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1. Introduction. In this paper we study the global qualitative behavior of travelling
waves in an initially straight hyperelastic rod that deforms in space by bending, twisting,
stretching, and shearing. The motion of such a rod is governed by a twelfth-order, quasi-
linear, hyperbolic system of partial differential equations; travelling waves are solutions of
a corresponding system of ordinary differential equations. We show that if the constitutive
functions meet a certain isotropy condition, then this system of quasilinear ordinary
differential equations is completely integrable. We use this fact to obtain a qualitative
description of the travelling waves. The analysis is far more complicated than that for the
corresponding static problem (cf. [3]) because the hyperbolicity of the full system of
partial differential equations may well destroy the monotonicity of the principal part of
the travelling wave equations. These very complications lead to a number of striking
results, in particular, to some strange families of solutions. We conclude our paper with
discussions of shock waves in hyperelastic rods.

For the sake of contrast, it is worthwhile considering the simplest model of a nonlinear
wave equation arising in nonlinear elasticity:

<y{ux)x = utt . (1.1)

The study of this second-order conservation law has presented and still presents serious
obstacles to analysis. We avoid facing these obstacles by seeking travelling wave solutions
of the form u{x, t) = v(x - ct). Then v satisfies the ordinary differential equation

*(»')' = cV, (1.2)
which has the integral

a(v') - cV = jY(const). (1.3)

If there are no intervals on which the derivative of the function a is constant, then the
continuous solutions v', if any, of (1.3) are constant functions of x - ct. It can be shown
that discontinuous travelling wave solutions of (the weak form of) (1.1) must also satisfy
(1.3). Thus such solutions, if they exist, are characterized by v' being a piecewise constant
function of x - ct. The physically realizable of the many possible discontinuous solutions
are those that satisfy a suitable entropy condition. (We discuss the nature of discontinuous
solutions in Sec. 6.) Thus the travelling waves, continuous or not, that can be sustained by
(1.1) have a particularly degenerate form. We shall show that our twelfth-order system
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gives rise to travelling waves with a very rich structure. This richness can be attributed to
the presence of flexural effects and of couplings of other modes of deformation with these.

We formulate the governing equations in Sec. 2. In Sec. 3 we derive a number of
integrals, the existence of which supports the subsequent qualitative analysis. Sec. 4 is
devoted to the general properties of solution trajectories in phase space. The material
following (4.6) is a rather technical treatment of the novel ways by which singular points
can arise in our complicated system; the subsequent material does not depend in a critical
way on this analysis, however. In Sec. 5, we obtain a qualitative analysis of travelling
waves solutions of our equations. In Figs. 11 and 12 we illustrate some travelling waves of
strange form that can be sustained by our equations. In Sec. 6, we study the nature of
discontinuous travelling waves that are compatible with the Rankine-Hugoniot conditions
and a suitable entropy condition. We show that travelling shocks must have a special
character that is largely determined by the "longitudinal" response.

Notation. Latin indices have range 1, 2, 3 and Greek indices have range 1, 2. Unless
there is a statement to the contrary, such twice-repeated indices are summed over their
range. We conventionally abbreviate an expression such as f(yx , y2 , y3 , ux , u2 , w3) by
fiVk , uk). If IR" 3 x —> f(x) G IR5 is continuously differentiable we denote its derivative by
df/dx = fx where (df/dx)(x)-h = fj(x)-h = (8/8t) f(x + ch)|e,0- A matrix of fx is the
matrix of partial derivatives of components of f with respect to components of x.

2. Formulation of the governing equations.
Kinematics. In the theory we employ, the motion of an infinitely long rod is described

by three vector functions

IR X IR E3 (x, t) —<• r(x, t), di(x, /), d2(x, t) £ IE3 (2.1)

with dj and d2 orthonormal. We assume that the natural state of the rod is prismatic. We
take x to be the coordinate along the line of centroids of the natural state. We call the
material curve of the line of centroids the axis. The material sections of the rod are thus
identified by x. r(-, t) is interpreted as the image of the line of centroids in the configura-
tion at time t. dj(x, t) and d2(x, t) are interpreted as defining the orientation of the material
section x in the configuration at time t. We set

d3(x, t) = d,(x, t) X d2(x, t). (2.2)

We introduce strains yu y2, y3 by

8t/8x = y„d* • (2.3)

We require that

>>3 = (8r/8x)-d3 > 0. (2.3)

This ensures that the rod is not so severely compressed that the local ratio of deformed to
natural length of the axis is reduced to zero and that the rod is not so severely sheared that
a section x is tangent to the axis at x.

The orthonormal basis {d*} is related to a fixed orthonormal basis {e,} by the Euler
angles 9, \p, <j>:

di = (—sin \p sin 0 + cos \j/ cos 0 cos d)ex
+ (cos \p sin <p + sin ip cos 0 cos 8)e2 — cos 0 sin 6 e3,
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d2 = (—sin cos 0 - cos \p sin 0 cos 0)e,
+ (cos \p cos 0 — sin ^ sin 0 cos 0)^ + sin 0 sin 0e3

d3 = cos sin 6 ^ + sin \p sin 9 ^ + cos 8 e3 . (2.4)

(These angles are the same as those of [2, 3, 9].) Since {d*} is orthonormal, there is a vector
u such that

dd Jdx = uXdt. (2.5)

The components of u with respect to the basis {d*} are

uk = I eMm (Sdi/8x)-dm , (2.6)

where {eMm} are the components of the alternating tensor. The substitution of (2.4) into
(2.6) yields

= 6X sin 0 — \px sin 8 cos 0,

u2 = dx cos 0 + \[/x sin 6 sin 0, (2.7)

u3 = 8X + \px cos 6.

The functions measure flexure and twist. The full set of strains for our problem are
{yk , uk}. Our assumption that the natural state is prismatic implies that in this state d3
coincides with rx and jdfc} are constant functions of Jt. The values of the strains in the
natural state are accordingly

yi = y2 = o, y3 =1, uk = 0. (2.8)

Equations of motion. Let

n(x, t) = nk(x, t)dk(x, t) (2.9)

be the resultant force and

m(x, t) = mk(x, t)d*(x, /) (2.10)

be the resultant couple acting across the section * at time t. The inertia of the rod is
characterized by the functions

IR 3 x -»(pA)(x),(pJi)(x),(pJ2){x) 6 (0, 00). (2.11)

(pA)(x) represents the natural mass density per unit length and (pji)(x) and {pJ2)(x)
represent the principal mass moments of inertia of the cross section in its natural state. In
our work we assume that pA, pJu pJ2 are constants and that the cross-section is "dynami-
cally symmetric", i.e., that

J1 = J2 = J. (2.12)

If there are no net forces or couples distributed along the length of the rod, then the
equations of motion of the rod are
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n* = pAtH , (2.13)

m, + rx X n = PJ jy ( dff X da) (2.14)

(cf. [1]).
Constitutive equations. We assume that the rod consists of a homogeneous, trans-

versely isotropic, hyperelastic material. The distinguished direction of isotropy is along the
axis. This material is characterized by a strain-energy function

W-.\yk,uk:y3> 0}-[0, ®)t (2.15)

which is an isotropic scalar function of the two 2-vectors yad„ and uad„ and of the two
scalars>'3 and u3 . For simplicity, we assume that W is twice-continuously differentiate, is
strictly convex, and satisfies

W — oo as yp-*±00, >'3^0, y3^™, Uk -» ±oo. (2.16)

We set

nk = 8 W/8yk , mk = 8 W/8uk . (2.17)

Then the strict convexity of W implies that the matrix of partial derivatives of \nk, mk\ with
respect to {yt, Ui) is positive-definite. Moreover, our assumption of transverse isotropy
implies that if / denotes W, n3, or m3 and if denotes n„ or mp , then

f(ya *y&» »^3) ~~ f^Qaiiyv >^3» Qav^v»^3)» (2.18a)

? j^3»"a > ̂ 3) ~~ QipS^Qavyv» j;3 * Qov^v»^3) (2.18b)

for all 2 X 2 orthogonal tensors with components The identity (2.18b) implies that
«2 and m2 vanish when y2 and u2 vanish. We strengthen this condition by requiring that

n2 = 0 if and only if y2 = 0, (2.19a)

m2 = 0 if and only if u2 = 0. (2.19b)

Note that (2.18b) implies that the relations obtained from (2.19) by replacing the index 2
with 1 are likewise valid.

The constitutive equations are

n(x, t) = nk{yi(x, t), u,(x, t))dk(x, t), (2.20a)

m(x, t) = mk(yt(x, t), ui(x, t))dk{x,t). (2.20b)

The full equations of motion for our transversely isotropic rod are the system of hyper-
bolic conservation laws consisting of (2.2), (2.3), (2.4), (2.7), (2.13), (2.14), (2.20). The
constitutive theory of this model was developed in [2, 3], As in [3], the assumption (2.17) is
made for simplicity only. The monotonicity of [yk , uk} -> {ni(yk , uk), mt(yk , «*)} and the
growth condition (2.16), which play critical roles in [2, 3], are not central in our develop-
ment here. The isotropy condition (2.18) is critical for our analysis. (Note that in [2, 3]
some indices in the definition of isotropy appear in the wrong order; this does not affect
the subsequent analysis in these papers.)

Travelling waves. Let / represent any dependent variable appearing in the equations of
motion. We seek travelling wave solutions of this system in the form

f(x, t) =J(x - ct) (2.21)
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where c G Dl. c is called the wave-speed. If we substitute representations of the form (2.21)
into the equations of motion, set

s = x — ct, (2.22)

drop the bars over the functions of s, and denote differentiation with respect to s by a
prime, then (2.13) and (2.14) reduce to

n' = pc2Ar", (2.23)

m' + r' X n = pc2J{dp X d;)'. (2.24)

3. Integrals of the governing equations. The integral of (2.23) is

n - pc2Ar' = Ne,, , (3.1)

where, without loss of generality, we have taken the constant vector of integration to be a
scalar multiple N of the fixed vector e3 . (We could contemplate problems in which n —
pc2A r' is merely piecewise constant, but, as we show in Sec. 6, this would prevent {r, d„}
from being a weak solution of the equations. Thus Ne3 is a true constant. These same
remarks apply to the constants a, ft, h to be introduced below.) The replacement of n(.y) by
fuCMi-), Ui(s))dk(s) reduces (3.1) to the three integrals

(ji , Ui) ~ pc2Ay: = —N sin 6 cos 0, (3.2)

n2{yi , ut) - pc2Ay2 = TV sin 0 sin 0, (3.3)

n3{yi ,ut) - pc2Ay3 = N cos 6. (3.4)

From (3.1) and (2.24) we get

m e3 - pc2J{da X d^)-e3 = a(const). (3.5)

The constitutive relation (2.20b) reduces (3.5) to the integral

{[—miCVi , ut)cos <p + m2(yi , w;)sin 0] - pc2J[—cos 0 + u2 sin 0]}sin 6
+ [w3CVi , «z) _ 2pc2Ju3]co%d = a. (3.6)

We dot (2.23) with r' and (2.24) with u and then add the resulting expressions to get

r' ■ [n' - u X n] + u- [m' - u X m] = pc2[^r'-r" + J(dp X dp)'-u], (3.7a)

which reduces to

ykn'k + ukmk = pc2[Ar'-r" + (u + w3d3)'-u]. (3.7b)

The substitution of (2.20) into (3.7b) and the use of (2.17) convert (3.7b) to

{8W\' ( 8 W\' c2
yk\~d^J +Uk\~8^J =Py^M» + ^A + 2«D)', (3.7c)

which yields the integral

f 8 W\ ( 8 W\ c2y^1yJ + ~8uJ ~ W ~ pY^Ayky" + J(U" U" + = /!(const)' (3'8)

We have thus obtained five integrals. To render our system completely integrable we
require a sixth integral. This we obtain by invoking the isotropy condition (2.18) and the
uncoupling condition (2.19).
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Now (2.20) and (2.24) imply that

m3 + Uim2 - u2riu + y^ - >'2«i = 2pc2Ju3 . (3.9)

If (Mi , u2) ^ (0, 0), then we choose

(Qpa) = K".]-1/2( (3.10)
x U2 Wi7

in (2.18). Then (2.18b) and (2.19b) imply that

UQ>! + M2 V2 K2.Fi -

(UyUyY'2 ' (UyUyY'
Ulnh - utm, = 7,;- , 7' :i/2 ,*,k«7)i/2,o,«3j = o. o. 1

In a similar way (2.18b) and (2.19a) imply that

>>i«2 - = 0. (3.12)
Thus (3.9) yields the integral

, "() ~~ 2pc2Ju3 = /3(const). (3.13)

For the purpose of simplifying our integrals we set

Xi = y* = -yi cos 0 + y2 sin 0,

x2 = y 2 = sin 0 + >-2 cos 0,

*3 = >'3 =

x4 = m* = -Wj cos 0 + w2 sin 0 = sin 0, (3.14)

x6 = u* = Ui sin 0 + w2 cos 0 = 0',

x6 - u% = u3, x = (*!,•••, *6).

Using (2.18) with
= ( ~C0S^ Sm0) . (3-15)

p \ sin 0 cos0/

we reduce (3.2)-(3.4), (3.6, (3.8), (3.13) to

«i(x) — pc2Ay* — N sin 6 = 0, (3.16a)

«2(x) - pc2Ay* = 0, (3.16b)

«3(x) - pc2^* - JV cos d = 0, (3.16c)

Wi(x) - pc2Ju\ — (a — 0 cos 0)/sin 0 = 0, (3.16d)

ytnk(x) + utmk{\) - W(x) - py {Aytyt + J[u*2u% + 2(w1)2]} = h, (3.16e)

m3(x) - 2pc2Ju% = 0. (3.16f)

(The simplifications embodied in the reduction of (3.2)-(3.4), (3.6), (3.8), (3.13) to (3.16)
via (3.14), (3.15) are equivalent to ajudicious choice of the axes ej , e2 . We had previously
introduced various simplifications by our choice of ^ .) We can substitute (3.16a-d, f) into
3.16e) to reduce (3.16e) to the form
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y\N sin d + y*N cos 6 + p(c2/2)Ay*ky% + sin

+ u*2m2(\) - p(cl/2)J{u\)2 + u%0 + pc2J(u%) - W(x) = h.

+ p{c2/2)J{u\)2

(3.17)

By differentiating (3.16e) or (3.17) with respect to s, using (3.16), and cancelling u* = 6',
we obtain

dm2. , , dm2

where

{x)yV + (x)uf - pc2Ju%'
oy>k c)Uk

= N(y% sin 6 - y* cos 6) - y(0; a, (3)u\ = 5(x, 0; a, /3, A') (3.18)

y(0; a, (3) = (J3 — a cos 0)/sin2 6. (3.19)

4. General qualitative properties of solutions. For fixed values of the parameters a,
13, N, c2, h, the system (3.16) may determine a family of curves in (x, 0)-space, which is the
half-space of IR7 defined by x3 = y% > 0. By determining the qualitative behavior of these
curves we determine the qualitative behavior of travelling waves. To handle the unwieldy
system (3.16) we study the projections of these curves on the (6, 0')-plane. Now for fixed
values of

(a, (8, N, c2) = X, (4.1)

the subsystem (3.16a-d,f) may possess multivalued solutions for y\, y*, y%, u*, u* as
functions of 6,u* = 6', and X. The substitution of these multivalued solutions into (3.16e),
or equivalently into (3.17), reduces these equations to the family of equations we denote
by

G(6, 0'; X) = h, (4.2)
G being a multivalued function. The curves in the (0,0')-plane given by (4.2) are the
projections onto this plane of the curves defined by (3.16). We shall call these curves the
(phase plane) trajectories of (4.2).

(4.3) Proposition. The trajectories of (4.2) are symmetric about the 0-axis, are symmetric
about the 0'-axis, and have period 2x in 6.

Proof. The use of

°,) <">

in (2.18) shows that (3.16a-d, e) is invariant under the substitution u\ -> -u\. The use of
the negative of (4.4) in (2.18) shows that (3.16) is invariant under the substitution (d,y*uu*)
->(—0,—y*,—u*i). Direct analysis of (3.16) shows that these equations are invariant under
the substitution 6 -> 6+2-k. It then follows that (4.2) is invariant under the substitutions d
-> -0, e e + 2tt, o' -e\

The curves of (3.16) are the integral curves of the seventh-order system of ordinary
differential equations

[M(x) - c2K]x' = a(x,d;a,l3,N), (4.5a)
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9' = X5 = 14%, (4.5b)

where

M

8nk 8nk
dyi diti

8mk dmk
dyt 8ui

I
p~lK = diag(A,A,A,J,J,2J), a(\,8\a,l3,N) =

u%N cos 6
0

— u*N sin d
u*y(8\a,l3) (4.5c)

<5(y*u0;a,P,N)
\ 0 /

This system is obtained from (3.16) by differentiating it with respect to s. (Cf. (3.18).) It is
equivalent to a subset of our original system of governing equations. We shall study
singular points of (4.5) and the singular points of the projections of the integral curves on
the (0,0')-plane.

Since the matrix M(x) - c2K can be singular and since a can be unbounded, the
determination of singular points for systems of the form (4.5) is more delicate than that for
systems in standard form. Let (\,d) £ IR7 with x3 > 0. We say that the algebraic system

[M(x) - c2K]x' = a(x,ff;aj3,A0, 6' = x6 (4.6)

(cf. (4.5)) has an infinite solution if (4.6) fails to have a solution (x',0') in IR7. (If (4.6) has
an infinite solution, then | a(x, 0; a, 13,7V)| = °° or det[M(x) - c2K] = 0.) Otherwise (4.6)
is said to have a finite solution. We say that a solution (x',0'), finite or not, of (4.6) is the
solution of (4.6) at (x,0). An extended solution is a solution that is either finite or infinite.
Thus (4.6) always has an extended solution. Of the several kinds of infinite solutions, the
most important for our work are:

(i) There is an orthogonal transformation A from IR6 to itself and there are real
numbers z2, ■ ■ • , z6, 0' with the following property: for arbitrary t > 0, there is a
neighborhood of (x,0) such that if (x,0) isjn this neighborhood then (4.5) has a unique
solution (x\ 0') E IR7 with Zi > e~\ \6' — d'\ + £*-2 \ zk - zk \ >_t, where_z ^A_1x'. In
this case we can represent the solution of (4.6) as (x',0') = (A(°°,z2, ■ • • , z6),d'). Thus
(x',0') determines an oriented line through the origin of IR7; this line is in the direction of
the vector (A(1,0,0,0,0,0),0). This case is very special.

(ii) There is an orthogonal transformation A and there are real numbers z2, • ■ • , ze ,6'
with the following property: for arbitrary e > 0 there is a neighborhood V of (x,0) such
that

v = v+ U Vo U V_ with {V+,V0 ,K_} disjoint, (4.7)

meas V+ > 0, meas V0 = 0, meas > 0, (4.8)

if (x± ,0±) G V± , then (4.6) hasjanique solutions (x±,0i) at (x± ,6±) with z\ > e~\
z\ < —t"1, 10± - d'\ + Ul ~ zk\ < c where z1 = A_1xi (4.9)

In this case we represent the solution of (4.6) as (x',0') = (A(±°o, z2, • • • , z6),0'). Thus
(x',6') determines the unoriented line passing through the origin and (A(1,0,0,0,0,0),0).
This case is not uncommon. To see how it arises, let A(x) be an orthogonal matrix such
that A_1(x)[M(x) - c2K]A(x) is diagonal. (Note that M - c2K is symmetric.) If rank[M(x)
- c2K] = 5 and if a(\,6-,a,/3,N) is finite, say, then (4.5c) decomposes into five scalar
equations with unique real solutions z2, • • ■ , z6 and a sixth equation of the form
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0*(JC) - pc2k]Zl = a(x,0';a,0,W) (4.10)

where ju(x) = pc2k. If rank[M(x) — c2K] = 6 a.e. in a neighborhood of x, then ^t(x) — c2k
assumes both signs near x. In this case, if a(x,d\a,0,N) 4- 0, then we may denote the
solution of (4.10) at (x,0) = (x,0) as zy = ±°°.

(iii) Eq. (4.6) has an infinite solution for which the infinite values of the components
cannot be restricted to a single direction by the introduction of a suitable orthogonal
transformation as in cases (i) and (ii) above. This situation can arise when the diagonal-
ization of (4.6) yields at least two scalar equations of the form (4.10) with a 4 0.

We say that system (3.16) has a singular point at (x,0) G IR7 with x3 > 0 wherever the
set of extended solutions (x',0') of the (4.6) fails to define a unique oriented tangent line at
(x,0). Otherwise, (x,0) is called a regular point. Thus (x,0) is regular if det(M(x) - c2k) 4 0
and 0 < |a(x,0;a,|8,jV)| < °° or if (4.6) has an infinite solution of type (i). The most
important ways that singular points can arise are:

a) System (4.6) has the unique solution (x\ 0') = (0, 0). In this case det[M(x) - c2K] 4
0 and_a(x, 0; a, (3, N) = 0. If N 4 0, this latter requirementis equivalent to u*2 = 0' = 0,
6(y*,J;a, 0, N) = 0.

b) The solutions of (4.6) form a one-dimensional linear manifold in IR7. In this case
rank[M(x) - c2k] = 5 and a(x,0;a,/3,7V) is orthogonal to the null space of M(x) - c2K.

c) The solutions of (4.6) form a linear manifold of dimension >2 in IR7. In this case
rank[M(x) - c^K] < 4 and a(x, 0; a, /3, N) is orthogonal to the null space of M(x) -c2K.

d) System (4.6) has an infinite solution of type (ii).
e) System (4.6) has an infinite solution of type (iii). Note that in cases (b) and (d), the

solutions of (4.6) define a unique unoriented tangent line at (x,0). We do not pause to give
an exhaustive classification of the singular points of (3.16). We merely note that case (a)
arises when u*2 = 0, 5(x,0;a,/?,7) = 0 and the remaining cases imply that det[M(x) - c2K]
= 0 or 17(0;a,/8)| =

For a more refined analysis of these cases and for the subsequent analysis, we note that
(4.6) uncouples when u% = 0. Let M(5| and K15] denote the matrices obtained by deleting
the fifth row and column from M and K and let xIS| and al5] denote the 5-vectors obtained
by deleting the fifth entry from x and a. If u\ = 0, then (2.17) and (2.19) ensure that (4.6)
reduces to

[M„i (x) - c2K[5,]-xl5' = a[61 {6,u%;a,P,N), (4.11a)

[(dm2/8u2) (x) - c*J](u*)' = 8(xf;a,0,N). (4.1 lb)

We now turn to the study of the singular points of (4.2), which is the equation of the
projections of the trajectories of (3.16) or (4.5) on the (0,0')-plane. We must proceed with
some care because the collection of singular points of the projection need not be com-
parable to the collection of projections of the singular points. Suppose that (3.16a-d, f) has
a multivalued solution for u*u w*} in terms of (0, 0'; 3.) for (0, 0', 2.) in some region 30 of
IR6. We set

V = u\ = d'. (4.12)

This solution defines a multivalued mapping

D 9 (0, v, 1) - x(0, v; 1) G {x G IR6: jc3 > 0}. (4.17)

For any function (x, 0; 3.) -> /(x, 0; 1) we set f(6, v, 1) = f(x(6, v; 3.), u; X). From (4.5) we
get
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q(6, v, X)v' = 8v 'id, v, 1) - c2J v' = 5(8, V-X) - ^-±(x(8, v, = p(8, v\ X),
J P*I5]

(4.18a)

0' = v, (4.18b)
where x^, satisfies

pa,,, (8, V, X) - SKM = aI6l (8, v, a, 0, N). (4.19)

A point (8, v) with (8, 3.) £ 3D is a singular point of (4.2) for a given branch x if (4.18)
evaluated on that branch fails to define a unique oriented tangent line at (8, v) in the (8, v)-
plane.

If q(8, u; 3.) = 0, then (8, v) is singular. In this case (0', u') defines an unoriented tangent
line in the plane, which is parallel to the tJ-axis. If q(8, v, X) / 0 we have several cases. If 0
< 11) | + \p(6, u; ̂ .)| < °° then (6, i;) is regular. If v = />(0, X) = 0, then (0, v) is singular.
(In this case p(6, v\ 1) = 5~(0, 0; }.).) Since (6', i/) = (0, 0), relation (4.18) does not even
define an unoriented tangent line at (0, 0). If |y(0; a, /3)| = then neither p(d, v\ X) nor
q{6, v\ J.) need be well-defined without further constitutive hypotheses. If these values are
well-defined (as extended limits of the values of p and q at neighboring points), then we
can ascertain whether (6, v) is singular. If \p(6, v\ ̂ )| = then (4.18a) implies that | v' | =
oo. Whether (8, v) is singular or regular, Eq. (4.18) defines at least an unoriented tangent
line parallel to the f-axis.

These considerations also show that a curve of (4.2) has a tangent (not necessarily
oriented) parallel to the f-axis where

a) v = 0, p(8, 0; X) + 0,
b) v = 0, p{6, 0; X) = 0, q(8, 0, X) = 0,
c) |p(8, v; 5.)| = oo.

Case (c) is the most noteworthy: It can occur only where \y(8\ a,/3)| = co. Since y is
independent of v, the condition |"y(0; a, 0)1 = oo determines a family of separatrices
(possibly unoriented) that are parallel to the u-axis.

5. Global behavior of solutions of special problems. We have noted that the global
qualitative behavior of travelling waves can be determined from the trajectories of (4.2).
The analysis of this multivalued equation devolves upon the nature of the solutions of the
fifth-order algebraic system (3.16a-d, f). For c £ 0 the operator in this system is strictly
monotone and coercive in x(5|; the equations accordingly have a unique solution for x[5, in
terms of 8, v, "k (cf. [2,3]). For c ^ 0, the luxury of a global implicit function theorem is not
generally available to us. Thus an exhaustive study of (4.2), as performed in [3] for c = 0,
seems to be a task that is at best tedious and at worst fruitless. The study of a few simple
cases, however, exhibits a budget of novel effects, which seem typical of this class of
problems and which illustrate the role of constitutive functions.

We say that a function /: [0, oo) ir js sublinear if there is a number K such that f(x) <
A"(l + x) for x E: [0, oo). We say that a function /: IR -> IR is sublinear if its restriction to
[0, oo) is sublinear and if (— °°, 0) 3 x -* — /(— x) is sublinear. An increasing function that
is not sublinear is called superlinear.

Let n represent any one of the five functions

"Mi' "')< * = 1. 2; uk — mk(yh «,), k = 1,2,3.
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Conditions (2.18) and (2.19) imply that the first four of these functions are odd; we assume
the same for the fifth. Thus /u is odd. The strict convexity of W implies that p is strictly
increasing. In Fig. 1 we depict typical forms of x —> p(x) — ax, a > 0 for p sublinear and
superlinear. (a clearly stands for pc2A, pc2J, or 2pc2J.) Note that in the sublinear casen(x)
- ax -> — oo as x -> oo for a > 0 and that for sufficiently large a the function x -» p(x) - ax
is decreasing. In the superlinear case, p{x) — ax —> co as* —> In Fig. 2 we depict the form
of y3 —► n3(yk, uk) - ay3 when y3 —► n3(yk, uk) is sublinear. We account for (2.16) by
requiring that n3(yk, uk) -> as y3 -> 0. From Figure 2, we immediately read off

(5.1) Proposition. Let y3 —> n3{yk, uk) be uniformly sublinear. (This means that the
constant K in the definition can be taken to be independent of \y m,}.) To each N there
corresponds a number a0(N) > 0 such that (3.16c) has no real solution y* if pc2A > a0.
There is a number a, > 0 such that if pc2A > au then (3.16c) has no real solution when
| N | is sufficiently small. (There can be no travelling waves in either of these cases.) Finally

M(x) qx
EA 100 E A 100

Fig. la. Forms of (n(x)/EA ) - (qx/100) when n is Fig. lb. Forms of (ji(x)/EA) - (^.x/100) when n is
sublinear. (E is a constitutive constant.) The actual superlinear. This figure has an odd continuation to
curves shown correspond to the constitutive equa- the left.
tion 1(EA) VC*) = (4 + 3x)"2 - 2. This figure has

an odd continuation to the left.
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to each fixed N there is a number a2(N) with 0 < a2(N) < a0(N) such that there are values
of 6 for which (3.16c) fails to have a real solution when a2{N) < pc2A < a0(N). (This means
that such travelling waves as may exist under these circumstances are characterized by
having 6 confined to a fixed range.)

In the rest of this section we restrict our attention to the case in which nx depends only
on >>!, n2 depends only on y2, etc. This assumption eliminates a number of interesting
effects due to nonlinear couplings (cf. [2, 3]), but of course preserves the effects due to the
presence of c2, or more precisely, to the hyperbolicity of the original system. (The classical
example of uncoupled equations is the kinetic analogy of KirchhofT [6], cf. [9].)

In Figs. 3, 4, 5 we exhibit the nature of multivalued solutions of (3.16a, c, d). In these
figures the curves for different values of c should be compared with the curve for c = 0,
labelled 0. Note that (3.16b, 0 admit only constant solutions. Eq. (3.16b) has the solution
y* = 0; it may have others. In Fig. 6 we show curves giving

Fig. 2. The form of (ns/EA) — (qy^/XOO) when y3 -> Fig. 3. The solutions of (3.16a) when N > 0 for
n3(\) is sublinear. The actual curves shown corre- y* as multivalued functions of 6 for different values
spond to the constitutive equation 3(EA)~'ns(y3) = of q. The actual curves plotted are based upon
4|[4 + 3(j>3 - l]1'2 - 2) for >>3 > 1, (EA)-'«3(.V3) = being given by n of Fig. la and upon N = EA.
1 ~ CF3)1 for y, G (0, 1], (The numbering of curves corresponds to that of

Fig. la.) The corresponding figure for superlinear
looks like this figure turned upside-down.
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Ei = y\N sin 8 + p{c2/2)A(y*f - [*' n,(y)dy (5.2)
J 0

as a function of 6 when y* is as in Fig. 3. E1 is the contribution of they* terms to the left
side of (3.17).

To obtain a specific example that will illustrate the general qualitative properties of
travelling waves, we choose

jijCi) = (EA/3)[(4 + 3y,)1/2 - 2] for y, > 0, (5.3a)

n3(y3) = (EA/2)(y3 - l/y3), (5.3b)

tfiiiUi) = EJut , m3(u3) = 2EJu3 , (5.3c,d)

where £ is a positive constant. n2 and m2 have the same form as nj and m, (by the isotropy
assumption). The nonlinearity in (5.3b) is necessary to handle (2.16). That in (5.3a) is the
source of the special nonlinear effects we are investigating. The system (5.3) is designed so
that its linearization about ya = 0, y3 = 1, uk = 0 reduces to the classical linear rod theory
with E the elastic modulus and with the shear modulus taken to be (E/3). Fig. la is
obtained by setting n equal to n, of (5.3a). The curve in Fig. la numbered q corresponds to
c2 satisfying pc2/E = <7/100. Fig. 3 is then obtained for N = EA. (Note that curves of Figs.
4 and 5 do not correspond to (5.3b, c).)

Fig. 4. The solutions of (3.16c) when TV > 0 for as multivalued functions of 8 for different values of q. The ac-
tual curves plotted are based upon n3 having the sublinear form shown in Fig. 2 and upon N = EA.
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Under these conditions, we find that

£3 = y%N cos 6 + p(c2/2)A(y%)2 - J 3 n3(y)dy (5.4)

makes a negligible contribution to the nonconstant terms of (3.17) (or (4.2)) when c2 has
the values corresponding to the curves of Fig. 6, namely q = 100pc2/E = 5.27, 8. Now we
write (3.17) as

where

(u*2r = (d')2 = F(d)-H (5.5)

7h A ?fi2
h=g; + t w - jicjqj2 (const)' (56)

q 0 \OKJq)

a — /3 cos 1/•(»)= (6 + £.)-^ sin (5.7)

GQ = E[\ — (.01 )q], (5.8)

Fig. 5a. The solutions of (3.16d) when a = 0 > 0 Fig. 5b. The solutions of (3.16d) when 0 < a <
for u\ as multivalued functions of 8 for different 0 for u\ as multivalued functions of 0 for different
values of q. The actual curves plotted correspond values of q. The actual curves plotted are based
to the constitutive equation = 4[(4 upon m, having the form given in Fig. 5a and

+ 3u*,)"2 — 2] and to a = 0 = EJ. upon a = EJ, /3 = 2EJ.
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In Fig. 7 we plot F(d) for q = 5.27 when a = 0 is taken fairly large and in Fig. 8 we
sketch the phase plane trajectories corresponding to the different values of H shown in
Fig. 7. The vertical scales of these trajectories vary from figure to figure. In Fig. 9 we plot
F(6) for q = 8 when a = 0 is taken to be a smaller number than that for Fig. 7 and in Fig.
10 we sketch corresponding trajectories. The arrows indicate the motion of (6, d') in the
phase plane with increasing s. Of course all parts of trajectories in the upper half plane
must move to the right and parts of trajectories lying in the lower half plane must move
left. Thus there are points off the 0-axis that two trajectories approach from opposite
directions. Although the trajectory has a tangent at such points it does not have an
oriented tangent. These points are accordingly singular points of the very sort that we
discussed from an analytic point of view in Sec. 4. One such trajectory is one of the kidney-
shaped trajectories of Fig. 10b. Since 6' is positive near A and negative near B on this
trajectory, a point (6, 6') starting anywhere on the open arc CD A reaches A in a bounded s-
interval. Thus the kidney-shaped trajectory ABCD cannot correspond to a travelling wave
with a twice continuously differentiable 6. We could contemplate a trajectory in which
there is a jump from A to C. Such solutions with 6' discontinuous are discussed in the next
section.

The trajectories A BCD and AFCE of Fig. 8b represent periodic travelling waves with 6

-50-

-100-

-150 -

-200-

Fig. 6. Plot of £, vs. d for curves q = 5.27 and q = 8 of Fig. 3 when A' = EA. The curve <? = 5.27 is drawn in heavy
lines.

Fig. 7. Plot of F vs 6 for q = 5.27 when a = 0 is taken sufficiently large.

7T
■9
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(a) H = //,. —it

(b) H = H2.

o . o

(c) H = H3. -T

(d) H = Ht. -ir

(e) H = H„

Fig. B. Phase plane trajectories for different values of H corresponding to Fig. 7. The vertical scales are distorted.

Fig. 9. Plot of F vs. d for q = 8 when a = 0 is taken to be much smaller than its value for Fig. 7.
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E C2. The trajectories ABCE and AFCD represent periodic travelling waves with 6 being
merely piecewice twice continuously differentiable. Such a 6 generates a weak solution of
our governing equations. Thus there is a family of solutions described by the point (0, 6')
moving in a clockwise sense about the trajectories in Fig. 8b with these solutions having
the option of switching at the singular points A and C from one smooth arc to another. In
this manner we obtain an uncountable family of oscillatory piecewise C2 solutions rather
than periodic solutions. Since A and C correspond to 8 = 0, we see from Fig. 3 that y\ has
a jump every time such a switch is made. (In Sec. 6 we show that such discontinuous
solutions are not physically realizable.)

A seemingly related family of solutions is that corresponding to Fig. 8d (which occurs
only for a very special set of parameters). Since the smooth trajectories A BCD and EBGH
are tangent at B (which is a regular point) and since the smooth trajectories ABCD and
FGDE are tangent at D, there is an uncountable family of oscillatory travelling waves with

(a) H = Ht.

(b) H = H2.

Fig. 10. Phase plane trajectories corresponding to Fig. 9. The vertical scales are distorted.

Fig. 11. A typical member of the uncountable family of oscillatory travelling waves corresponding to Fig. 8d.
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Fig. 12. A typical member (b) of
the countably infinite family of
travelling pulses resulting from a
phase plane trajectory of the form

(a).

(a)

Fig. 13. Travelling bores (b) that
result from a phase portrait of the

form (a).

(a) (b)

Fig. 14. A typical member (b) of
the countably infinite family of
travelling bores that would corre-
spond to a phase portrait of the

form (a).

(a) (b)

d (E C2. In Fig. 11 we sketch a typical member of this family.
We can, of course, also allow switching at E and G but this would destroy the C2

character of solutions. We note that y\ (as well as the other strains) is continuous on
trajectories that switch only at B and D. (D has abscissa —7r/2 and B has abscissa x/2.
Switching in Fig. 8d at D and B corresponds to switching of the trajectories q = 5.27 in
Fig. 3 where they cross at — x/2 and 7t/2.)

A related phenomenon, which does not arise in our example for the parameter ranges
used (but cf. [3]), is a trajectory of the sort shown in Fig. 12a. This trajectory gives rise to a
countably infinite family of pulses of the sort shown in Fig. 12b. The location of the saddle
points is determined by the equation SO?"!, 0; a, /?, N) = 0. There can also be trajectories
joining pairs of saddle points such as in Fig. 13a that lead to travelling bores. We have not,
however, discovered circumstances under which there is a phase plane trajectory of the
form shown in Fig. 14a, which would lead to a countably infinite family of bores, but we
feel that such trajectories can exist for very special values of the parameters.

We finally note that the chief qualitative effect of changing the parameter c is to change
the signs of various terms of (3.17) or(4.2) and to reduce the range of 9s for which (3.16c)
has solutions. Once the phase-plane behavior of 6 is determined we can readily obtain the
motion of d3 on the unit sphere. Cf. [3] for details of this process.
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6. Discontinuous waves. We now study the question of determining which of the
many kinds of discontinuous travelling waves suggested by our development of Sec. 5 are
physically realizable. Suppose that {r, dff} is a piecewise twice continuously differentiable
weak solution of the partial differential equations (2.13), (2.14), (2.17). Suppose that x =
g{t), with g E C'(IR), is the equation of a curve across which some components of {r, d„}
and their first and second derivatives suffer jump discontinuities. Then {r, d„} must satisfy
the Rankine-Hugoniot jump conditions at (g(t), ():

[n](f(0, t) + pAg'(t)lrt]{g{t\ t) = 0, (6.1)

dtAa (,?(t), 0 = o, (6.2)ImMO, t) + pJg'(t)

where

I/MO, t) - lim lf(g(t) + e, t) - f(g(t) - e, /)] (6.3)
e—o

and where n and m are given by (2.20). If we seek travelling wave solutions of the form
(2.12) and consequently choose g(t) = ct + £, then (6.1) and (6.2) reduce to

[n - pc'Ar'm) = 0, (6.4)
dm - pc2Jda x diltt) = 0. (6.5)

(We are adhering to the notational conventions adopted in the discussion surrounding
(2.21)—(2.24).) Relation (6.4) implies that n - pc2Ar' is continuous so that yVe3, introduced
in (3.1), is a true constant. The componential version of (6.4) and relations (3.2)—(3.4) then
imply that 6 and $ must be (effectively) continuous. Relations (6.5) and (3.5) imply that a
is a true constant. Since 6 and 4> are continuous, d3 is continuous. Relations (6.5) and
(3.13) imply that 0 is a true constant. Since weak solutions conserve energy, the h
appearing (3.8), (3.16e) and elsewhere is a true constant. If we take components of (6.4),
(6.5) with respect to the basis {d*} where et, e2 are chosen so as to yield (3.16), then (3.16a-
d, 0 imply that all the conditions of (6.4) and (6.5) are automatically met save for

dw2(x) - cVttsKI) = 0. (6.6)

It is well known that initial-value problems for quasilinear hyperbolic systems such as
(2.13), (2.14), (2.17) can have many weak solutions. The unique weak solution satisfying
further entropy conditions is adjudged physically reasonable. (Although such entropy
conditions are motivated by physical considerations, often connected with notions of
dissipation and stability, the nature of the relationship between uniqueness and physical
considerations is not completely understood.)

The entropy condition is usually stated in terms of the characteristic speeds and the
shock speed. For the system (2.13), (2.14), (2.17) a characteristic direction w(x) at x is an
eigenvector of M(x) relative to K (see (4.5c)) and the corresponding characteristic speed
x(x) at x is the corresponding eigenvalue:

[M(x) - x(x)K]w(x) = 0. (6.7)
Lax [7] proposed a stability criterion for shocks that characterizes a shock as stable if as t
increases the characteristic curves impinge on the curve x = g(t) of discontinuity from
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both sides. This criterion is appropriate tor genuinely nonlinear systems. Our system (2.13),
(2.14), (2.18) would be genuinely nonlinear if

w(x)-Vx(x)^0 (6.8)

for all x with x3 > 0 and for all solution pairs x, w of (6.7). Since ya -> nj^yi, ui)< uk -»
thkiy'i, Hi) are odd functions our system cannot be genuinely nonlinear. The function [0, °°)
3 J3 —> n3(ji, ut), however, could be concave. In this case, if the corresponding equation
were uncoupled from the rest, then (6.8) would apply to this equation and Lax's condi-
tions would supply conditions for the stability of discontinuities in y3 . We discuss these
below.

Liu [8] generalized Lax's condition to systems that are not necessarily genuinely
nonlinear and used his generalization to prove a uniqueness theorem for the Riemann
problem. (In this connection, see [5].) To state Liu's condition, which we shall apply to
our problem, we consider the system

nk(x) - rtfc(x0) = pcA{y*k - y*olt),

mk{x) - mk(x0) = (1 + bk3)paJ(u* - u*ok) (k not summed), (6-9)

where 8U represents the Kronecker delta. Suppose that x0 is given. Values of a such that
(6.9) has a solution x are denoted <r(x0, x). Note that o-(x0, x) = a(x, x0) and that <r(x, x0), if
it exists, satisfies

[«fc(x) - «*(Xo)](y* - y'ok) + [Wft(x) - m*(x0)](w* - u*ok)
ff(x, Xo) =  

pA(yl - y*ok)(yt - y*ok) + pJ[{u* - u*0a)(ut - u%„) + 2(u% - u^)2]
The strict convexity of W (cf. (2.17)), which is nothing more than a hyperbolicity
condition for our problem, implies that <r(x0, x) > 0 for x / x0. We set

S(x0) = {x: 3<r(x0, x) such that (6.9) is satisfied}. (6.11)

Let

x±(g(0- t) = lim x(g(f)±e, t). (6.12)
f —'0

A discontinuity {x±(g(t), t)) is called admissible if it satisfies Liu's entropy condition:
there is a component of S(x_) connecting x_ to x+ and

<t(x_, x+) < a(x_, x) (6.13)

for every x in this component of S(x_). This condition is equivalent to: there is a
component ofS(x+) connecting x+ to x_ and

cr(x_, X+) > a(x, X+) (6.13b)

for every x in this component of S(x_). (S(x±) is called the shock set through x± and
ct(x_, x+)1/2 is the shock speed associated with the discontinuity {x±}.)

We are now ready to study the nature of travelling discontinuities satisfying (6.6) and
(6.13). A discontinuity {x±} satisfies (6.6) if and only if there is a number r such that

w2(x±) - pc2J6i = t. (6.14)

It follows from (6.14) that there cannot be jumps in 8' on the curves of Figs. 8 and 9
because d' —> m2(x) - pc2Jd' is strictly increasing for the value of r2 used and for the linear
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function m2 given by (5.3c). For constitutive functions more complicated than (5.3) and
for other values of c2 the possibility of such jumps cannot be so easily dismissed. To handle
such problems we invoke Liu's entropy condition. We assume that a component of S(x_)
connects x_ to x+ . (Otherwise the discontinuity would not be admissible.) Then (6.9) and
(6.14) imply that

p/<r(x_, x+)(0+' - 61) = w2(x+) - w2(X-) = pc2J(6; - 61) + t. (6.15)

But the speed (j(x_, x+)l/2 of a travelling shock must be the wave speed c. Hence (6.15)
implies that

r = 0. (6.16)

Thus (6.14), which is the only Rankine-Hugoniot condition that is not satisfied identically,
implies that jumps can only occur between values of x for which m2(\) - pc2J6' = 0. The
values of 6' for which this equation is satisfied can be read off from a figure like Fig. 1. Let
us study shocks in which 61 ± 61. Since we are assuming that S(x_) connects x_ to x+ ,
Liu's entropy condition (6.13a) implies that

.»r w2(x+) - m2(x_) „ m2(x) - m2(x_)
p 6;-61 - 6' - 61 ( '

for all x on a component of S(x_) to x+ joining x_ to x+ (and a fortiori for all 6\ which is
the fifth component of x, between 61 and 61).

Suppose that m2 depends only on 6'. By examining the geometric consequences of
(6.14), (6.16), (6.17) in light of the oddness of 6' —♦ m2(6') we readily arrive at

(6.18) Proposition. Let m2 depend solely on 6'. Let 6, X, h be fixed and let 61 satisfy (4.2).
Then a travelling wave satisfying the Rankine-Hugoniot and Liu conditions can suffer a
discontinuity {0±} at 6, X, h with 6+ and 61 having opposite signs only if m2(d') = pc2J6' for
all 6' between 61 and 6+ .

This result prevents many jumps in 6' for phase-plane trajectories like those of Figs. 8
and 10 that arise for uncoupled nonlinear constitutive equations. (Note that linear
constitutive relations are easily handled by the argument following (6.14).) In particular,
there are no travelling waves that can correspond to a kidney-shaped trajectory like that of
Fig. 10b.

Now we consider jumps in 6' when m2 does not satisfy the restriction of Proposition
(6.18). We limit our attention to discontinuities of the form

{.x±} = (xt, x2, x3y x4, ±6'0, x6), 6o ^ 0. (6.19)

We set
z± = (zi, z2, z», z4, ±6', z6). (6.20)

Now the isotropy condition (2.18) implies that z_ £ S(x_) if and only if z+ £ S(x+) and
that

ff(x_, z_) = ff(x+, z+). (6.21)

The entropy condition (6.13) and the equality <r(x_, x+) = c2 then implies that

<r(x_, •) = <r(x+, •) = <r(x_, x+) = c2 (6.22)

where the domain of cr(x_, •) is S(x_) and that of ct(x+, •) is S(x+). This condition means
that the problem is degenerate in a sense that generalizes the exceptional case tfi2(6') =c2J6'
of Proposition (6.18). (Cf. (6.10).) To see the nature of this degeneracy, we suppose that
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<S(x±)} contain continuously differentiable curves defined parametrically by functions {f —>
2±(f)}- Then (6.22) and (6.9) imply that

M(2±(f)) ̂ r(H = ^ (f). (6.23)

This means that (</2±A/f)(f) is a characteristic direction at 2±(f) and that c2 is the
characteristic speed there. Hence define characteristic curves (cf. (6.7)). From (6.9) we
then find that nk(\) - pc2Ay% and rhk(\) - (1 + bkn)pc2Ju\ are constants for x on these
characteristic curves. Note that all of these functions except m2(\) — pc2J8' are also
constant on trajectories. In particular, (6.14) and (6.16) imply that m2(x) - pc2J6' = 0 for x
£ S(x±). Hence we have the following companion of Proposition (6.18).

(6.23) Proposition. Let 6, X, h be fixed and let ±80 satisfy (4.2). Let the corresponding x±
be given by (6.19). Let |S(x±)f contain C1 curves {2±} joining x to x+. Then a travelling
wave satisfying the Rankine-Hugoniot and Liu conditions can suffer a discontinuity {x±}
only if nk{x) — pc2Ayf = a„ (const), mk(\) - (1 + bk^)pc2Ju*h = bk (const) with b2 = 0 for x
on the curves {2±} (which are characteristic curves).

The development of more general results along these lines seems to lead to statements
couched in terms of genericity. We do not pursue such generalizations here.

We now examine the question of whether an admissible discontinuity arises for a
trajectory like DAF in Fig. 8b. We see that^* suffers a discontinuity at A corresponding to
the positive and negative values ofy* on the curve q = 5.27 of Fig. 3. Just as in Proposition
(6.18), the oddness of y* —► «,(>•*,) prevents such a discontinuity from being admissible for
a nonlinear nx . More general results along the lines of Proposition (6.23) can be obtained
when depends on other arguments besides y* .

We note that this argument would fail were only y3 to suffer a discontinuity at a point
like A of Fig. 8b because y% -> n3(\) is certainly not odd. Indeed, (2.3) and (2.16) suggest
that the requirement that this function be concave, at least for small y*3 , is eminently
reasonable. Thus Liu's entropy condition would not necessarily exclude travelling com-
pressional shocks (coupled with other modes of deformation). This suggests that there is a
distinguished role for compressional shocks.

The discontinuities at B and D of Fig. 8d are merely contact discontinuities; they are
compatible with both the Rankine-Hugoniot and Liu conditions. From the extensive work
on hyperbolic conservation laws, there is no evidence to suggest that a travelling wave of
the form of Fig. 11 would fail to be the physically realizable solution to a Cauchy problem
with the shape of Fig. 11 generating the initial data.

7. Conclusion. We have shown that our twelfth-order, quasilinear hyperbolic system
has a rich variety of travelling waves, both classical and weak. Our development depended
critically upon the isotropy condition (2.18) and upon (2.19). Our approach differed in a
number of significant particulars from that used for the static problem of [3] because the
operators of the travelling wave problem do not enjoy the monotonicity of those of the
static problem. One minor but typical manifestation of the distinction between the static
problem and the travelling wave problem is that in the former problem Eqs. (3.16b, f)
(with c2 = 0) have unique solutions.

We found that when the wave speed is characteristic at points of the rod, there can be
countably or uncountably infinite families of travelling waves for the same values of
parameters. There are also travelling waves when the wave speed is nowhere characteristic.
This behavior may be contrasted with that for the classical second-order linear wave
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equation for which any shape defines a travelling wave when the wave speed is character-
istic and there are no travelling waves when the wave speed is not characteristic. It may
also be contrasted with that for (1.1) for which all travelling waves have piecewise linear
shape.

The study of longitudinal waves in rods is a useful way to determine the constitutive
properties of the rods in the nonlinear range (cf. Bell [4]). Bell has informed us, however,
that flexural motion causes distortions that render standard experiments useless. Our
results, showing the complicated effects that accompany flexural motion, suggest why this
is so. They also suggest that experimental procedures accounting for combined flexure,
torsion, extension, and shear could conceivably give a more refined picture of constitutive
response.

At the level of second-order systems such as (1.1), there is little distinction between
equations from gas dynamics and those from nonlinear elasticity. The governing equa-
tions that we have analyzed are far more complicated than (1.1); they cannot be confused
with equations of gas dynamics. Associated with this very complexity is a rich mathemati-
cal structure leading to a complete family of integrals. This mathematical structure, the
exactness of the underlying geometry, the generality of the material response, and the
availability of rational thermo-visco-elastic generalizations of our equations justify us in
submitting that these equations are a worthy and rewarding object of serious analysis.
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