the viscous term, ne(t), this type of material is not a
special case of the materials studied in the previous sections. By (2),

W(e) = \Eel + n [TKtfdt,
L JQ

and a simple analysis establishes the existence and uniqueness of a smooth optimal strain
path. (The viscous term precludes the possibility of jump discontinuities in strain.)
Moreover, the optimal path has the simple form

e{t) = e0t/T. (16)
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eo,-

Fic. I. Optimal strain paths for Maxwell, Kelvin, and Maxwell-Kelvin materials.

The same observations apply to the more general constitutive relation

s(t) = ne(t) + f G(t — T)e(r)dT, (17)
■>0

although the optimal path will generally not be of the simple form (16). A thorough study
of (17), however, is beyond the scope of this paper.

Fig. 1 compares the optimal strain paths for:
(i) a Kelvin material;
(ii) a Maxwell material with \/T = 1;
(iii) a Maxwell-Kelvin material of the form (17), (14) with A/T = 1, n/(G0 — Ga)T =

.01.
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