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Abstract. We consider the problem of determining the stress intensity factors and the
crack energy in an infinitely long strip of an initially stressed neo-Hookean elastic material
containing two coplanar Griffith cracks. We assume that the cracks are opened by a
constant internal pressure and that the edges of the strip are either rigidly fixed or stress-
free. By the use of Fourier transforms we reduce the problem to solving a set of triple
integral equations with cosine kernel and a weight function. These equations are reduced
to a Fredholm integral equation of the second kind by using finite Hilbert transform
technique. Analytical expressions up to the order <5~10 are derived for the stress intensity
factors and the crack energy, where 28 denotes the width of the strip and <5 is much greater
than 1. Numerical values of the stress intensity factors and the crack energy are graphed to
display the effect of initial stress.

1. Introduction. The theory of cracks in a two-dimensional elastic medium was first
developed by Griffith [1]. Sneddon and Elliot [2] solved the problem of finding the
distribution of stress in the neighborhood of a Griffith crack that is subject to an internal
pressure, by considering the corresponding boundary-value problem for a semi-infinite
two-dimensional medium. Recently, Willmore [3] end Tranter [4] solved the problem of
determining the distribution of stress when two coplanar cracks are opened by an internal
pressure in an infinite elastic aelotropic and isotropic medium, respectively. Lowengrub
and Srivastava [5] considered the problem of an infinitely long strip containing two
coplanar Griffith cracks, and they employed the finite Hilbert transform technique to solve
the problem.

The incremental deformation theory concerns the infinitesimal deformation of a solid
with a known initial finite deformation. The basic equations of such incremental deforma-
tion theory have been derived by Trefftz [6], Biot [7, 8], Neuber [9], Green, Rivlin and
Shield [10] and Green and Zerna [11]. Neuber used his theory to solve the buckling
problems of sandwich plates [12, 13] and a spherical shell [14] with nonlinear stress-strain
law. Biot [15, 16, 17] investigated the effect of initial stress on surface buckling, internal
buckling and elastic waves and to the single-crack problem with initial stress [18], The
theory and many applications were presented in a monograph [ 19] by Biot. Kurashige [20,
21, 22] used Biot's [7] theory to solve the problems of a penny-shaped crack in an infinite
medium, a line crack in a thin infinite strip and a slipless indentation problem of an infinite
circular cylinder.

* Received April 10, 1978. This work was supported by National Research Council of Canada through NRC-
Grant No. A4177.
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This paper applies Biot's theory [7, 8, 18] to the problem of determining the distribu-
tion of stress in an infinitely long strip containing two coplanar Griffith cracks. The
problem in the title is considered for an initially stressed neo-Hookean elastic material. In
Sec. 2, we give the basic equations and a Fourier transform solution of the equilibrium
equations and obtain expressions for the components of displacement and stress. In Sec. 3,
we give boundary conditions for two cases: (A) the edges of the strip are fixed, (B) the
edges of the strip are stress-free; and derive the appropriate triple integral equations. In
Sec. 4, the triple integral equations are reduced to a single Fredholm integral equation of
the second kind. The iterative solution of the integral equation is obtained in Sec. 5 for 8
» 1 up to the order 8~10 when half the width of the strip is <5 times the distance of the far
end of the crack from the origin. The analytical expressions up to the order <5~10 are
obtained for the stress intensity factors and the crack energy in Sec. 6. The numerical
values of the stress intensity factors and the crack energy are graphed to demonstrate the
effect of initial stress.

2. Basic equations of incremental deformation theory and their solution. In rectan-
gular cartesian coordinates xt and time t, the equations of motion associated with
incremental deformation theory of elasticity are

sij,j SjkU>ik,j + SikWjkj — ejkStk,j — piii , (1)

where the usual summation convention over repeated indices is applied, ut = d2ut/dt2,p =
density in the initial state, ut = incremental infinitesimal displacement components, =
incremental strain tensor, su = incremental stress tensor referred to axes which are
incrementally displaced with the medium, andS^ = initial stress tensor, corresponding to
initial finite deformation, referred to xt . The last three terms on the left-hand side of Eq.
(1) are due to the effect of initial stress.

Incremental strains and rotations may be written in terms of the incremental in-
finitesimal displacements by the following relations (similar to the classical theory of
elasticity):

etj = + Uj.t), uij = ftUij - Ujj). (2)

If the material is a neo-Hookean solid, elastic potential per unit volume is expressed in the
form [6]

W = £mo(Ai2 + X22 + X32 - 3), XjXiX, = 1, (3)

from which the stress-strain relations are obtained as

I'S'll — ^22! $22 ~ S33, S33 ~ Sn) = /U0{Xi2 — X22, X22 — X32, X32 — X.2}, (4)

where X( is the extension ratio in the Xi-direction and ^„ is the shear modulus in an
unstrained state.

The total differentiation of Eq. (4) and consideration of incremental shear deforma-
tion give the following incremental stress-strain relations [6]:

l^ll — ^22 » ^22 ^33 > *^33 ^n) = Mo{Al2Sll — X22^22 > A22C22 — A3V33 , Xs2?33 — Xi Sn), (5)

U12, S23 > -Ssi} = Mo{(Xi2 + X22)ei2, (X22 + X32)e23 , (X32 + Xi2)e31}. (6)

If we consider plane strain perpendicular to the z-axis in a rectangular cartesian
coordinate system (x, y, z) and assume that the initial finite deformation produces a
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normal stress Sxx which is uniform throughout the neo-Hookean elastic solid then, we
have

Sxx = no(K2 - V) = -p, (7)

Syy ~ Ay ){?xx » &yy > ?xy)i (8)

where P is constant and

— Ksxx "F syy)- (9)

The two-dimensional equations of equilibrium for the incremental stress field are

3SXX , 8sxy | o   rv &Sxy . 8Syy , c 8£0

s* + l^ + ̂  = 0' ^f + T+5-it = 0' (10)
where w = uxy is an incremental rotation. Introducing a scalar incremental displacement
function </>(x, y) by the relations

ux = —8<j)/8y, uy = 8<j>/8x, (11)

we find that the condition of incompressibility

exx + eyy = 0 (12)

is satisfied.
From Eqs. (2), (7), (8) and (10) we find that the equations of equilibrium may be

written in terms of two unknown functions s and <j>\

8s - If A 2 , x 2V p\JL( 4- - n
2{fio(K +K) P^8x\8x2 8v2) '8x2 8y\ dx2 8y

8s_ I
8y 2 ,r~uv''c ' "J" ' ' ' 8x\8x2 ' 8y+ iWV + V) + f}^-(0 + 0)-O. (13)

Eliminating s between the above two equations, we find that <j> must satisfy the equation
[19]

( 82 , 82 \(, „ 82d> d2d> \ „
\8x2 8y* )\ 8x2+8y2)~ ' (14)

where

k2 = ^ , _; = ■ ̂  ■ , (|5)M0(A,2 + A/) + P = (\y\
MO (\x2 + \y2)-P \\x'

Taking the Fourier transform of Eq. (14) with respect to x, we find that </> satisfies the
equation

(16)>dy2 s / \dy2

whose solution may be taken as

0(£. y) = A(£) sinh (iy) + B(£) sinh (k£y) + C(£) cosh (fc/) + D({) cosh (k£y) (17)
where

</>(£, y) = (—) / y) exp (ix!j) dx. (18)
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Now taking the Fourier transform of Eq. (13) with respect to x and substituting for <f> from
Eq. (17), we find that

*(£> y) = -inoK2k{k2 - 1)£2[£>(£) sinh (k£y) + B{£) cosh (££>')]• (19)

From Eqs. (2), (8), (9) and (11), we obtain

ux = -<?</>/ By, uy = -z'£0, 1 = ^sxx + 7yy),

fox - s, sxy] = Mo(Xx2 + X./){/£ 04/dy, -&82$/dy* + £20)}. (20)

When there is symmetry about the line x = 0, the expressions for the required stress
and displacement components may be written as

tiy{x, y) = FC[£{A sinh (£>>) + B sinh (kty) + C cosh (£>>) + D cosh (&£y)}; £ —► x],

syy(x, y) = + k2)A cosh (£y) + 2kB cosh (kl-y)

+ (1 + k2)C sinh (£>>) + 2kD sinh (k^y)}\ £ —> x],

Sxy(x, y) = -foo {Xx2 + X/)/rs[^2{2^ sinh (£y) + (1 + k2)B sinh (k£y)

, + 2C cosh (£y) + (1 + k2)D cosh (ktjy)}\ £ -» x] (21)
where

Fs[fe, y)\ £ -> x] = ( —) [ /(£, y) sin (£*) </£,
x 7T ' J o

FcUiZ, >>);£-> x] = (—) f /(£,>>) cos (£x) </£•
\ 7T ' J o

3. Statement and solution of the problem. We consider an infinite elastic strip of
breadth 28 given by — 8 < y < 8, — co < * < <=° and initially deformed in a manner given by
Eq. (7). If a pair of coplanar cracks develops in the middle line of the strip perpendicular
to the_v-axis and also symmetrical about it, we may consider the problem of a strip 0<y
< <5, 0 < .v < 00 if both the edges y = 8, — 8 are given as either stress-free or fixed. We
assume that the cracks are opened by an internal pressurep(x) which is an even function of

CASE A: For this case, assume that the edges of the strip are bonded to a rigid
material such that the displacement uy and the shear stress sxy vanish at the edges of the
strip. The boundary conditions may be taken as

uy(x, 8) = 0, sxy(x, 8) = 0, sxy(x, 0) = 0, 0 < |x| < °°, (22)

■VvU, 0) = -p{x), k <; |*| ^ l, ^23)

uy(x, 0) = 0, 0 < | X | < K, | x | > 1.

The boundary conditions (22) are satisfied if we take

[A, B, C} = K1 + £2)Z)(£){coth (#), coth (k£8), - 1). (24)

Now if we define a new unknown function G(£) in terms of D(£) by the relation

G(() = «1 - k»KD(S), (25)
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we find that

uy(x, 0) = FC[G($); £ - x], (26)

syy(x, 0) = Fc[ZG(m + H^8)y, f - *], (27)

where

1 ^ , (1 + A2)2 — 4k~~y ~ y  Y^T2 ' ('

~4A{1 - COth(A#)} + (1 + A2)2{ 1 - COth(£5)}
A) (1 + k2)2 — 4k ( )

The remaining boundary conditions (23) will be satisfied provided G(£) satisfies the set of
triple integral equations:

Fc[G{Z)- {-*] = (), x E Lu L3, (30)
fcKC«){l + #,($5)};$^*] = yp(x), xEU, (31)

where

Li = {x | 0 < x < k}, L2 = {x | k < x < 1}, L3 = {x \ x > 1}. (32)

CASE B: For this second case, we assume that the edges of the strip are stress-free;
then we have the boundary conditions (23) and the boundary conditions (22) are replaced
by

syy(x, <5) = 0, SiyC*, 8) = 0, sxy(x, 0) = 0, 0 < |x| < 00. (33)

The boundary conditions (33) will be satisfied if we take

A = HI + k2)D[4k{l - cosh (£<5) cosh (A|5)} + (1 + A2)2 sinh (£<5) sinh (/c^5)][A(^5)]1,

B = £>[(1 + k2)2{\ - cosh (£<5) cosh (Ac£<5)} + 4k sinh (ffi) sinh (A£<5)][A(£<5)]-\
C = -HI + k*)D, (34)

where

A(x) = (1 + k2)2 sinh (kx) cosh (x) — 4k sinh (x) cosh (Ax). (35)

Now, from Eqs. (34), (25) and (21), we find that

uy(x, 0) = -FC[G(£); £ -> x],

syy(x, 0) = --FC[£G(£){1 + H2(£6)}; £ - x], (37)
7

where G(£) and y are given by Eqs. (25) and (28), respectively, and

H2(x) = [A(x){(l + k2)2 - 4A}]"1[8A(1 + k2)2

- (1 + k2)2 exp (—x){4k cosh (kx) + (1 + k2)2 sinh (Ax)}

- 4k exp (-Ax){(l + A2)2 cosh (x) + 4A sinh (x)}]. (38)

The boundary conditions (23) now lead to the following triple integral equations for
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the determination of G(£):

Fc[G(f); f - x] = 0, xELltLlt (39)
FcKG«){l + H2{H8)}; ( x] = T/7(x), * £ L2 . (40)

In the following sections, H(ljS) may be taken to mean Hi(tjd) (or //2(£<5)) for the
problem of case A (or case B).

4. Solution of the triple integral equations. The solution of the set of triple integral
equations

Fc[G(£); £ -> x] = 0, xEU,L3, (41)

FC[£G(£){1 + H(&)); (x] = yp(x), x E U , (42)
as given in Srivastava and Lowengrub [5], is

C({)= (j)'" J sin mdt, (43)

where h(t2) is the solution of the Fredholm integral equation of the second kind

h(x2) + J ' h(t2)K^x2, t) dt = M(x2), xEU,
K

satisfying the condition

f 1 h(t2)dt = 0,
J K

and

r n - 4 ( x* ~ *1 "* f '( 1 ~ 1/2 '> a' ^\l-W dy'

(44)

(45)

(46)

with

2CV, t) = J
J n

H(i;d) cos (£y) sin (£t) d£, (47)

and

«<*■> - - £ (t^) "" /,'(7^7)ly + citv - ,-xi - (48)

where C' is an arbitrary constant to be determined from condition (45). Now integrating
(44) with respect to x from k to 1 and using (45), we find that

C = I f 1 h{t2)\ f 1 K,{x2, t) dx\ dt+ ^rf 1 fV(x2) dx, (49)
r J k KJ k ' tt •> K

where

w> - (ff£)/.'(7^)f^"y
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and F = F(k', tt/2) is an elliptic integral of the first kind with k'2 = 1 — k2.
Hence from (44), (48) and (49), we find that h must satisfy the integral equation

h{x2) + / ' h(t2)K(x2, t)dt = P{x2\ xEU, (51)

where

K{x2, t) = K,{x\ t) - y{(x2 - k2)(1 - x2)}'1/2f 1 K,(x2, t) dx, (52)

P{x2) = ^
7r

W(x2) - - k2)U - x2)}-1'2 [ ' W(x2) dx
L t J K J (53)

5. Iterative solution of the integral equation. If we consider the case <5 » 1, then by
substituting <5£ = f and expanding cos(f>>/<5) and sin(f//5) in series, we may write (47) in
the form

*i0v, 0 = i Mn(t, y), (54)
n =0 0

where

Mn(t,y) = $[(t +y)2n+1 +(t-y)2n+1]

and

Now from (54), (46) and (52), we find that

frrv2 <■) - 1 Y1 h>n(x2, t2)
K(X ' 0 " 8ttA k 52" ' (55)

where

X = {{x2 - k2)(1 - x2)}1'2, A, = MoU2),

A2 = h[Ao(x2)t2 + %A ,(x2)], A3 = h[A 0(x2)r4 + WA ^x2)? + /f2(x2)],

A4 = /3Mo(^2)/6 + 21AC*2)?4 + lA,(x2)t2 + Aa(x2)], (56)

with

A0(x2) = I6(x2 - E/F), A^x2) = 8(2x4 + a0x2 + a,),

A2(x2) = 10(8.v6 + 4a0x4 - k'4x2 + a2),

A3(x2) = 7(16xe + 8a0x6 - 2k'4x4 + a0K,4x2 + a3);

a0 = -(1 + k2).. a, = k'2E/F - 211,

a2 = k'\ 1 + 3k2)E/F + 4k'7/ - 8/2',

a3 = k'2(1 + 2^2 + 5k4)E/F + 2/c'2(l + 3k2)/!' + 8k'2/,' - 16/,', k'2 = 1 - k2, (58)

and

(59»
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from which we find that

= -k2 + E/F, /,' = ll-K* + (2 - k2)E/F],

U = iV[/c2(/c2 - 4) + (8 - 3k2 - 2k*)E/F],

13' = iM*2(4*4 + 5k2 — 21) + (48 — 16k2 — 9k4 - 8Ke)E/F], (60)

where F and E are elliptic integrals of the first and second kind, respectively, defined by

""(<■? )-/.'%■ («)

For p(x) = p0, we find from (50) that

_ ( x2 - k2\ 1/2
Wtf) = jp{ . (62)

and hence from (53) we have

P(x°) = Mx2). (63)

Fig. 1. Values of 10 A',//',) against half the strip width 5 for various values of P/n„ and * = 0.2.
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5. 2

Fig. 2. Values of 10 NK/p0 against half the strip width 6 for various values of /Vmo and k = 0.4.

Since 5 » 1, |A"(x2, f)| < a where a < 1, the solution to the integral equation (51) may be
taken in the form

Kx2) = t ^ ■ (64)
n= 0 0

Now substituting for K(x2, t) and h respectively from (55) and (64) in (51) and equating
the various powers of 6 from both sides, we obtain:

h0(x2) = P(x2),

hn{x2) = - 2 f 1 t Am(x2, t2)hn-m(t2) dt, n = 1, 2, 3, • • ■ . (65)
07rX m =1 k

By carrying out the above iteration process up to ht, we find that

where

Kx2) = (ft + ftx2 + ft*4 + ft*6 + ft*8) + (5-10), (66)

8£ 4 E
ft = - — + — I0b08~2 + ^ + d0b~6 + e08-\

ft = 8 - 4I0b05~2 + 0,5-* + d,b-e + ei5"8,

ft = c25"4 + rf2§-6 + e25"8, ft = ^5"6 + e3<5"8, ft = e^"8, (67)
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Fig. 3. Values of 10 NJp0 against half the strip width 6 for various values of P/n0 and k = 0.6.

with

b0 = 4(j! - s0E/F)/tt, bx = 16(5-2 - SiE/F)/x,

b2 = 32(s3 - s2E/F)/7r, b3 = 64(,y4 - s3E/F)/ir,

bt = 32(c0ii + cts2 + c2s3)/ir, bb = 16(c0^0 + Ci.*i + c2s2)/ir,

c0 = -2Io2bo2E/F+ IAE/F - 6/A«. ,

c1! = 2I02b02 ~ hbi - 6Iib0a0, c2 = - 12/A .

E 1 E
do — 2j■ {I2h'2 ~~ /o/A2) ~~ 5I2b\0Ci ~ | l2booi2 + ^/oWitfx 4" g* ^5 i

c/i = ~hh(b2 + lO^ao - 35Kl4b0) + Uohbi(b, + 660«o) ~ JAA. ,

d2 = -10/2(^! + 60a0) + 6IoIib0bi , d3 = ~20I2b0 ,

e0 = s I3(2b3E/F - 42b2al ~ 35bla2 - 14b3a3) - J I0I2bi(b2E/F

21 E
\0b\Ci\ Sbocx2) p (d0sa ~1~ d\S\ 4* d2s2 d3s3)

+ iV Ii(btE/ F — 3 blUl),

e, = -~I3(2b3 + 42b2a0 - 245k'% + 14Kl4b0a0)
07T
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2
+ lUMb* + lO^ao - 35k'%) I0(d0s0 + dxsx + d2s2 + d3s3)

IT

~ iWi(64 + 3b6a0),

e2 = ~i I3(ib2 + Sb&o - K'*b0) + 5/0/26i(Z7i + b0a0) - g/A ,

ft = - 7
— I3{Sbi + 2b0a0) + \OI0I2b0bi , et = -28I3b0,and

r 1 y.2n+ 1

sn= —tt~ dx, n = 0, 1, 2, • • • .J« X

(68)

(69)

F»--v.„„„onov/A

/^o and k = o 2
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l0N, 108

Fig. 5. Values of 10 N,/p0 against half the strip width 5 for various values of P/n0 and k = 0.4.

so that

s0 = tt/2, Si = 7r( 1 + k2)/4, s2 = 7t(3 + 2 k2 + 3k4)/16,

s3 = 7t(5 + 3k2 + 3/c4 + 5k6)/32, st = tt(35 + 20k2 + 18 k4 + 20k6 + 35k8)/256(70)

6. The stress intensity factors and the crack energy. The stress intensity factors NK ,
Ni at the ends of the crack, which are of interest to people working in fracture mechanics,
are defined by

N„ = lim {(* - x)1/2[syy(x, 0)]} (71)
X-+K

Ni = lim {(*- lr^je.O)]}. (72)
X-l

From (27) or (37) and (43), we find that

syy(x, 0) = -4 / * dt-± I' h(t2)K2(x, t) dt. (73)
1 K I * I K
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It is easily seen that the second integral in (73) does not contribute to the singular part of
syy(x, 0) and for the first integral we find

where

r 'K'2) H, = Pol •K(*2)/*. + »(x2) + C(5-10), 0<x<k,
K t2 - x2 8 \-R(x2)/X2 + N(x2) + 0(<5'10), x> I, ( '

R(x2) = Z
n =o

— £ PnX2n 2 + S,, £ Pi*2" 4 + S2{I33 + /34X2) + S3/3t
L 7T n = i n =2

N(x2) =

Xj = {(k2 - x2)(l - x2)}l/2, X2 = l(x2 - k2)(x2 - 1)}1/2

(75)

Hence the stress intensity factors NK and N1 as estimated from (71) and (72) are given
by

Nk = 8[2*(i - ««)rS ^nl<2n + O(rl0)' (76)

Fig. 6. Values of 10 Nt/p„ against half the strip width 5 for various values of P/^i0 and k = 0.6.
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f>2
0

Fic. 7. Values of Mo^/Po against half the strip width S for various values of P/mo and k = 0.2.

8[2(1->■)]" £& + 0'r"»- "7)

Substituting for G(£) from (43) in (26) or (36) and interchanging the orders of
integration, we obtain:

uy{x, 0) = ^ [ h(t2)dt, k < x < 1. (78)
^ J X

The energy to open the crack is defined by

W = j p(x)uy(x, 0)dx = jp0 f th(t2) dt, (79)
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since

p{x) = p0, [ h(t2)dt = 0.
J K

Substituting for H(t2) from (66) in (79), we obtain

w = ypo t, PnSn + 0(5"10).
n =0

The numerical values of the stress intensity factors and the crack energy are graphed
against 5 = 3, 4, 5, 6, 7, 8, 9, 10, 11 for P/n„ = -0.7, -0.3, 0, 0.3, 0.7 and k = 0.2, 0.4, 0.6
in Figs. 1-9, for case A when the edges of the strip are fixed. From Eq. (7) and the relation
A* = 1/JX, , we find that Xy is given by the equation

1 = 0, (80)
Ho

for various values of P/\x0 and then k is given by k = (Xv)3/2.

3.0

M0w

Fig. 8. Values of n0IV/pjj against half the strip width 8 for various values of P/n„ and k = 0.4.
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0.6

0.58
0.54

MpW 0.50

pZ 046

P— = 0.7, *=0.6
Mo

0 0 42
0 38
0.32
0.31
0-30
0 29
0.28
0.27
0.26
0.25
0.20
0.19
0 18
0.17
0.16
0.15

0 10
0.09
0.08

_ = 0.3, *=0.6
Mo

P— = 0.0, "= 0.6
Mn

P— • -0.3, *-=0.6
M0

Z ■ -0.7,
_Mfl 

Fig. 9. Values of ^W/pl against half the strip width 5 for various values of P/fi„ and k = 0.6.
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