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Abstract. In this paper the perturbations produced by mass, momentum and energy
sources in the uniform flow of an ideal fluid are determined. The case of instantaneous
sources is considered. The matrix solutions thus determined are by definition the funda-
mental matrices of the systems of equations of fluid mechanics. As an application, the
perturbations caused by sources acting permanently for t > 0 as well as the perturbations
produced by sources moving along the direction of the free flow or perpendicular to this
direction are determined.

1. In [1] we have determined the perturbations produced by mass, momentum and
energy sources in an ideal (or viscous) fluid at rest. In [2] we have constructed the
fundamental matrix for this fluid.

Extending the methods of [1] and [2], in this paper we shall determine the per-
turbations induced by mass, momentum and energy sources in an ideal fluid in uniform
motion. We shall build up the fundamental matrix in this case and we shall apply the
results to problems of great practical interest. The case of dissipative fluids will be
analysed in [3].

We assume that the basic state of the fluid is characterized by the constant parameters
Po - V0, p0 and T0 (p0 = p<>RT0) and we shall choose the reference system such that the Oxr
axis has the direction of the vector V„. At an arbitrary time t > 0, the fluid state will be
characterized by the variables

p=p0(l+p*), V = V0(h + v), P=P0 + P0V02P* (1)

and T = T0( 1 + F*), the quantities p0p*, ^oV, p0Vo2 P* and T0T* representing the
perturbations induced by the sources. The functions p, V, p and T must satisfy Eqs. (1 )-(4)
of [1] in which the dissipative terms are neglected. In order that the equations be treated in
a unitary way, we shall assume that the sources are acting in the origin of the system of
coordinates. The problem concerning the sources acting in different points does not
present additional difficulties [1], Also, for the sake of uniformity, we shall introduce the
dimensionless variables x* and t* defined by the relations xt = t*, V0t = L0t*, where
L0 in an arbitrary characteristic length, and we shall drop the sign *. Linearizing the
motion equations in order to determine the perturbation, we obtain the following system:
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8tp + 8xp + div v = f05(t, x), 5{t, x) = 5(/)5(x),
8tVi + 8xVt + 8tp = ft8(t, x) (i = 1, 2, 3),

8tT+ 8J + (7- 1) div v = (yft - /„) 8(t, x),
7 M2p = p + T, (2)

where fj (j = 0, 1, 2, 3, 4) are expressed with the aid of the intensities m0, f° and Q0 of the
mass, momentum and energy sources using the following expressions:

Po L03j0 — m0 , P„L03 Vo ft ~ fi° — mo Vo i
cup0L03 T0yft = Q0 + i w0 V02 ~ fi° V0,

where 8U is the Kronecker delta. As usual, we have used the notation 7c„ = cp , a0M = V0,
a02 = 7RT0, where cv and cp are the specific heats of the fluid, while R is the universal
constant of gases. Adding (2)! to (2)3 and taking into account (2)4 , we get

M\8t + dt)p + divv = /45(f, x) (3)

Therefore we shall consider Eqs. (2)[ , (2)2 and (3) with the unknowns p, vt and p. These
equations will have to be integrated all over the space in which the space conditions are

lim (p, vt,p) = 0 (4)
IX I

and the temporal conditions

p = 0, vt = 0, p = 0, t < 0. (5)
Eq. (4) expresses the damping condition of the perturbation at infinity and (5) the
condition of nonexistence of the perturbation before the source begins to act.

Hereafter we shall use the matrix method in order to determine the solution of the
system (2), (3); in this way we have the possibility of putting into evidence the basic
structure of the solution and at the same time of writing the general solution of the system
(2), (3) in the case in which in the right-hand side of the equalities the arbitrary functions
f(t, x) would appear. Introducing the matrices

1 10 0 0 \ 0 0 1 0 0 \
0 0 0 0 0

^2 =Al =

0 10 0 M"2
0 0 10 0

A, =

0 0 0 10
\0 1 0 0 1

0 0 0 1 0 \
0 0 0 0 0
0 0 0 0 0
0 0 0 0 M"2

0 0 0 0 M'2
0 0 0 0 0

\0 0 1 0 0

V =

I p \
Vi
V2

v3
\M'2p!

/ =

I fo \nu
/3

\f* /\0 0 0 1 0
we can write the system consisting of Eqs. (2)j , (2)2 and (3) as follows:

dtV + A>dkV = f6(t,x). (6)
The fundamental matrix K(t, x) introduced by the formula V = Kf will be determined by
equation

8,K + Ak8kK=ES(t,x) (7)
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where E is the unit matrix with 5X5 elements, and by the conditions

K(t < 0, x) = 0, K(t, oo) = 0 (8)

with the usual notations.
2. As is already known (Duhamel's principle, see also [4]), the solution of the

problem (7), (8) is of the form K = H(t) K*{t, x) where H(t) is the Heaviside function and
K* the matrix defined by equation

dtK* + Ak8kK* = 0 (9)

and by the conditions

K*(0, x) = E <5(x), K*(t, oo) = 0. (10)

For

we obtain

where

K = f(A*) = J J J K exp i{aixl + a2x2 + a3x3)dx1dx2dx:3

K = GLK, K(0,a) = E (12)

d = iotnAk = i

/«! al a2 a3 0 \
0 a! 0 0 a.\M~2
0 0 ax 0 a2M~2
0 0 0 aj a3M~2

\0 ax a2 a3«!

The solution of Eq. (12) is

K = E exp (Q r). (13)

In order to determine the function exp (® t) we use the method of the minimal polynomial.
The roots of the characteristic polynomial of the matrix G are

Xi = /'«!, X2 = «'(«! + |a|A/_1), X3 = /(a, — |ct|A/-1) (14)

where multiplicity of the first root is equal to three. Since the minimal polynomial m(X)
has the expression

m(X) = (X - X,)(X - X2)(X - X3) = X3 - a2X2 - a,X - a0,

a2 = 3 iau ax = 3a? - | a | 2 M2, a0 = ia,( | a| "2 M2 - a?),

it follows that the solution of system (12) is

K = E g0(t) + agi(t) + a2 g2(t) (15)

where g2, g0 and g, are determined by the equations

g't ~ a2g"2 - a,g2 - ciog2 = 0, #,(0) = g'2(0) = 0, g2(0) = 1,

go = a0g2, g0(0) =1; g[ = 2 + g0, gt(0) = 0,
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We obtain

go =

gi =

. a\M2 / a ,. ia^M . a,
kT7 \cos 1 ~ ] ~ sin ' exp (/a,0,M [ a [ M

exp (iaj),
M a , 2/a1M2 / a

i—r sin -h-r t H—i—rr~ cos -rr t - 1a M a V M

A/2 ( I tt I \
82 = TaT2!' ~~ C0S ~\f 1 / exp ^15'^

Taking into account formulae (A.1)-(A.3) in the Appendix, we obtain the following
fundamental matrix:

M2
K* = E6(t - xi)5(x2)5(x3) + (E8l + «) b\M lt - [(*, - t)2 + r2]1'2}

+ ^(e g?,+2ag,+a2) tf+r°]1/2>, (i6)

where the matrix-operator ® is obtained from CL by substituting — 8j <— ia}. We have, for
instance,

A/2®2 =

{M28\, 2APd*u 2AP8U 2AP82l3 82u
0 (1 + M2)82n 8212 823 2 82n
0 8\2 M2 8\i + 81, 8\3 2 8212
0 8\3 8 23 1V1 Oil T O 33 LC\3

0 lAPS'n 2AP81, 2M28\3 AP82n + 82J

d2u = 82n + 0*„ + 8!s.

3. As can be proved [2], the general solution of the equation

8t V + Ak8k V = /(/, x) (17)

with the conditions

is

K(0, x) = 0, V(t, 00) = 0,

V(t, *.)=(' K** f dr
J 0

where

K**f = f f f + ° - T, x - o f(r, ? yt ^ •
Taking into account the expression of the fundamental matrix (16), it follows that the
general solution of Eq. (17) is
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V(t, x) = f f(t - T, Xi - r, x2, x3)dr
Jo

+ f + a>/„ t///" «' - " [«' ̂  "" + « (18)

♦ £ («,. + 2aa, + «■>/'*///;; /«, - .X- *
where = $ + ££.

As a first application we consider the case in which the uniform motion of the fluid is
perturbed by sources which in the origin act permanently for t > 0, therefore the case in
which

f(t, x) = mo 5(x) (19)
where H(t) is, as throughout this paper, Heaviside's function. We obtain

A/f^ C ̂  (It
V(t, x) = P [H(Xl) - H(Xl - /)] 8(x2) 8(x3) + J— (Ed, + «)/" J y 8(M~l - RT)

+ ^ {Edi + lad, + a2)/0 f'o H{M ^ ~ Rt) dr, rt = [(x, - Tf + r2]1'2. (20)

For the calculation of the integrals occurring here the zeros of the function h(r) = M1
r — RT will have to be determined. We have h(0) < 0, lim,, h(r) = (1 — M2y° and

(32t± = -M2Xl ± MR, R = (r2 - M2/-2)1'2, 02 = 1 - M\

For M < 1, h(r) has a single zero, r+ . For M > 1, h(r) has two zeros if h0 = h(T0) > 0,
where t0 is the root of the derivative h'(r), and no zero if h0 < 0. We obtain M h0 = xi —
rofiu P, = (M2 — 1)1/2, t+ < r_ and r± h'(r±) = ±R. At points r+ the function h is
increasing (h' > 0) and at points r_ it is decreasing (h' < 0). Using the formula [5]

w))-?® <2I>
where Tt are the zeros of the function h, we deduce

ft . = R-1 H{t - r+), if M < 1
I — 5(A/"V - Rt) = R-1 [H(t - t+) + H(t - r)], if M > 1 and h0 > 0
0 7 = 0 , if M > 1 and h0 < 0.

We also have

Xl + R('- RT) JI — ^  dr = H(t - t+) In , for (M < 1)U

= H(t - r_) In

(*t- t + Rt){M + 1)
{M > 1, h0 > 0, t < r_)

Xi + R
Xi - R

= 0, for (M > 1, h0 < 0).

In this way the solution (20) is completely determined

for (M > 1,A„>0)



406 L. DRAGO§

4. As a second application let us determine the perturbation induced by sources
moving uniformly in the flow of the free fluid. Let us assume for the beginning that the
sources are moving along the direction of the free flow. This means that in (18) we must
write

x) = f°8(xi ~ k0t)5(x2)5(x3) (22)

where k0 is the ratio between the velocity of the sources and the velocity of the free flow; k0
is a positive number if both velocities are oriented in the same direction and a negative
number if the velocities have opposite directions. From (18) we get

f M2 f Jt
V(t, x) = f°6(x2)5(x3) / 8(x1 - k0t + kT)dT + — {Ed, + a)/0 / — - RT)J0 47T T

+ + + (23,

where

Rr=[(Xl- k0t + krf + rlY'\ k = k0 — 1.

The study of the zeros of the function h(r) = M~1t — RT is carried out as shown above.
We have h{0) <0, //(°°) = (1 - k2AP)<*>-,

T± = k*M\Xi-koO± MR R = [(^1 _ ht f + (1 _

If k2M2 < 1 then there is a single positive root, namely r+. If 1 < k2M2 then there are two
roots r+ and r. (r+ < t_) if h0 > 0 and no root at all if h0 < 0, where

Mh° = - ~ {APk2 - 1 )1/2 - •Xl ~ k°' ■

Since we also have the relation T±h'(r±) = ± R, we obtain

J — 5(M"V - Rt)= R~lH(t- t+), if k2M2 < 1
0 T = R-'Wt - t+) + H(t - r_)], if (1 < k2M2, h0> 0)

= 0, if (1 < k2M2, h0 < 0)

/
' - R,) . H(t - r,)

 rt dT k—

 k 

(1 - kM){Xl - t + [{Xl ~ tf + rlY
Xi — k0t + R

for (k2M2 < 1)U(1 < k'M2, h0 > 0, t < r.)

Xi — k0t — R
fi - k0t + R

= 0, for (1 < k2AP, ho < 0).

for (1 < k2M2, h0 < 0).
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Let us now determine the solution in the case in which the sources are moving
perpendicular to the direction of the free flow. This means that we write

/(/, x) = fS(xi)6(xt - kot)5(x,) (23)
in (18). We get

V(t, x) = f°8(x3) [ SiXi - t)8(x2 ~ k0t + k0T)dr
J 0

M2 fl (It
+ j- (Ed, + GL)f° J — 5(M-V - Rt)

+ (Edii + las, + a2)/0 ['  M dj (25)
47r •'o Kr

where, this time,

[ 5(xi — 7)5(^2 —k0t + k0T)dr = 8(k0x1 + x2 — k0t) if (0 < x^ <t, 0 <t — k0'1x2 < t)
J0

= 0 otherwise

Rt = [(^1 - T)2 + (X2 - kot + k0T)2 + XIY>\

In this case, too, the zeros of the function h(r) = A/ 't - RT are determined. We obtain

_ -M2[xi - k0(x2 - k0t)] ± MR
T± ~ 1 - k'M2

where

R2 = AP[Xl - k0(x2 - k0t)]2 + (1 - k2M2)Rl,

Rl = x\ + (x2 - k0tf + x\, k2 = 1 + kl

For R and k the positive determination is taken into account. If k2M2 < 1 then the
function h has a single zero t+. If 1 < k2AP and h0 > 0, where

211/2k2M h0 = xi - k0(x2 - k0t) - (k2M2 - 1)1/2^2/?? - fxi - k0(x2 - /:„/)]

then the function h(r) has two zeros, t+ and r_ (r+ < r_). Finally, if 1 < k2M2 and h0 < 0,
the function h(r) has no zero at all. Taking into account r±/j'(r±) = ± R, it follows that

P — 8(M'1t - Rt) = R~lH(t - r+), if k2M2< 1
^0 T

= R-^HU - r+) +H(t - t_)], if (1 < k'M2, h0 > 0)

= 0, if (1 < k2AP, K < 0)
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r*> r>

— Rt)
 r-t dT-

k~lH(t - r+) In (1 - kM)(t - Xi + k0x2 + kRt
kR - [*! - k0{x2 - k0t)]

if {k2M2 < 1 )U(1 < k2AP, h0 > 0, t < r_)

k~1H(t - r) In
kR + [gi - k0(x2 - £0Q]
kR - [x, - k0{x2 - k0t)]

if (1 < k2M2, h0 > 0)

0, if (1 < k2AP, h0< 0).

The solutions determined here have not only a theoretical importance but also a
practical one. For example, the solution determined in Sec. 3 in the particular case m0 = Q0
= 0 gives the perturbation induced by a fixed body which can be assimilated to a point, in
the presence of a uniform wind, and the solutions determined in Sec. 4 (for m0 = Q0 = 0)
give the perturbations produced at the leading edge of an aeroplane which moves in the
direction of the wind (in the same direction or in the opposite direction to the wind) or
perpendicular to the direction of the wind respectively.

Appendix. In Sec. 2 the following formulae are used:

/"'(exp(/a1/)) = 5(t - xt) 8(x2) 8(x3), (A.l)

/ { CXP| i'fsin t) = tf + r20]1"}, (A.2)

exp (M/, M - [(*, - /)2 + /'o]1'2}
f \ | or | 2 I ~~ co ~w')) = —4*[(Xl - ty + W— • (AJ)

Formula (A.l) is obvious. In order to deduce formula (A.2) we use cylindrical coordinates
in the Fourier space: = a„ a2 = p cos 6, a3 = p sin 6 and cylindrical coordinates in the
physical space: Xl = xlt x2 = r0 cos </>, x3 = r0 sin 0, as well as the formulae

/;
J0{pr0)p sin t M~\p2 + alY" , = M H(t - Mr0) ai _

(p2 + af),/2 p (t2 - M2rl)v2 '

-*1 ~'+ jf(?2 ~ M2^y/2J exp (~iai(xj - 0) cos ^ (t2 - M2r20)l/2dal = ir j<5

8(x — c) +5(x + c) = 2 c8(x2 — c2)+ 5 Xl ~ ' ~ a7 C2 ~ MV2)1/

obtained from [6] and [5]. We get

f., (exDte.il J«L \
\ |a| Ml

/ *• =xp -,»<*., [
1

47t2
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H(t - Mr„) .
2x 5 (x, - 02 + r\ - -j— 6{[(*> " ')2 + W1

= ~ 5{M~U - [(x, - ?)2 + rir*}.

Using the same change of variables we have

i r i= 2^2 J cos a'(' - doLl = 4^ [(' - *i)2 + rl]

J_l cos J_aJ_ ^ = J.-J /ex p (/'«!(? - *0) </«!

■ 1/2

where

r/*\ _ f°° ^(p^o) I a I . ,AO - / -T——^ cos-Tj-t dp.J0 p * + ai M

Since the integral /(/) is not given in tables, we shall calculate it here. Obviously we have

1(0) = *„( I«! I /■„), /'(0 = - cos g- (t2 - M2r%)1/2,

/(0 = /(0) + f I'(T)dr = AT0 (| o;, | r.) - //(/ - Mr0) f cos V ~ ^o2:>'/2 ̂
■'0 J Mr0 VT M AW

and consequently

*, - t + (r2 - M2rlY'2

Mr„ (r2 - MV02)1/2

+ 5 *l - ' ~ M (7"2 ~ M2W2

__ H(t - M0)
2-kM /, 5

Mr„
(x, - 02 + ri ~ jp dr

= ^ A™ro) f' l m~ir - [Ui - o2 + /*rj dr.
47T J Mr „ T

The final integral is non-vanishing only if M[(xi - t)2 + rl]1/2 < t, the inequality r0 < [(.x,
— r)2 + rg]l/2 being always fulfilled. In these conditions, the factor H(t - Mr0) becomes
superfluous and consequently formula (A.3) is obtained.
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