
QUARTERLY OF APPLIED MATHEMATICS 41 1
JANUARY 1979
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1. Introduction. Martin [1] developed a new approach for plane viscous flows of
incompressible fluids. Nath and Chandna [2] and Chandna and Garg [3] extended
Martin's approach to incompressible magnetohydrodynamic fluids.

In the present paper we follow Martin's work and study the steady plane flows of an
inviscid compressible fluid of infinite electrical conductivity when the magnetic field vector
lies in the flow plane and makes a non-zero constant angle with the velocity vector. We
introduce curvilinear coordinates 0, \[/ in the physical plane in which the coordinates lines
\p = constant are the streamlines and the lines 0 = constant are magnetic lines.

The plan of the paper is as follows. In Sec. 2 we start with the basic equations of flow
and employ results from differential geometry to recast these equations in (0, \p) coordi-
nates. The following sections are devoted to applications of the new form of equations and
we establish the following results:

i) If the velocity magnitude is constant on each individual streamline, then the stream-
lines must be concentric circles or parallel straight lines.

ii) If the magnetic field is irrotational, then the velocity magnitude is constant on each
individual streamline.

iii) If the flows are irrotational, orthogonal and the fluid obeys the product equation
of state, then the flows are homentropic radial or parallel flows.

iv) If the streamlines are straight lines, then vorticity is identically zero.
Finally, solutions of parallel constantly inclined flows and orthogonal circular flows are
obtained.

2. Flow equations. The steady, plane adiabatic flow of an inviscid, compressible
fluid of infinite electrical conductivity is governed by the following system of equations:

5 (Pu) + 4:Apv) = 0, (l)bx by

dp , ( 8u 8u) rr( dHz 8Hi
fx + p\uJ-x + vIf) =->xHk-J7--8J

8p , ( 8v , 8v\ „( 8H2 8Hl

(2)

(3)by \ bx by' \ bx by >

uH2 - vHi = K, (4)
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ds dsw — + u — = 0, (6)dx dy

together with an appropriate equation of state p = p(p, s). This is a system of seven
equations wherein (m, v) are the velocity components, Hx , H2 the components of the
coplanar magnetic field vector, p the pressure function, p the density function, s the
specific entropy, p the constant magnetic permeability and K an arbitrary constant which
is zero for aligned flows and nonzero in the case of non-aligned flows.

On introducing the functions

dv 8u . 8H2 8Hi in oxJ' — ~W <7'8>

the system of equations (1)—(6) is replaced by the following system:

J^(pu) + JJ, (pv) = 0, (continuity)

8p 1 8q
~^P -J- ~ pvu = ~pjHdx 2 8x

Z>P , 1 Sq2
+ + pUL0 ~M///i

2 ?

(linear momentum)

uH2 - vHi = K , (diffusion)

d H-\—^ = 0, (solenoidal condition) (9)

= w, (vorticity)

= j, (current density)

8H i 8Hj
8x 8y

8v _ 8u_
dx dy

8H2 8Hi
dx dy

u + v ~~ — 0, (adiabatic)8x dy

wherein q2 = u2 + v2. Equations of continuity and solenoidal condition imply the existence
of a streamfunction \f/(x, y) and a magnetic flux function rp(x, y) such that

d\p/ dx = — pv, d\p/ dy = pu
(10)

d4>/8x = H2 , d(f>/8y = —Hi .

We shall now study the flows in which the magnetic field vector H = (Hx , H2) and the
velocity field vector V = (u, v) are everywhere non-aligned to each other in the flow region.
Using (10) in the diffusion equation, we get

8<t> d\p 8<t> dip _ d{<(>, \p) _ ,
ex ~^'~^~x~~d{^y) -pk?° dD
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-for our flows.
Let

x = x((fi,\p), y = i/0, (12)
define the curvilinear net with the squared element of arc length along any curve given by

ds2 = £(0, iP) dcj>2 + 2£(0, if,) d<f> d$ + (7(0, i) dip2 (13)
where

£ = (8x/ d(j>)2 + (8y/dcj))2,

p= 8±8x+8y8L^
8<t> 8ip 8cj> 8\f

G = (8x/8\Pf + {8y/8iP)2.
Eqs. (12) can be solved to determine 0, ip as functions of x, y so that

= I M = ly_ = . 8^_
8<f> 8y' dip 8y ' 8(f) 8x" 8^ 8x 1 ;

where 0 < |/| < <», and by (14),

J = 8(x, y)/8{<t>, iP) = ±{EG - P)1'2 = ±W (say) (16)

is the transformation Jacobian.
Denoting by a the local angle of inclination of the tangent to the coordinate line ip =

constant, directed in the sense of increasing 0, we have from differential geometry the
following (cf. Martin [1]):

8x/8<t> = JE cos a, dy/d(fi = JE sin a, (17)

F J F J
8x/8ip =—cos a   sin a, 8y/8ip =—sin a H cos a, (18)

yjE JE JE JE

8a/8<t> = - IV , 8a/8t = jYn2, (19)

K~ -1K~ W -8ip v E / 8$

— (—)=-

= o, (20)

{/T„2 - EY 21

where

r '1 12

' Wt<FT» -

iw) - Jiiw) - w{Cr" -2FT"'+ Er-'1-

X§)~F(§)_

(2i:

(22)

p 2 _ 1* 11 —
2W2

1
2^P
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and

and K is the Gaussian curvature. Having recorded the above results, we now take the eight
Eqs. (9) and develop these flow equations in a new form in the new variables 0, \p. In the
following work, we consider, without any loss of generality, that the fluid flows towards
higher parameter values of 0 so that J = W > 0.

Linear momentum equations. On employing (10) in the linear momentum equations, we
have

dp 8(f) dp 8^_ 1 / 8q2 <90 8q2 8ip\ 8\p _ . d<f>
8cf) 8x 8\p 8x + 2P\ 8(p 8x + 8\[/ 8x> + W 8x ^ 8x

8p <90 8p 8\p 1 / dq2 8<p 8q2 8\p\ dyp _ .<90
8<t>~8y ~8^~8y ~2P\~8$ ~8y Ihf ~8y> "~8y ~ ~^J~8y '

Making use of the transformation equations (15), we get

8p 8y dp By 1 Ssq2 8y 8q2 8y\ 8y __ . 8y
8(f> 8\p 8\p 8(f> 2^ I <90 8\p 8\p 8<f>' 8(f> ^ 8\p

dp dx dp dx 1 / dq2 dx dq2 dxl dx _ . dx
8(f) 8\p 8\p 8<p 2P i 8(f> 8\p 8\p 8(f)> W 8(f> ^ dip

Multiplying these two equations by dx/d(f>, 8y/8(f> respectively and adding gives one
equation; again, multiplying by dx/d\p, dy/d\p respectively and adding gives the second
equation of the following set of a new equivalent form of linear momentum equations. The
two linear momentum equations are:

% + \p % + w' = °< (24)

ft + ip % + w = °- (25)
Continuity and diffusion equations. Martin [1] has obtained the necessary and sufficient

conditions for the flow of a fluid, along the coordinate lines \p = constant of a curvilinear
coordinate system (12) with ds2 given by (13), to satisfy the principle of conservation of
mass as

pWq = yjE, u + iv = (yjE/pJ) exp {icy.) (26)

where = -J-l. Nath and Chandna [2] have proven that the solenoidal condition yields

WH = JG, H1 + iH2 = ~ exp (//?) (27)

where H = (H2 + H22)1/2 and /? is the angle between the tangent to the coordinate line 0 =
constant, directed in the sense of increasing and the .v-axis.

Vorticity equation. Employing (10) and making use of the transformation equations
(15), we find

- J_/d£ dy_ dv dy , dw 8x 8u dx
W 18(f) d\p 8\p 8(f> 8(f) d\p d\p 8(f)

By eliminating derivatives of x,y by use of Eqs. (17), (18) and substituting u = q cos a, v =
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q sin a, the expression for vorticity takes the form

= —— [f^~ - E^- + q\V—} • (28)JEW* 84 8* q d<t> I 1 °>

8p

From Eq. (26), we have

8q _ 1 8 ( E \ E 8p 8q _ 1 8 ( E\ i
<90 ~ 2qP ~8$\JP/ ~ qWp* ~8$ ' ~8^ ~ 2q^ ~q^p3 8^

Using Eqs. (21) and (22), we get

^ [rr 2 _ /rp 21 _ jjj dp
8<t> qp2W*{ 11 12 J qW*p3 dtp' (29)

=  !  rrp 2 _ c-p 21 _  §_ dp_8$ qp*Wltlu 22 J qW*p3 8^

By eliminating q, 8q/8<j>, 8q/8\p and 8a/8<p from Eq. (28) by use of (26), (29) and (19),
the expression for vorticity becomes

1
pH"

Making use of the identities (23), we get

= _1_w PW

±
W

(Grn2 - 2FIV + £T222} - - {f - E jZj J

L 8<t> v w) 8\p \ W>

- 8(f> V p W' 8\p \ p W' -

Wp2
F 8p E 8p
W 8(j> W 8\p. (30)

Current density. Following Nath and Chandna [2], the new form for the current
density equation is given by

. = J_
J W [ —(—) - —.8d>\W/ 81/\ W> -80 * W' 8\p

Adiabatic condition. Using (10) in the adiabatic condition, we have

(31)

i ( ds ^0 , &s _ J_ f 8<t> , 8s 8\jX 8\p _ J_ d(0, ip) 8s _ ^
n V 8<h 8x 81/ 8x' 8v 86 8v 81/ dJ 8x o 8(x. v) 868<f> 8x 8\p 8x! 8y p\ 8$ 8y 8\p 8y 8x p 8{x, y) Sep

which implies, for non-aligned flows, that

■|j = 0 or 5 = s(ip). (32)
8(p

Summing up the results of this section and using (26) in (24) and (25), we have

Theorem 1. If the streamlines \p(x, y) = constant and the magnetic lines </>(*, y) =
constant generate a curvilinear net in the physical plane of compressible MHD non-
aligned fluid, then the flow in independent variables 0, ip is governed by the system

8p , 1 8 ( E \ , . nTp 30 V m = ' (lmear momentum)

It + 1 J_( JL\ j. - n
8i 2 p 8\p\p2W*J '
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w — —W

. = J_
J w

_8_
8\p

8(f> \ p\V) 8\p\pW'.

8<t> \WJ 8\p\ W!

W" r 2L E lu.
W

V 2
L E 12-

(vorticity)

(current density)

= 0, (Gauss)_8_
8<f>

8s/ 8(f> = 0, (adiabatic)

EG - P = l/p2K2, (diffusion)

p = p{p, s) (state) (33)

of eight equations for eight unknowns E, F, G, oj, j, p, p and s as functions of <f>, \p.
Given a solution of this system, the flow in the physical plane and hodograph plane is

given by:

z = x + iy= f exPfr") IE dcf, + (F + iJ) d\p],

JE JG
u + iv = — exp (ice), Hx + iH2 = — exp (//?),

where

« = / -y {r„2 d<t> + r122 13 = / ~ {r122 d4> + r„2 #}. (34)

3. Constant velocity magnitude on each streamline. In this section, we investigate
the possible flow patterns when q = q(\p). Using the diffusion equation in the continuity
equation and employing the assumption that q = q(\p), we find that

4E = AW) (35)
where /IOA) 's an arbitrary function of \p.

Letting 6 = constant 4- 0 to be the angle between magnetic lines and streamlines
everywhere, we get

W = (EG)1'2 sin 9 (36)

and, therefore, from the continuity equation

pjG = l/q sin 9. (37)

Differentiating (37) with respect to 0, we obtain

<38>

Employing the diffusion equation, current density equation, (35) and (36) in the first linear
momentum equation, we obtain

+ <39>
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Using c2 = {8p/dp), the adiabatic condition and (38) in Eq. (39), it follows that

(pc2E - n cosec29) = 0. (40)d(p

This equation implies that either dp/8$ - 0 or pc2E = n cosec2 8. However, if the gas is a
polytropic gas with the state equation p = A(s)p7, then the second possibility takes the
form p = (fi cosec2 6/y A(s) E)1/y and, therefore, dp/8(f) = 0. Using p = p(\p) in (37), we
get

VG = B'W) (41)
where B'(\p) is an arbitrary function of \p related to the arbitrary function A(\p) through
Gauss' equation. Using (35) and (41) in Gauss' equation we get

•JE = A{i) = LBty) + M, sjG = B'W)
where L, M are arbitrary constants. Using these restrictions on thesis and^G in (34), we
find that

a = a°~ "^7 ^ ~ cot 6

and, therefore, z is given by

z = z0 + i S1^ {LB(\p) + M} exp (ia), if L 4- 0

(42)
= z0 + zxp(ia0){B(\p) exp (id) + M0}, if L - 0

where z0 is an arbitrary complex constant and a0 an arbitrary real constant.
From this result, we conclude that

Theorem 2. If, for a flow, the velocity magnitude is constant on each individual stream-
line and the gas is a polytropic gas, then the streamlines \p = constant are concentric circles
for the case L 4 0 and are parallel straight lines for the case L = 0.

Furthermore, from (40), we see that for a gas obeying the general equation of state, the
streamline pattern will be as stated in this theorem provided pc2E sin2 6 4 n anywhere in
flow region.

4. Flows with irrotational magnetic field. In this section, we study the flow geometry
when the magnetic field is irrotational and, therefore, the current density is zero.

Letting 6 = constant 4 0 be the angle between the streamlines and magnetic lines
everywhere, we have

F = (EG)1'2 cos 9, (43)

W = ^ = (EG)1/2 sin 8 . (44)
pK

Using these results in the current density equation and the assumption that j = \ curl H j =
0, we obtain

pG = A( \p) (45)
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where A(\p) is an arbitrary function of \p. Furthermore, Eqs. (44) and (45) give

pE = pGK2 sin2 6 = K2 sin2 0A(\p) ' (46)

Since j = 0, the first linear momentum equation, the diffusion equation and the adiabatic
condition yield

+ T~ E %}'0 (47)

where c2 = dp/dp. Using (46) in (47), we find

<48>

This equation implies that either c2 — \K2E = 0 or dp/d(p = 0. However, if the gas is
polytropic, then by using Eq. (46) in c2 - \K2E = 0, we get

pc2 = tA(s)py = 1/2Gp sin 9 (49)

which, together with (45), implies thatp = p(\p) or dp/dip = 0. For non-polytropic gases,
(48) implies that dp/d<j) = 0 when c2 ̂  \K2E or M2 = q2/c2 7^ 2, that is, the density will be
constant on each individual streamline for a flow of nonpolytropic gas provided that the
Mach number for the flow is not equal to <J2. For such flows, using dp/d<j> = 0 in (45), we
get

\jG = (50)
and the form of is obtained, by using the form of ^G in Gauss' equation, as

yjE = LB(\p) + M (51)

where L, M are arbitrary constants and B(\p) is an arbitrary function of \p. Since the
limitations on the forms of ^E, given by (50), (51) are identical with those of the
previous section, we conclude that

Theorem 3. If the magnetic field is irrotational, then the streamlines are concentric
circles or a family of parallel straight lines for any flow of a polytropic gas and for those
flows of non-polytropic gases in which the Mach number is not equal to ^2 anywhere.

5. Irrotational orthogonal flows. We investigate the flow patterns when w = 0, F = 0
and the gas obeys an equation of state of the form p = /,1(/7)5i(i). Using the assumptions w
= 0 and F = 0 in the vorticity equation, we have

dE/dx/y = 0, or E = E(<f>). (52)
Linear momentum equations, using (52), take the form

18P + 1 *2 dE , 5
H 2P H ^ W

= 0, (53)
IpEJ

dp/dyp = 0, or p = p(4>). (54)

By using p = p(<fi) and s = s(\p) in the state equation, the form of the density function is
given by
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p = P(<p)S(\p) (55)

where P(4>) = Px(p), S(\p) = S^s).
Taking G = l/K2p2E from the diffusion equation and using (52), (55) in (53) and

Gauss' equation, we obtain

'(0) + ̂ vswmwto)} - = °. (56)

E\<t>)P\4>)\E{(t>)P'{4') + I£W(0)} = S(mn (57)
where primes denote differentiation and f(ip) is an arbitrary function of \p. Since 0, \p are
independent variables, it follows that each side of (57) is equal to a constant, say A. Taking
the left-hand side of (57) equal to A and using in (56), we obtain

2 K'SW) p^E'id,) M \AE>{<t>)P{<t>) + " P'(0)£2(0) I 2 (58)

This equation implies that S(\p) = constant and, therefore, we obtain that irrotational
orthogonal flows of a gas obeying the product equation of state are homentropic flows
with equation of state of the form p = p(p). This physical restriction and Eq. (54) give

P = p(0)- (59)
Using (59) and (52) in W = \/pK, we get

G = G(0). (60)
Letting

in Gauss' equation, we get
4E = g'W (61)

yjG = Lg(4>) + M (62)
where L, M are arbitrary constants.

These limitations on the forms of ]E and ]G are identical to those in Sec. 3, with the
roles of 0 and \p interchanged, and we therefore conclude that

Theorem 4. If orthogonal flows are irrotational for a compressible fluid obeying the
product equation of state, then these flows are homentropic radial or parallel flows.

6. Straight streamlines. In this section we inquire what plane orthogonal flow pat-
terns are possible when the streamlines are straight lines for compressible flows obeying an
equation of state of the product form. In order to approach this problem, we assume that
the streamlines are non-parallel straight lines enveloping a curve C. Taking the tangent
lines to C and their orthogonal trajectories (the involutes of C) as a system of orthogonal
curvilinear coordinates, the squared element of arc length is given by

ds2 = d? + (| - <r)V da2 (63)

where a denotes the arc length, k the curvature of C and £ the parameter constant along
each individual involute. If v denotes the angle of elevation of the tangent line to C, we
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have dv/da = k and (63) becomes

ds2 = d? + (£ - afdv2 (64)

where a = o(y). In this coordinate system, the coordinate curves £ = constant and v =
constant are respectively the involutes of C and the tangent lines of C.

We now investigate the flows for which

<t> = <£(£), ^ (65)
Using (65) in (13), we get

ds2 = E<t>'2 d? + 2F<t>'\p' d£ dv + G^'2 dv2. (66)

Comparing (66) and (64), we get

E = 1/0'2, F = 0,
£ ~ <r(")

L *'(„) -J (67)

Substituting for E, F, G in vorticity equation and using the diffusion equation, we obtain
that vorticity vanishes. Therefore, we have irrotational orthogonal flows of the previous
section and we conclude with the same results.

7. Parallel flows with constantly-inclined magnetic lines. Let the streamlines be the
straight lines >> = 77, —and the magnetic lines be the lines y = * tan 0 + £, —
< £ < co; so that the two families of lines are everywhere constantly inclined to each other
at an angle 0/0. Therefore

x ~ rj cot 0 + |, y = v

define the curvilinear net with the squared element of arc length along any curve given by

ds2 = dti2 + 2 cot 0 d£ drj + cosec2 0 drj2. (68)

For the flow under consideration, we require

<t> = <M£), t = i(v)- (69)
Using (69) in (13) yields

ds2 = Ed>'2 de + 2F4>'V d£ dv + Gyp'2 dy2. (70)

Comparing (70) and (68) implies

£= 1/0'2, F = cot 6/<p'\p', G = cosec2 d/\p'2 (71)

and, therefore, W = l/0'ip'.
Substituting (71) in the linear momentum equations and using the vorticity and current

density equations, we have

dp_
8<p

(72)dp
dip

— - K\p' —ji + n cosec2 0 4>" = 0,

- K cot 0 ^3 = 0

where 0" / 0 since />(0, \p) / constant. By using the integrability condition 82p/8<p 8\p =
82p/8\p 8<j), eqs. (72) give
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where L is an arbitrary constant. Integrating the differential equations (73), we obtain

0'(£) = -L/(N cot 6 exp (.L tan 0£) + QL), ^?4)

= M exp (Lt?)

where Af, A' and Q are arbitrary constants. Using (74) in (71), the functions E, F, and G
may be determined explicitly. The solution to our flow problem can then be obtained,
from (33) and (34), as

KMN 1
/?(£, v) = —^— cot 6 exp |L(j7+£ tan 6)} - y L2n cosec2 0 /2(£),

co(£) = -KN cot 8 exp(£ L tan 6),

j(£) = L2N cosec2 6 exp {£ L tan 0}/2(£), (75)

p(!> v) = exP iLv}f(t), "(£) = ~Y~ y, V = 0,

#,«)= -Icot0/(f), HM)=-Lm,

where, for brevity, we have written

/(£) = cot 0 expj£ L tan + £?L]-1.

8. Circular flows. In this section we study flows in which the streamline pattern is
circular and the magnetic lines are orthogonal to them. Introducing polar coordinates (r,
<5), the streamlines are defined by r = constant and the magnetic lines are given by <5 -
constant. The square of the element of arc length is

ds2 = dr2 + r* d82. (76)

For our problem we have <£ = <j>(8) and ip = \p(r) and, therefore, we also have

ds2 = E<t>'2 db2 + 2dh dr + G\p'2 dr2. (77)

Comparison of (76) and (77) gives

E = r'/tp'2, F = 0, G = l/iP'2 (78)

and, therefore, W = r/<j>'\p'.
Using (78) in the vorticity and current density equations of (33), we find

co = -2KU', j = <$>"/?. (79)
The linear momentum equations, on substituting (78) and (79), become

dp Krtp'xp' d ( 1 \ _ n dp K\p'_
~8b 2 ~db Vd/2 / r2 ~ Tr'lT-0- (80)
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Applying the integrability condition on p(r, 8), Eqs. (80) yield

+ KW"+ *•)} + ?£ 4>'<!>" = 0. (81)

Eq. (81) implies that

<t>" = 0 and/or 2Kf' + Kr^ 0'3. (82)

However, the second equation in (82) may be separated to give

Kr3
— \np" + 2\p') = -0'3 = ~a\ (constant), (83)
Z/4

which again implies that 0" = 0. Hence the integrability condition (81) on p(r, 5) requires
that 0" = 0. Returning to Eqs. (80), we then find

P(r) = £ M + , (84)
"1

where a2 is an arbitrary constant. Eqs. (79) give

u = -2K/a, , j = 0. (85)

Calculating E, G, and W from (78) and using </»' = ax , the diffusion equation of (33) gives

p(r) = a^\r)/Kr. (86)

Eqs. (84) and (86) are valid for general equations of state and, due to the arbitrariness of
the streamfunction \p(r), represent solutions for a large class of circular flows. In the case
of homentropic (constant-entropy) flow of a polytropic gas, with equation of state p/py =
A = constant, an explicit formula for \p can be obtained as

,,,x _ 1 / r*2 \WT-"
^ ) K 12a1{Aa1)l/~<(y - 1) ' 3i K

where a3 is another arbitrary constant.
Returning to the general case, the velocity and magnetic field can be obtained from

Eqs. (34) as

u + iv = — {-y + ix), Hx + iH2 = ~~—j(.x + iy) (87)a i x* + yz

where we have used the facts that /3 = <5 and a = (7r/2) + b for these flows. It is interesting
to note that the velocity and magnetic fields are independent of the choice for the
streamfunction \p(r).
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