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ON OSCILLATORY NECKING IN POLYMERS*
By
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Abstract. The phenomenon of oscillatory necking in the stretching of polyethylene
films is described. We propose an extension of a model of Barenblatt for isothermic
necking in polymers, and we show that oscillatory necking may arise, for example, in
polymers for which the effect of diffusion of stresses exceeds that of diffusion of oriented
material. In such polymers, at sufficiently low temperatures, uniform necking is no longer
stable and self-oscillations are observed.

1. Introduction. It is well known that when polyethylene films are stretched by
external stresses, uniform necking is observed. That is, an orientation wave of the polymer
material propagates. This phenomenon was first observed and described in 1932 by
Carothers and Hill [1] (see also Nadai [2]). A theory of the phenomenon was proposed by
Barenblatt [3, 4], using an analogy between necking and the propagation of a flame in a
premixed gaseous combustible mixture. It is known (see, e.g., Zeldovich [5]) that the
uniform propagation of a flame is maintained by the interaction of several effects includ-
ing diffusion of the component limiting the combustion reaction, heat release in the
reaction zone, and the flow of heat from the reaction zone into the region of the cold fresh
mixture.

The necking analogue of the concentration of combustion products is the concentra-
tion n of oriented material, which is assumed to be zero (n = 0) far ahead of the conversion
zone (the necking front) and to reach its maximum (n = 1) behind this zone. The principal
mechanism of flame propagation is conduction of heat; the analogous factor in polymer
stretching is the diffusion of stresses from the narrower region (a) of oriented material to
the region (b) of nonoriented material (cf. Fig. 1).

Necking is often accompanied by heating, and the orientation of the polymer may be
regarded as an exothermic reaction. Such is the case e.g. in the model of Barenblatt, Entov
and Segalov [6] who considered necking caused by the transfer of heat generated in the
reorientation zone. However, in the experiments of Lazurkin [6] and Vincent [7], the
drawing of the polymer was carried out so slowly that the temperature could not have
varied significantly at any point in the sample. Nevertheless, necking was clearly observed.
Here, heat conduction cannot have been the decisive mechanism in necking. Therefore, in
Barenblatt [3, 4], no attention was paid to the nonuniform temperature distribution. That
is, heat release was ignored and the temperature of the polymer being stretched was
treated as constant.
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Another premise of the Barenblatt theory is that the propagation of the polymer
orientation wave is a quasistationary and quasi-one-dimensional process. Thus

9(aS)

o 0 or 6S = 055 (n

where ¢ = o(x, t) is the stress acting on the cross-section of the film at a point x at time ¢
(see Fig. 1); S = S(x, 1) is the thickness of the film at (x, ?); 0=, S« are the stress and
thickness in the region corresponding to the final, oriented state of the polymer.

In the region of the initial, nonoriented state (x — — ),

S=8,=S8./qa, 0= 00e (a <1) 2)

where « is a given constant determined by the change in the structure of the polymer
material in the process of stretching. The rate of the orientation reaction is strongly
dependent on the local stress (the dependence involves an exponential, like the Arrhenius
law). The necking process may therefore be fully described even when there is a small
stress drop, i.e., when the change in S is small. In that case we may write Eq. (1)
approximately as

06~ 200 — S0./Sx . (3)

The change in the density of the polymer material during orientation is not essential for an
understanding of necking. For this reason, the next assumption of the Barenblatt theory
[3, 4] is that the density of the material is constant.

Since the density is assumed constant and the change in thickness small, it follows that
the motion of the neck induces almost no motion of the polymer material. That is to say,
to a first approximation, the orientation wave propagates in motionless material. In view
of the assumptions made, the variation in the concentration n is described by the equation
of diffusion in a motionless medium:

(én/dt) + (8/0x) j, = W 4)

where j, is the flow of oriented material due to transport effects, and W the rate of the
orientation ‘‘reaction,” which is a function of n, ¢ and the temperature 7.
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Barenblatt suggests the Arrhenius law as the function describing the behavior of W

W = z(1 — n) exp (— U;TW) (5)

where U is the activation energy of bonds broken during the conversion process, k is
Boltzmann’s constant, T the absolute temperature, y a constant depending on the struc-
ture of the material, and z a constant (the “‘pre-exponential’).

The strong stress-dependence of W is due to the assumption that the quantity yoo/kT
is large (typically about twenty-thirty or so.) It should be noted that this quantity appears
in the exponent.

The flow of oriented material j, is assumed to have the classical form*

jn = —u(on/ox). (6)

The coefficient of diffusion u is assumed to be a known function of ¢ and T. It is natural to
assume that the transfer coefficient is a monotonically increasing function of ¢, vanishing
at ¢ = 0. We also assume that this dependence is weaker than that of the conversion rate,
say a power function. Then in view of the assumption that ¢ varies only slightly, we may
put

w(o, T) = u(ow, T) (T = const.). (7)

To complete the system of equations (3), (4), Barenblatt [3, 4] proposes a simple
relationship between the cross-sectional thickness S and the concentration of oriented
matter, given by

S/So
From (2), (3) and (8), we obtain
0/0o = a+ (1 — a)n. 9)

1 = (1 — a)n. &)

Thus, condition (8) is equivalent to the assumption that the distribution of stress and the
concentration of oriented material are similar. It is this assumption which we shall later
relax.

We note that the system (3), (4), (8), (9) admits a simple analytical solution—a wave
propagating at constant velocity:

n=n(x — V), n(+w) + 1, n(—w) = 0. (10)

This solution describes normal necking. The necking rate ¥, is uniquely determined by the
parameters of the problem.

2. Instability of normal necking. In 1970, Andrianova, Kargin and Kechekyan (8],
studying stretching of polyethylene terephthalate films, observed that under certain condi-
tions the necking process is not uniform but proceeds in regular jumps. The onset of
oscillatory necking was found to be highly sensitive to the temperature maintained during
stretching and to the heat transfer conditions. Fig. 2 is a photograph of a film being
stretched at temperatures of 85°C (a) and 15°C (b) respectively. The photographs are the
result of an informal experiment performed by the authors (B.M. and G.S.). In the first

! We note that Barenblatt uses a slightly more general form.
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case the neck propagates uniformly, leaving behind it homogeneous oriented material. In
the second case the necking is oscillatory, as evidenced by the regularly alternating
transparent and dull strips in the region of oriented material.

On the basis of the isothermic model of Barenblatt, wavelike necking as described by
Eq. (10) is known to be stable. (A mathematically equivalent problem of flame theory was
considered by Barenblatt and Zeldovich [9].) Barenblatt, therefore, in his theoretical
description of oscillatory necking [10], discarded the isothermic model, and proposed
taking into consideration thermal effects, transfer of heat to and from the external
medium, and the elastic properties of the material. He constructed a zero-dimensional
model of the necking process, which disregards the spatial distribution of stress and
temperature, considering only their mean values. He showed that in a certain parameter
interval self-oscillation was indeed possible.

In this paper, we show that if the similarity condition (9) is dropped and replaced by a
somewhat more general condition, oscillatory necking may also take place in the frame-
work of the isothermic model. Moreover, in accordance with the observed situation (Fig.
2), we find that, in polymers which in principle admit self-oscillations, the effect may be
suppressed by keeping the polymer at sufficiently high temperatures, or re-induced by
keeping it at sufficiently low temperatures.

3. Modification of the Barenblatt model. Fundamental equations. It follows from
assumption (9) that the change in stress concentration is described by an equation of type

(4):

g0 &

Tt jp = 0l = QW (n

where

Jo = = @)oaj, . (12)
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In fact, conditions (9) and (12) are equivalent. In combustion theory, a condition of type
(9) represents the similarity of the concentration and temperature fields, which occurs at a
Lewis number (L) of unity. (Recall that the Lewis number defines the ratio of the
conductivity of the gaseous mixture to the diffusivity of the limiting component.) Though
the Lewis number is usually close to unity, even a small departure from similarity (L = 1)
may in some cases lead to a number of nontrivial effects (see e.g. [11, 12, 14]). In this sense,
the case of ideal similarity (L = 1) is quite exceptional.

Therefore, in the necking problem it seems quite natural to replace condition (9) by the
more general equation

Js = —0=Nd0/0x), A= Noo, T). (13)

We note that it is no longer mandatory that j, = (1 — a)j, which occurs for A = u. The
adoption of (13) in place of (12) considerably enlarges the number of possible situations
with stable necking.

We now show that the isothermic model described by Egs. (4), (11) and (13) does
indeed admit oscillatory necking. The system of equations (4), (11) becomes

06/0t = Na%*0)/ox*) + W(n, ), (14)
on/ot = w(e'n/ox*) + Wi(n, 6), (15)

where 0/0. = a + (1 — a)f. The case of equality, A = u, corresponds to similarity, when n
and 6 are linearly related by Eq. (9). We assume that the temperature dependencies of A
and u are similar. Then A/ is a temperature-independent quantity, which we denote by L:

Nup=L. (16)
For the sequel, it is convenient to transform to dimensionless variables:
x'=xV./\, T =1V w= WNVZ. 17)

As stated previously, because of the strong stress-dependence of the orientation-reaction
rate W, the width of the reaction zone is very narrow, concentrated in the vicinity of a

certain moving surface x' = ¢(r) which we call the necking front. Normal necking
corresponds to ¢(7) = —r (the necking front moves with unit velocity).
We introduce a coordinate system attached to the front, setting
E=x"— &r) (18)
in terms of which Egs. (14) and (15) become (using Egs. (16), (17))
L 00 _ 0%
a7 "TE oF + w(b, n), (19)
on on

1 o%n
e "o L oF + w(f, n). (20)
As remarked above, Barenblatt considered the case L = 1. We shall consider the case
of L close to but not equal to one. At the same time we consider the case in which N =
(y0o (1 — a)/kT) >> 1, and v = N (1 — L) = O(1). In this case we now show that the
orientation rate w may be approximated by a point source at £ = 0 (i.e., x' = ¢ (7)), given
by

w = exp (3N(6 — 1)) &(8) @1
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(where §(¢) is a Dirac delta function and the term N[#(0, 7) — 1] is O(1)). First, however,
we note that for £ > 0 the material reaches the state of complete orientation:

n¢ 1) =1 at £>0. (22)

Far ahead of the necking front, the concentration of oriented material is zero, while the
stress is equal to its initial value. Far behind the front, the film contracts and the stress
reaches a certain maximum mean value. In the event of oscillatory necking, this mean
value will differ from o , the latter value corresponding to normal necking. This implies
the following boundary conditions:

B(—w, 1) =0, n(-w, 1)=0 O+, 71)< . (23)

To show that for ¥ >> 1 and v = N(1 — L) = 0 (1), the reaction rate may be
approximated by the point source given by (21), we note that in terms of parameters
defined above, the reaction rate is given by

w=AN¥1 — n) exp N6 — 1) (24)
with A4 defined as

.Y Yo, — U
A= V—nzcxp “NET
The width of the reaction zone is very narrow, due to the strong stress dependence of w
as evidenced by the term exp N(6 — 1) in (24). In our analysis we treat this zone as an
internal boundary layer, of width O (1/N), about the moving front. In the limit as N — ,
the reaction rate is approximated by a concentrated source on the front. From the form of
the reaction rate (24), it is clear that the concentrated source may be represented in the
limit by a Dirac delta function. The strength Q of that source will be derived by an
asymptotic analysis in the parameter 1/N. We consider the regions both within and
outside of the boundary layer by the method of matched asymptotic expansions.
In the region outside of the reaction layer, we seek expansions, which we refer to as
outer expansions, of the form

(25)

b~ 2 04 (%)j (26)
me~ %ot (1), @1
e
0~ % o). 29)
2~ % o1 ). (30)

where =+ refers to the regions £ > <0 respectively. We recall that L is given in terms of N
by

L=1-(@N), @31

and employ (26)-(31) in Eqgs. (19) and (20). We note that n/ = §,,, where 4, is the
Kronecker delta since the region £ > 0 is the region of complete orientation. Thus, in the
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region £ > 0 the reaction term vanishes. Similarly in the region £ < 0, the reaction term is
transcendentally small since §° < 1. This follows from the fact that ° > 1 implies n°® = |
which does not satisfy the boundary condition that n(—«, 7) = 0.

Thus as far as the outer regions are concerned, the reaction term may be replaced by
the concentrated source on the front. The strength Q of the source will be computed from
an analysis of the boundary layer. In the outer regions therefore, the resulting equations
for 62, n are given by

600 200
- @, ag = Gg T 0E), (32)
3n on° 8 n°
Tr ~ @) Gy = G T Qodle), (33)

where the source strength Q, is as yet unknown. The boundary conditions for (32)-(33)

are
(=, 7) = n(—, 7) = 0,
) ( ) (34)
0%oo, 7) < o, n%w, 7) = 1.

Subtracting Eq. (33) from (32), we see that §° — r° satisfies a linear parabolic equation with
no source term. Therefore, the boundary conditions imply that

80 = n2, 35)
80 =nl + c. (36)

We note that Eqgs. (32)-(33) imply that 6° and n° are continuous at ¢ = 0, but their
derivatives have jump discontinuities of magnitudes — Q,. The continuity conditions
imply that ¢ = 0 so that

82 = n? (37)

By computing the jump in the derivatives of #°and n® across £ = 0, i.e. across the boundary
layer, we will have computed the source strength Q, . Thus we now turn to the boundary
layer analysis.

In the boundary layer we introduce the variable n by the stretching transformation

n = N§, (38)

and seek expansions of the form

g ~ Z:o §/(n, T)(-}V)j, n~ ; w(n, T)(%)j

for —o < n < «. The boundary conditions as || — o are obtained by matching to the
outer solutions. The leading terms of these expansions are then given by

o=n=1 (39)
Then #* and A" satisfy
241
‘Z:z — Ayt exp B = 0, (40)
2,51
On _ Agitexp §' = 0. (41)

an
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Therefore
2001 —_ 31
Q_(_paTnl =0, (42)
n
so that
B — ' =an + B, (43)

where the o = a(7) and 8 = 3(7) are determined from the matching conditions as n — © to
be

a =0, (44)
B = 8 (e, 1) = 640, 7). (45)
Therefore
i(n, 1) = 8'(n, 1) — 6%(0%, 1), (46)
and Eq. (40) becomes
3291 1O+ 1 al —
a—n.‘,+Ao{0(O ,7)— 0 exp 8 = 0. 47)

Multiplying (47) by 2 8}, and integrating from o to 5, and then letting n — — o, we obtain

BX(—, 7)) + 2Ao];;: ){9‘(00, 7) — 8%(n, 7)} exp 6* dB* = 0. (48)

In the derivation of (48) we have used the results that

lim 82 (n, r) =0, (49)

n—o

lim 8 (n, 7) = — o, (50)

n—o -

which are obtained from the matching conditions. Solving
Eq. (48) for 8} (—, 7) we obtain
1
B (— e, ) = Auyrexp 12D (51
Thus (49) and (51) imply that

(B = ~CAo) exp 21) (52)

or equivalently that

[08] = —(24,)"* exp ﬂy (53)
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where [f] = f(0*) — f(0~) denotes the jump of f across the front £ = 0. To calculate 4, , we
note from the definition of 4 in (25) that it is a function of the normal velocity V, only.
Therefore 4, depends only on the solution of the problem of plane propagation which is
given by

6 = et for £ <0

(54)
=1 for £ > 0.
Therefore, in this problem
[6:] = —1 = —(24,)"? (55)
so that
(24,)V2 = 1. (56)
Then Eq. (53) becomes
1
[0]+expL02+’L)=0. (57)
By comparing with (32), which implies that
[68] + Qo = O, (58)
we see that
1(0+
Q0 = exp M . (59)

2

The equations (32)-(33) for 6° and n° are not a closed system since Q, depends on 6.
Therefore we consider the next terms in the outer expansion, 6, and »., which satisfy

a6 96" 06° _ o%"
on' on® _ 9*n! on®
G (@), g~ (B0, G = G v+ 0le) (61)

In a similar manner, we can show that Q, depends on 6 so that the system of equations
does not seem to close. However if we subtract Eq. (61) from (60), we see that the quantity

s=0"—n! (62)

satisfies

as as _ 9% an°
or P E T w7V e

(63)
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We also note that

n'(0*, 1) =0 (64)

which implies that
s(0*, 7) = ' (0, 7). (65)

We have thus succeeded in reducing the problem to the solution of the two equations for
n° and s, given by

on’ on® _ 9™’ (0 50, 7)
Gy~ (B G =gt exp S5 8, (66)
as s _ 9% o'n°
= (o), 7 2t o ' o (67)
subject to the boundary conditions
n®(—o, 7) =0, n® (o, 7) = 1,
( ) (68)
s(—o, 7)=0, s (o, 7) < ©,

4. The basic solution and its stability. The basic solution of problem (66)-(68), de-
scribing normal, time-independent necking, is given by

n"=n®=exp & for <0

=],for¢(>0,
(69)
s=sb=texp & forE<O
=0, for£>0,
0= -1

For a linear analysis of the stability of this solution, we introduce perturbations u = s — s°,
v=n"=n" ¢ =& — &, and linearize Egs. (66), (68) to obtain

v dn” av _ 9 1
ou ds®  ou _ du 9%
ar ba e T aE e 7h

v(§, 1) =0for £<0, (72)
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(-, 7)=v(-®,7)=0, wu(tw, 7)< (73)

We now show that there is a solution of the linear problem (70)-(73) of the form

o(1) = D exp (iwr), u(r, &) = D exp (iwt) U(§),

(74)
v(r, £) = D exp (iwt) V(§).
Then we show that there are parameter values » for which the imaginary part of at least
one such w is negative, which corresponds to unstable normal necking.
The problem is thus reduced to the solution of

an®* dV _ &V 1
E+ dE + 5 Us (§), (75)

lwV—iw

d*  dU _aU _ &V

in—iwd—£+—d?=*&,zz——Vd£2 (76)
subject to the boundary conditions
U(xx) = V(£x) = 0. 7)
Eqgs. (75)-(77) imply that
B((1 + diw)2— 1) = 1 + diw, (78)
or
(lw)l+Q2+286-B)(w)+1+28=0, (79)

where 3 = v/4. Hence Re(iw) > 0 (Imw < 0) when 8 > 1 + 3 = 8. or B < —4. The root
B = —4 of Eq. (79) is not a root of the original equation (78). Thus, normal necking is
unstable to one-dimensional disturbances if

N(L —1)>4(1 + 3)~10.9. (80)

Since N = v (0-(1 — a))/kT it follows that by lowering the temperature while leaving all
other parameters unchanged, we can move into an instability region.

We note that the critical case (3 = (8.) may be achieved at quite realistic values of the
physical parameters. For example, at N = 30 Eq. (80) gives L = 1.36. At 8 = ., the real
frequency w = w, is given by

we = +1(3 +23)V2 >~ 0.64. 81)

For 8 > 8., the system undergoes a Hopf-type bifurcation, in which the normal
necking process becomes unstable and oscillatory necking sets in. To determine the
bifurcation solution quantitatively, one may employ an analysis similar to that in Mat-
kowsky and Sivashinsky [13].
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