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nonlinear STABILITY OF SURFACE WAVES IN
ELECTROHYDRODYNAMICS*

By BHIMSEN K. SHIVAMOGGI (University of Colorado, Boulder)

Introduction. Early studies of electrostatic effects on the motion of fluids were made
by Rayleigh [2] who considered the effect of surface charges on the vibration of spherical
drops. Michael [1] considered the effects of electrostatic forces on the stability of wave
motion at the surface of highly conducting fluids, and developed an analysis using the
Poincare-Lighthill-Kuo method. Michael's results for the linear problem showed that the
electrostatic forces can have destabilizing effects on the wave motion at the surface.
However, Michael's nonlinear analysis remains valid only for wavenumbers away from
the linear cut-off value, and breaks down for wavenumbers near the latter. The purpose of
this paper is to treat the latter case. The analysis is restricted to long waves for analytical
convenience. The results show that the electrostatic forces continue to have a destabilizing
effect on the wave motion at the surface in the nonlinear case.

The boundary-value problem. Consider wave motions at the surface of an in-
compressible, inviscid, and conducting fluid of infinite depth with a conducting plate
maintained at a potential V'0 at a distance above the surface (see Fig. 1). Initially, the
surface is taken to be disturbed according to a simple sinusoidal standing wave with an
amplitude a' and a wavelength A'. Nondimensionalize the various physical quantities with
respect to a reference length X'/2ir, a time (\'/2irg')1/2, and an electrostatic potential V'0
(the primes denote the dimensional quantities), and make a change of variable

r = at. (1)

Then one has the following boundary-value problem,

z > v: V20 = 0, (2)

z < i)\ V212 = 0, (3)

z = j?: - nxrjx - (jrij = 0, (4)

<t> = 0,
(5)

77 CX lc^
(1 +^2)3/2 - V + -g—{<t>xVx - <t>zf - + fii) - (TVr = const., (6)

* Received March 2, 1978. Helpful discussion with Dr. M. S. Uberoi is gratefully acknowledged. The author
is thankful to the referee for his valuable criticism.
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ConrfuctiM^
{?l.ste vj

z = b: 0=1, (7)
z => - °°: ft => 0, (8)

r = 0: Tj = e cos x, (9)

where 0 denotes the electrostatic potential above the fluid, ft the velocity potential inside
the fluid, the disturbed shape of the free surface is given by z = r\(x, r; e), and

e = a'(2ir/\'), k = 2ir/X',

a = Vr/p'g', /3 = T'/p'g'\
T denotes the surface tension of the fluid, g' the acceleration due to gravity, and p the
mass density of the fluid.

Nonlinear analysis for wavenumbers near the linear cut-off value. Seek solutions to
(2)-(9) of the form, for wavenumbers near the linear cut-off value kc,

CO

<t>(x, z, t;6)= £ tn(t>n{x, z, t) (10)
n -0

ft(x,z,T\t)= £ enftn (x, z, t) (11)
n =1

CO

T}{x,T\t)= £ tnTln(x,T) (12)
n = 1

*(*;«)= Z (13)
n =1

/:(«) = kc + e2K + 0(e3) (14)

where <p0 = z/b.
In (14), one could include an 0(e) term on the right-hand side, but it turns out to be

zero anyway.
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One obtains upon substitution of (10)—(14) into (2)-(9):

0(e):
z > 0: <t>ixx + 0i2Z = 0, (15)

z < 0: Qlxx + ttuz = 0, (16)

z = 0: Qlz - =0, (17)

0i = - Vi 002, (18)

ak3
0k2cV ixx - Vl + 4>oz 01* - ffl^lr = 0, (19)

z = b: 0! = 0, (20)
z => — Oi => 0,

t = 0: ?ji = cos x;

(21)

(22)
6>(e2):

z > 0: 4>2xx + 0222 = 0, (23)

z < 0: + ^22* = 0, (24)

z = 0: - <r1T721- = »?i* fii* ~ ^122 + c2t)iT , (25)

<t>2= ~ Vl 012 ~ ^2 002 , (26)

n-A-3 1
flklr)2xx - r)2 + 002 022 ~ o-i ̂ 2r = y (^i* + %)

- IT^ !0"2 + 2002 (022 + »7l 0122 +
o7T

»7i* 01*)} + <?2 ̂1 r + ViVittiTz . (27)

z = 6: 02 = o, (28)
Z=£— oo; ^2=>0, (29)

t = 0: 772 = 0, (30)

0(e3):

z >0: 03** + 0322 = 0 (31)

z < 0: 123a:i + 0322 = 0 (32)

Z = 0: ~ G\I)3t — (^122^2 ^222I?l) _ £ ^ 122^7 1 "1" ^2xVlX

"I" ^1X2*1 lV IX "t" ^lxV2X "I" &2V2 T ^S^lTf (33)

03 = ^71022 ^?2012 ^3002 5 ^710122* (^4)

afcc*
0kcV3XX V3 ~~4^T~ 002032 0*1^3 T
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= (^1*^2* ^IX^lXzVl Qlz&2z ^l2^l22*?l) ^(^2T QlTzVl) ^3^17

3
"f" (71(^272^1 ^ 1 72^?2 § ^l722^?l) ~2~ fikctf IXxVix 2(3kcKT1lxX

2ak2 ak ^ j
^002012 g^. |201 z (022 Vl&izz Vlxfilx) 01 z

3(/>02 (^Jl2x4)lX Vlxtyix VlxVl&lXZ 032 ^?10222 ^101222^1 (35)

z = b: 4>3 = 0, (36)

2 =>— <*>: ft3=>0, (37)

From (15)—(22), one obtains

r = 0: t)3 = 0. (38)

??, = eT cos x, (39)

, eT sinh(z - b) ,...
01 = TCOSX- sinh 6 ' (40)

12, = «V cos (41)

/vi- ^

ff'2 = coth 6 - m - 1 = 0. (42)

The destabilizing effect of the electrostatic forces on the wave motion at the free surface is
obvious.

For long waves, i.e. k « 1 (one then requires a/(4-rrb'3) » 1; see below), the linear cut-
off wavenumber is given by

kc * [(a/4irb'3) -\]'i/2. (43)

One may expect to construct uniformly valid solutions only for wavenumbers larger
than kc. But it turns out upon a consideration of the nonlinear problem in the following
that this is possible only for wavenumbers greater than kc by a definite amount.

For wavenumbers near kc (i.e. for a, = 0), one obtains from (23)-(30),

r)2 = (eT - 1) cos x, (44)

U2 ~ o?eTez cos x, (45)

02 = cos x • S'"gjnh i) ^ + higher harmonics. (46)

Using (39)—(41), (44)-(46), in (31)—(38), the removal of the secular terms in (35), in
particular, requires

<t22 - jSA:2C + 2(3kcK - k- coth b + 0(k3) = 0, (47)
O 47T u

from which
1 1™ "11/2

(48)J_ R, 2 , 3a
. 8 Pkc 4irb'3kc K
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so that one has

k>-^-63: instability,2 a

K~ neutral stability,

k < - | ^b3: stability,

and corresponding to neutral stability, one has

x 0
k = kc~ \ 2 a bJ(2+ °(e3)' (49)

which is graphically represented in Fig. 2.
It thus appears that:
(1) the waves at the free surface grow even at k = kc, despite the cut-off predicted by

the linear theory;
(2) the electrostatic forces continue to have a destabilizing effect on the wave motion

at the free surface in the nonlinear case.
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