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RECTILINEAR OSCILLATIONS OF A RIGID SPHEROID IN AN ELASTIC
MEDIUM*

By S. DATTA (Lucknow University) and R. P. KANWAL (Pennsylvania Stale University)

1. Introduction. A method of singularities has recently been developed to solve-
various displacement-type boundary value problems in elastostatics [1], Our aim is toex-
tend this method to elastodynamics. Specifically, we study the dynamical displacements
set up in an infinite elastic space when a rigid spheroid, embedded in this space, is
subjected to a transverse periodic displacement. Since there are two lengths in this
problem, namely, the major axis a and the minor axis b, there arise two parameters; one is
ma = (pu2a2/n)1/2, and the other is mb = (pu2b2/n)l/2, where p is the density of the medium,
w is the circular frequency and p. is the shear modulus. Previously, one of the authors has
studied various boundary value problems of this nature [2, 3], However, it was assumed
that these parameters are of the same order of magnitude. In the present study, when we
take both parameters into account we not only recover the known result as a limiting case
but get various other interesting limits as well.

The analysis is based on the suitable distributions of the fundamental solutions of the
partial differential equations involved and the matched asymptotic expansions [1, 2, 4],

2. Mathematical formulation. Let a rigid prolate spheroid S,

(x2/a2) + (r^/b2) - 1; r* = y2 + z2, c2 = (a2 - If) = eV, (1)

where e (0 < e < 1) is the eccentricity and 2c is the focal length, embedded in an isotropic
and homogeneous elastic space, oscillate along the j-axis so that the displacement is d0 exp
(iwt). The Navier equations of elastodynamics are

(X +m)VV-U + mV2U-p^ = 0, (2a)

where U is the displacement vector, A, p are Lame's constants and p is the density of the
medium. This equation is to be solved subject to the boundary conditions

U = d0ey exp (iut) on 5, U —< 0, at (2b)

where ey is the unit vector along j»-axis. It is convenient to introduce a new vector u such
that

u = d0 ey exp (iojt) - U. (2c)

Then the system of equations (2) are modified as follows:

(X + /t)V- Vu + mV2u - p - pu2d0 ey exp(/'a>0 = 0, (3a)

u = 0 on 5, u -» d0ty exp (iwt) at oo. (3b)

To obtain the inner expansion we introduce the inner variables
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x' - x/a, / = y/b, z' = z/b, u' = (u/d0) exp (—iut), (4)

so that Eq. (3a) becomes

1
1 - 2v

b 8 v-
L a Cx 8x' Cy 8y' 8z'J 8x' + Cy 8y' + 8z' J ■u'

+ b2 82 82 82
L a2 8x'2 + 8y'2 + 8z'2J

u' + mb2 (u' - ey) = 0, (5)

where ex and e2 are unit vectors in the x and z directions respectively, e = A/2(A + /u) is
Poisson's ratio and ml = pu!2b2/[i. This analysis is based on the assumption that b is small
and mb « 1.

In order to obtain the solution for small mb we take the inner expansion as

u' = ui + ul + U2 + • • • , (6)

such that u^+i/Un -> 0, as mb -» 0. The equations for u£ and ul , in dimensional space
variables, are

1 VV-ui + V2Uo = 0, , 1 . V7'U, + V2u; = 0. (7a, b)\-7v ^ "" ' 1 - 2c

These equations are to be solved subject to the inner conditions

= ul = 0 on S, (8)
along with the requirement that the inner expansion must match the outer expansion.

To obtain the solutions in the farfield it is convenient to introduce the following two
sets of outer variables:

x = Mbx/b, y = M„y/b, z = Mbz/b, (9a)

x* = m„x/b, y* = mby/b, z* = mbz/b, (9b)

where Mb = ((1 - 2e)/(2 - 2v))m$ and Mb and mb are of the same order of magnitude and
no distinction will be made in writing Mb -> 0 or mb -» 0. Next, we introduce the outer
expansion

u' = cy + qj + q2 + • • • , (10)

where qn+i/q„ —» 0, as mb —> 0, and set

q, = MhVhj + w„V* X gj , (11)

where V and V* are the gradient operators in the coordinates (9a) and (9b) respectively.
When we express Eq. (5) in terms of outer variables (9) and substitute the expansion (10)
in them we obtain

+ *, = &, V*2gi + gi = 0. (12)

Since u' —> ey at infinity, it follows that qj -» 0 at infinity. Furthermore, this solution should
match the inner solution. Finally, let us introduce two new dimensionless parameters Ma
= (a/b)Mb and ma = (a/b)mb , so that Ma and ma are small and are of the same order of
magnitude:

10 2 2
Ml = 2 _ 2V ,r& = PU U ; 0 < ma « 1, Ma = 0(ma). (13)
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3. The solution. We use the singularity method in [1] and solve Eqs. (7) subject to a
zero displacement condition. Indeed, it follows from the analysis in [1] that

, _ « r [ae J 3 - ^ vIL\
"° «0 a°J-ae I R( RV

(14)

where

Rt = (x ~ £)e* + y cy + z e2, = | Rf |,

2e2/3o = 2^[2e - (1 - 7e2 + See2)!]"1, L = log -7—— , (15)<-*0 1 9 I V ' 1 VV*, j , . ,\ — ez 1 — e

and a is, as yet, an unknown constant. From the above relation it follows that /30 = 0(b2).
Accordingly, the outer limit of ui is given as

lim ui = —
/?'->00 OL0 -r:{Tre-+f)^+°(^)] (16)

-eM a K

where R'2 = (x12 + y'2 + z'2), £ = (Mb/b) £, R^ = | ft? |, ft£ = (Mb/b) R{ .
Case I. Ma small. In our entire discussion, Mb is assumed to be always small. Now we

take Ma also to be small so that

0 < Mb < Ma « 1, Mb = 0(Ma).

Then we can reduce relation (16) still further. Indeed,

alim ui = e, - 2eMa*0{^~ey + ^} + o(mI (17)

where ft. = x ex 4- y ey + z , R = | ft |. Since the limit of ui as given by (17) must match
the outer solution (10) we have in the first approximation

a = a0 . (18)

Next, we express q, in terms of a line distribution (of constant density) of fundamental
solutions of the partial differential equations (12) so that

/em a

— pm-em a

exp(-iRt) 8 J 1 exp(-iRj)l
y dy*\R1 R| d&

where £* = (M„/b)£, Rf = (Mb/b) Rf , /?| = (Rf), and the constants B* and B are to be
determined from matching conditions. Indeed, the inner limit of qj is

lim q, = 2e Ma
R—+ 0 Mq—•0

B* + B (B* - B) yR
2 R Cy 2 R3

+ 0(M2 , MaR). (20)3
Matching the inner limit of the quantity ey + q! from the above relation with the outer
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limit (17), we have

B* = 4a0(l — v), B = 2a„(l - 2f). (21)

The third term on the right side of (20) is to be matched with the outer limit of ui .
Since Eq. (la) and the boundary condition (8) satisfied by ui are the same as those satisfied
by , we take

u! = A ui , A = constant. (22)

Matching the third term in (20) with the outer solution of ui , which can be easily written
down by the help of (17), we get

. 2 eM,A = <23>

Next, we add the contributions of the Kelvin solutions distributed between the foci [1]
and easily find the dynamic force as

P = 16xm^0(1 ~ ") exp (iut) J a0 1 + y e(l - v ]a0 j 2 + ( * _ j ma + 0(n£) dZ

= 32tt nd0ae(\ — v)a0

= Po

l + f^(l-^o{2 + (yz^) ^
Poi1 + 12 + (   =r) }ma12irnd0a

I 1 - 2fV
\ 2 - 2v)

exp (iut) + O(nfi)

exp (ioot) + (24)

where

P0 = 64ttm(1 - i>)d0ae3 [2e - (1 - 7? + 8v<?)L]~' (25)

is the static force evaluated in [1], Relation (24) agrees with the value obtained earlier [1,
2] except that now the value of P0 is given explicitly.

Case 2. Ma arbitrary, Mb « 1. In this case the outer limit of ui represented by Eq. (14)
is expressed as

lim ui = — ey
r'-co a0

.xi & + eMa - x1 - ».(3 - *■) log ^ ^

+ ay

where

J 1
- Q\ 0.2- e* + ay ( x - eMa x + eMa\ / 1 \

& &-) er + °\R^)> (26)

e, = j = j ZC\ & = [(* - eMaf + Q2 = [(* + eMaf +

In outer variables the prolate spheroid reduces to a needle of zero radius and finite
length when Ma is arbitrary. We take the lead from hydrodynamics [4, 5] and assume that
the end effects are negligible for the leading term of the outer expansion. Accordingly, as a
first approximation, we still take q, to be given by (19).

For r —> 0 and — eMa < x < eMa, the inner limit ofq, in the plane r = 0 is given as

lim q] = ey B*L, ~ BL2 + (B* + §)log {B* BW* + 0{p log f), (27)
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where

1 - (1 + iema) exp (-iema) , 1 , N , >0., s , , ma j + T - C,(e„h) + ,S,(,em.) + log ^

1 - (1 + ieMa) exp {-ieMa) ,1 , 1# x
U =  1  ,, ,2  + r - 7 + Ci(eMa) - iSi(eMa),

\eMa) 2

. r cos t , . f2 sin f ,Ci(z) = —  dt\ Si{z) = /  dt.
J z t J 0 t

The above value ofq, must match with the value of the outer limit (26) at x = 0; that is,

a
lim ui = — Cy

/?' —»oo, JC = 0 «0

2pM1 - 2a„(3 -4»/) log a ^cr + o(-^?,/s) • (28)
r J

When we match this value with that of ev + q from (27) we find that

B* = 4a(l - f), = 2a(l - 2i>),

and

a"1 = a o1 -2[(3 - 4v)log eMa + 2(1 - i/)£, - (1 - 2/>)L2]. (29)

The total force on the spheroid is now obtained by integrating the effect of the
(constant-density) fundamental solutions of (12). Consequently,

/ae B* = 32iriJ.doaea(\ - v) exp (iwt), (30)
-ae

where a is given by (29). This is a new result and has some interesting consequences.
In the limiting case when ma tends to zero, (30) reduces to

lim P = 32ir^d0ae(\ - v)ac 2 + -J e(l - y)a0|2 + ( ^ }ma i

■exp (iut) + 0(m%). (31)

This limit agrees with formula (24) although we have not assumed this time that ma and mb
are of the same order of magnitude. Accordingly, it can be applied also when mb is much
smaller than ma. Since the ratio mb/ma is the same as the axis ratio b/a, mb being of the
same order as ma means that the spheroid is nearly spherical. On the other hand, when mb
is much smaller than ma, the slenderness parameter b/a is very small. Thus, when the
spheroid becomes very slender (b/a -> 0 or e -> 1), we derive the limit

\bird0a(\ — i>)
lim P =  

ma-o,e-l J 2 a
(3 - 4l/)l0gy

4(1
1 + —

3\y+ (3 - 4r)logy

exp (iut).

In the other limit, when ma is large and e -> 1, the spheroid becomes an infinitely long
cylinder of radius b. Therefore, the force per unit length on an infinitely long cylinder of
radius b follows from (30) as
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P _  ftirfido (1 - v) exp (iwt) 

ft z. / iW ft

In this paper our aim has been to present the first-order approximation and we have,
accordingly, evaluated only the terms uj and q! of the expansions (6) and (10). For
evaluating the higher-order terms the following word of caution is in order. (The authors
are grateful to the referee for pointing it out to them.) Eq. (2a) is expressed in terms of a
mixed description; that is, the spatial derviatives are based on the Eulerian description and
the time derivatives are referred to the Lagrangian description. In order to pursue the
present method for a higher-order approximation the term 82u/8t2 in (3a) should be
replaced by its corresponding Eulerian form which relfects the change of reference frame.
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