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Abstract. Nonlinear membrane problems involving large finite strains are consid-
ered. It is found that explicit asymptotic solutions are possible for a rather large class of
problems. Two distinct types of asymptotic solutions, roughly depending on whether the
strain energy density function is dominated by /1 or /2, are found to exist.

1. Introduction. The theory of the finite deformation of a nonlinearly elastic mem-
brane has been studied by many authors (see for example [1-5]). The application of this
theory to particular problems is difficult because of the nonlinearity of the equations
involved. Aside from the few problems solved by the use of semi-inverse methods (see [6],
for example), exact solutions are few.

In the context of the theory of plane stress, the solutions to the class of axisymmetric
problems, originally studied by Rivlin and Thomas [1], may be considered exact in that
the governing equations may be reduced to two uncoupled first-order ordinary differential
equations. This reduction was accomplished by Yang [7], The class of solutions obtained
by Varley and Cumberbatch [8] is exact, but is based on an assumed strain-energy density
function. While the authors went into great detail to justify the form of their assumed
density function, their explicit result, however, may also be interpreted as an approximate
solution in a certain sense.

In the general case where at least either the undeformed or the deformed surface is not
a plane, the number of exact solutions is even fewer. The deformation from a tube to an
annulus [9] is perhaps a nontrivial addition to the list of semi-inverse solutions mentioned
in [6]. The problem of inflation of cylindrical membranes may also be reduced to
quadratures [10, 11], They all resulted from the fact that one of the two equations of
equilibrium may explicitly be integrated [12].

Perturbation or iteration methods are often useful in generating approximate but
explicit solutions to problems that are otherwise difficult to solve. For these methods to be
practically useful, a problem must have a corresponding limiting problem whose solution
is explicitly obtainable. For this reason perturbation methods have been applied to the
following classes of problems: (1) small finite strain (see [3] for example), (2) small
deformation superposed on known finite deformation (see [4] for example), and (3)
infinitely large strain. We shall confine our attentions to the class of problems involving
large finite strains. Problems of this nature have been studied for membranes made of
either a neo-Hookean material or a Mooney material. The nature of the mathematical
reduction as well as the character of the solution for these two classes of problems,
however, are completely different.
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The first large finite strain analysis of neo-Hookean membranes appears to be given by
Foster [13], He considered the class of axisymmetric problems, and showed that for large
meridional strains (greater than 100%) the governing equations can all be reduced to
quadratures. Using this fact, a water-bag problem was solved by Yu and Valanis [14],
When the same kind of assumption is applied to a plane stress problem, the governing
equations reduce to two uncoupled linear equations. This was discovered by Wong and
Shield [15]. In terms of practical utility, the reduction obtained in [15] is most profound in
that it reduces a nonlinear problem to one that is even simpler than a linear problem.

The first asymptotic analysis carried out for membranes made of Mooney material was
done by Isaacson [16]. He showed that the shape of an inflated axially symmetric balloon
approaches to a spherical surface as the inflating pressure tends to inifinity. A two-term
explicit solution was then obtained by Wu [17], The simplification resulting from this
reduction originates from the fact that an infinitely strained Mooney membrane is uni-
formly stressed. This property has been exploited by Wu in solving a series of axially
symmetric problems (see for example [18-20]).

In this paper we show that the two types of asymptotic analysis may be applied to a
slightly more general class of materials and a quite more general class of problems. A
review of the basic equations is given in Sec. 2, where the two classes of asymptotic
problems are defined. The deductions associated with these problems are discussed in
Sees. 3 and 4.

When an asymptotic state is used as a basis of iteration, higher-order iterative solu-
tions are usually desirable (see [15] for example). When an asymptotic state is reached via
a process of scaling, a boundary-layer type of analysis is usually needed (see [18, 19] for
example). These types of calculations are not included in this paper.

No specific problems, other than a few simple illustrative examples mingled in the text,
are solved. However, the equations resulting from the deductions give a clear indication as
to what can and what cannot be done.

2. Nonlinear membrane theory. Let x, = xl be a set of rectangular cartesian coordi-
nates with unit vectors e, = e'. The position vector x = Z of a point on a surface S may be
expressed in terms of two surface coordinates 6" = da . Specifically, we write

Z = Z(6a) = Z'(0a)e, = Z,(0„)e>. (2.1)

The covariant base vectors A„ and the components A ap of the covariant metric tensor are
just

A„ = Z,„ = Z,„'e, , (2.2)

4a/3 = A„ ■ A(j = Z,a'Zy 5ij (2.3)

where StJ is the Kronecker delta. The unit vector A3 = A3 normal to S is defined by

A3 = A3 = A ~1/2 etJk Zy Z,2* e' (2.4)

where eiJk are the components of the three-dimensional alternator, and

A = det [Aa0]. (2.5)

The components A010 of the contravariant metric tensor may be defined by

A«0 = a-1 eaX ^ AX)1 (2.6)
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where ea0 are the components of the two-dimensional alternator.
Suppose that the surface 5" is deformed to a new surface s. Let x = z be the position

vector of a point on s which, in the undeformed state, had position Z. The deformation
may be defined by

z = z(0«) = z'(0a)e, = z,(0a)e'. (2.7)

On the deformed surface s the base vectors a„ , normal vector a3 = a3, and components aaS
and a010 of the metric tensors may be derived from (2.2)-(2.6) by replacing the kernel
letters by their lower-case counterparts.

Let dL and dl be, respectively, the arc elements on S and 5. Then

A2 = (dl/dL f = (aa0 d6a dde)/{Aa0 dda dd0) (2.8)

where A is the stretch ratio. It follows that

det [aal3 - A.2Aap] = 0. (2.9)

The two invariants 7; and J2 involved in the deformation are just

Jx = K2 + A22 = Aa0aa0 , J2 = A!2A22 = a/A, (2.10)

where Ax and A2 are the principal stretch ratios. We find it convenient to define a few
related quantities:

/ — Aj + Aj, J = AiA2, I\ ~ Ji + Jz~l, /2 = /2 + J1J21. (2.11)

For a homogeneous isotropic elastic material, the strain energy density per unit volume of
the undeformed solid is a function of the three (three-dimensional) invariants involved,
and the corresponding strain energy density W per unit area of the undeformed surface
may be written as a function of / and J.

Let P be the body force per unit area of the undeformed surface. If we wish to consider
surface load as a part of the body force, then it is sometimes more convenient to define a
body force p per unit area of the deformed surface. The governing equations may be
derived from the principle of virtual work, viz.,

8 II WjAd0ld02= II p-dzjadd'dd1 +{ T-<5z dl (2.12)

where <5z is the virtual displacement, and T dl the traction vector on the deformed line
element dl. Carrying out the variation, we get

+ f A1'2 ea^ - t) 8zi d! = 0 (2.13)

which yields the displacement equations of equilibrium

8 ( 3W \ + al/2pt = 0 (114)

and the boundary conditions

(2.15)



350 CHIEN H. WU

Considering W as a function of / and /, we have

8W
dzj

where

A1/2 = a1/2Tai zy (2.16)

IJ 81
The condition (2.15) may be written as

rdl~i5^y"(a"'e-'^c'dl (2I8>

which, in view of (2.16) and (2.17), implies that T is tangent to the deformed surface and

T dl = ra6 (a1'2 ea0 (z,6< e,) dl. (2.19)

It follows that ra5 defined by (2.17) are just the components of the contravariant Cauchy
stress tensor. Using (2.16), we may obtain from (2.14) the stress equations of equilibrium:

Ta0\a + a^ptzj = 0, (2.20)

ralj ba$ + pt a3> = 0, (2.21)

where a vertical bar denotes the covariant differentiation on the deformed surface s, and
bap are the components of the second fundamental tensor of ^ defined by

bag = a3j 5U . (2.22)

We reduce these equations to suit two special cases.
Plane stress. Suppose that both S and s are two-dimensional regions in the x3 = 0

plane. If we let the rectangular cartesian coordinates Z„ of a point on S be the surface
coordinates, then Za = da and za = za(Zp). It follows that za^ are the components of the
deformation tensor, and the components of the (first) Piola stress tensor Pn0 are just

SW = 1 8W
al3 8za,n ~ I 81 Za

, ( 1 8W , 8W\^ ^ y J • (2.23)

Setting A = 1 and p = 0 in (2.14), we obtain

Pans = 0 (2.24)

(7 TT + ( \ TT + # = 0 ,225>
Eqs. (2.24) may be satisfied by expressing Pa& in terms of two stress functions $„(Z„), i.e.,

PaQ • (2-26)

Consider now the boundary 8S of S defined by Za = Ba(L) where L measures the arc
length along 8S such that S is on the left of the tangent vector S defined by

S = Saea = {dBJdL)ea . (2.27)
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The outward normal is

N = jVae„ = ea0 Sp ea . (2.28)

The force vector (2.19) may then be written as

T dl = Pa0Nff dL ea . (2.29)
Displacement and traction boundary conditions are, respectively,

za(B/s{L)) = Da(L), (2.30)

Pa0(Bp(L))Nff(L) = Ta(L), (2.31)
where Da and Ta are given functions. In terms of the stress functions defined by (2.26),
(2.31) takes the form

~ 4>a(Ba(L)) = eaf) Tp(L). (2.32)

Axisymmetric problem. We introduce cylindrical coordinates and define the surfaces S
and s by the expressions:

S: Zx = R{L) cos d, Z2 = R(L) sin 0, Z3 = Z(£), (2.33)

s\ Zi = r{L) cos 6, z2 = r(L) sin d, z3 = z(L), (2.34)

where L measures the arc length along the undeformed meridian curve. It follows that

Ax = dl/dL = [{dr/dLf + (dz/dL)2]1'\ A2 = r/R (2.35)
where / measures the arc length along the deformed meridian curve. The two principal
stresses tu t2 are

r: = (l/A^dW/dAJ, t 2 = (\/AxXdW/dAt), (2.36)
and the two equations of equilibrium become

1L <2-37'

+ 7"°, CL'"'>

where p is an inflating pressure, the only surface load assumed.
With the aim of solving boundary-value problems in mind, we must augment the

above equations with a specific strain energy density function W. The few commonly
known density functions1 are:

Neo-Hookean [3] W = Clh - 3), (2.39)

Mooney [3] W - C,(/, - 3) + C2(/2 - 3), (2.40)

Rivlin [3] W = C1(CI-3) + /(/a-3), (2.41)

Harmonic [21] W=2fi[H(I)-J], (2.42 )2

1 Compare (2.10) and (2.11) for definitions of invariants. All unidentified symbols in (2.39) - (2.46) are taken
from the original references.

2 The W used in [8] is a harmonic material, and satisfies the relation (//')*"' - (H1)1 = const. (//' - I).
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Standard [5,21] W = 2M

Blatz-Ko [22] W = £

X + 2n  j  A + n j X + n (2.43)L fi n J '

(plane stress), (2.44)P 23J2/*+ J* ~ 7~ 5.

Hart-Smith [23] 4?" = G exP Wh ~ 3)2 (0 < k, < 0.0004), (2.45)
oh

8W—- = GkJ\l (0 < k2 < 1.5),
CI 2

Soap-film [24] W = TJ (T = constant). (2.46)

A study of these density functions reveals that they fall into one of the two categories for
which the type of asymptotic analysis mentioned in the introduction is possible.

Type-I asymptotic solution. When large strains are involved and when W is dominated
by a function Wx defined by

W, = C[P - (2 + c)/], (2.47)
where C and c are appropriate constants deduced from W, simplifications similar to those
obtained in [13] and [15] become apparent. This includes the W functions defined by
(2.39), (2.43) and possibly (2.41), (2.42). It also includes (2.45), as long as the strains are
not so large that 8 W/dlx is practically unity. This is possible because ki is very small.

Type-II asymptotic solution. Consider first the Rivlin material defined by (2.41). We
assume that for large strain the function / satisfies the condition

/(*) = C2/(n+ \)xn+1 (2.48)

where n > — i is assumed. The cases n < — i are covered in Type-I, and n = 0 corresponds
to the Mooney material. This class of problems is discussed in Sec. 4. We shall see that
some of the general results obtained may also be applied to materials defined by (2.44) and
(2.46).

3. Type-I asymptotic solution. When the dominant portion of W takes the form

W, = C[P - (2 + c)J], (3-1)
where C and c are appropriate constants depending on the specific form of a given energy
density function W, the equations of equilibrium permit certain simplifications. We
consider a number of specific cases.

A. Plane stress. The displacement equations (2.25) reduce to

Zee,(30 = 0 (3.2)

and the relations (2.23) become

c
Pa& = 2C

or

(3.3)

€an&0ii Pw (3.4)
2Cl" " '
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It follows from (3.4), (3.2) and (2.26) that the stress functions are also harmonic, i.e.,
= 0 • (3.5)

Eqs. (3.2) and (3.5) were first derived by Wong and Shield [15] for neo-Hookean material
which corresponds to the case c = 0. We prefer to express the general solution in terms of
two analytic functions.

To this end we introduce

Z = Zj + iZ2, z - Zi + iz2, (3.6)

C(2 + c)4> = $ = 2, (3.7)

2( ),z = 8( )/8Z1 - /3( )/8Z2 , (3.8)

2( )i = 8( )/8Zx + i8( )/8Z2 , (3.9)
where, and throughout this paper, ( ) indicates the complex conjugate of ( ). We also
assume that the undeformed plane S is a multiply-connected region with K holes. The
resultant force on the &th hole is denoted by Xk + iYk .

Eq. (3.2) implies that

z = fl(Z) + *(Z) + £ a*[ln(Z - Zk°)(Z - Zk°)) (3.10)
k=l

where U and ^ are arbitrary holomorphic functions, ak are arbitrary constants, and Z*° is
a point inside the A:th hole. The single-valuedness of z has been used in fixing the form of
the last term. The stress-strain relations (3.3), together with (2.26), (3.7), (3.8) and (3.9),
imply

2C(2 + c)ct>,z = (Pn + P22) + i(P21 - Pn) = 2C(2 - c)z,z , (3.11)

2C(2 + c)<t>,z = (P22 - Pn) ~ i(P21 ~ Pn) = -2C(2 + c)z,z . (3.12)

It follows from (3.10) and the above that

2 - c
v 2 + c

Eq. (2.32) may be written as

0(Z) - *(Z) + Z «*L YV'c ln ~ z*°) ~ ln " z^°) (3.13)

d* = ~ C(2 + c) IUL) + iT2(L)] dL ■ (3.14)

Applying (2.14) to the &th hole, we obtain

a"= ztc{Xk +iYk)' (315)

In case ak = 0, the resultant moment Mk on the &th hole is

Mk = C(2 + c) Ref 2-cm)~ 2T7fi(Z). dZ ■ (3.16)

B. Zero surface load. We consider the case where the deformation is purely a result of
stretching, i.e., p = 0. For this case the equations of equilibrium (2.14) become

8W \^f1/2J=0- (3.17)
8da\ 8z
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Substituting (3.1) for W, we obtain from (2.16) and (2.17)

8z,a'

which, for neo-Hookean material, reduces to

8W

= 2c(ai/2A"s - |ai/2aa5) z/ (3.18)

8z.
A1/2 = 2CA ,/2AaS z/ (c = 0) • (3.19)

The displacement equations of equilibrium may then be obtained by substituting either
(3.18) or (3.19) into (3.17). It is clear that for neo-Hookean materials the equations are
linear but with variable coefficients. For c ^ 0, the equations are also linear if the
deformed surface is a plane. The following sub-cases are considered

Bl. Plane-to-surface deformation of neo-Hookean membranes. For this case c = 0, and
we may also let 6a = Za and Z3 = 0. The equations of equilibrium are just

( <52 82 \
V szs + ezj Zi ~ ' (3.20)

This result represents a substantial generalization of [15] in that the deformed surface is
three-dimensional. Traction boundary conditions are in general more difficult to handle.
However, for a traction-free boundary the conditions may be easily derived from (2.15).
They are just

dzJdN = 0 (3.21)
where N indicates the direction normal to the undeformed boundary.

B2. Surface-to-plane deformation. We let z3 = 0, and the two displacement equations
of equilibrium are

{AV2Aabz/)M = 0, (3.22)

where the relation

e&vz/z,y = ^V/2 (3.23)

has been used to eliminate the term involving c and, as a result, (3.22) holds for all c. The
two equations (3.22) are linear and uncoupled. Once again, the traction-free boundary
conditions may be derived from (2.15). They are

(a^A"6 - |a1/2aa*)z/eal = 0 (3.24)

where ddy/dL may be derived from the spatial boundary curve defined on S. It is clear that
this boundary condition is linear only for the case c = 0 (neo-Hookean material).

If the undeformed surface is isometric with the plane, i.e., AaS = bap for a special choice
of da, then (3.22) becomes

( 82 82\

W + w^ = °- (125)
However, the interpretation of (3.25) must be consistent with the coordinates 6a . For
example, if S is a cylindrical surface of radius R defined by

Z, = R cos d2, Z2 = R sin d2, Z3 = 0i , (3.26)
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then zq are harmonic in the "cartesian" 0^-plane, and periodic in d2 with period 2ir. It
should be mentioned that one of the equations involved in axisymmetric deformations of
an initially cylindrical membrane can be explicitly integrated [12], The simplification
implied by (3.25), however, is not restricted to axisymmetric problems.

B3. Surface-to-surface deformation of neo-Hookean membranes. The displacement
equations of equilibrium are

(A1/2Aa5z',s),a = 0 (c = 0) (3.27)

and the traction-free conditions are

A^Aahz\hea\~^ = 0. (3.28)

The difference between this case and B2 is that c must be zero, even if only displacement
conditions are involved.

C. Neo-Hookean membrane and body force P. Replacing ainpt by Al,2Pi and using
(3.19), we obtain from (2.14)

(Al'*Aa6z/),a = - (3.29)

which, for S isometric with the plane, reduces to

(Jos + ~dd,7) Zi = ~ 2C Pi' (3-30)
D. Inflation of axisymmetric membranes. When the surface load is a constant inflating

pressure p and when W is replaced by (3.1), the equations of equilibrium (2.14) do noi
seem to reduce to linear equations. The class of axisymmetric problems, however, can be
solved explicitly. Thus, we turn to Eq. (2.33)—(2.38).

Substituting (3.1) for W, we obtain from (2.36)

"-2C(t"§)- 2C(a3l)

The two equations of equilibrium (2.37), (2.38) immediately reduce to

(R~j2-^ = K1, (3.32)

<yR-C2 7ihi)7L + ic'"K" <"3>
where Kl and K2 are arbitrary constants. Eliminating dl/dL from the above, we get

*£(3j4>

Eq. (3.32) may be written as

(3.35)

In view of (3.34), (3.35) may be integrated to yield r as a function of L for given R(L).
If both r and R vanish at the axis of symmetry then Kx = 0. The quantity 2ttK2 is the
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total force acting on a cross-section perpendicular to the axis of symmetry. Thus, K2 = 0 if
the inflating pressure p is the only external load. Setting A\ = 0 in (3.32), we conclude that
Ai = A2 . It follows that

T1 = r2 = 2c(l- ^ • (3.36)

If K2 = 0, Eq. (3.33), which was derived from (2.38), is equivalent to

M4 C 12ti dz V* 2/ dz
 ~p—"ar ,3J)

Nothing that / is the arc length along the deformed meridian curve, we conclude from
(3.37) that the deformed meridian curve is the circle

r* + (z ~ zcf = p2 =
4C(,-£)

(3.38)p \ 2/J

where zc is a constant. This result holds for a closed S, i.e. a balloon, as well as a supported
membrane. It indicates that the deformed surface is always spherical. Moreover, the
radius p of the sphere depends only on the inflating pressure, and is independent of the
initial shape of the membrane, as long as it is axisymmetric. Of course the S- to -s mapping
function is dictated by the initial shape S. Setting = K2 = 0 in (3.34) and (3.35),
andintegrating, we obtain

ln p + (p2 - r2)1/2 = ±/ R(L) (139)

where p is the radius of the sphere defined by (3.38), and the change of the sign occurs at
the equator of the sphere (cf. (3.35)).

This portion represents a slight generalization of Forster's results [13] in that c 4- 0.
Moreover, the relation (3.36) appears to have escaped his attention. In any case, the
immediate consequence of (3.36) is (3.38) where p is found to be inversely proportional to
the inflating pressure, a characteristic typical of a neo-Hookean material.

4. Type-II asymptotic solution. We consider a Rivlin material defined by (2.41), and
assume that the function / satisfies the property

/U)=^yx"+1 x-co («>-£). (4.1)

For n < the asymptotic solution is of the Type-I nature. It follows from (4.1) and
(2.41) that

1 8W-j -jj- = 2Cj + 2CJ2n~\ (4.2)

8W-JJ = -2C, + 2C2y2"+1 (4.3)

as Ai , Aa -» °°. Certain general statements can be made for this class of problems.
Substituting (4.2) and (4.3) into (2.17), and keeping only the dominate portion, we obtain

Tab = 2 C2J2n+1aa6. (4.4)
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Consider now the case of zero surface load. Substituting (4.4) into (2.20) and noting
that the covariant derivative of the metric tensor vanishes, we get/ „ = 0. It follows that

J = 1/A (4.5)
where A is a (small) constant representing the transverse stretch ratio. An immediate
consequence of (4.4) and (4.5) is that the deformed surface is uniformly stressed with the
constant principal Cauchy stresses

r, = r2 = 2Cy2n+1 = 2C2A"'2n+1>. (4.6)

The third equation of equilibrium (2.21), in conjunction with (4.4), becomes

baa = 0 (4.7)

which implies that the mean curvature of the deformed surface is zero. It follows that an
infinitely strained surface without surface load is a minimal surface, and the problem
becomes a purely geometric one.

If the surface load is a constant inflating pressure p, then (4.6) still holds and (2.21)
becomes

baa = -p/2CJ*n+\ (4.8)

The inflated shape of the membrane is thus a surface of constant mean curvature. In case
the undeformed surface S is closed, then the deformed surface 5 must be spherical [25],
Using (4.8) and the fact that J is constant, we can determine the radius p of the spherical
surface s. It is

4 C2
P

P2S
64trC22.

(2n+l)/(4n+l)

(4.9)

where S is the surface area of the undeformed surface S. This result is a generalization of
[16] and [17] in that the undeformed surface is completely arbitrary. For n = 0 (Mooney),
(4.9) reduces to the result obtained in [17] for axisymmetric balloons. The 5-to-^ mapping
associated with the simple result (4.9) is, unfortunately, a complicated nonlinear geometric
problem.

For axisymmetric problems, the condition (4.5), which satsifies (2.37), together with
(2.38), enables us explicitly to integrate all the equations involved. This is, in fact, the very
origin that makes the explicit solutions presented in [ 17]—[20] possible. Other than the
axisymmetric case, Type-II asymptotic analysis does not seem to lead to any substantial
simplification. We only include a more detailed discussion on surface-to-plane deforma-
tion.

Surface-to-plane deformation. The surface load for this case is, of course, zero. We also
set z3 = 0. Substituting (4.2), (4.3) into (2.14) and using (3.23), we obtain

( 7 A U*Aa&Zw) + 2C^e'iXz^J2n+l + J2n~3).a = 0

which may be solved to yield

(4.10)

+ - - 257(7 H.rA"'Ay'!•) • (4">
It follows from (4.11) that

ea'%,a ( -J A1/2Ay%,s) ^ = 0. (4.12)
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If we now let J —> °°, then the dominant portion of (4.11) becomes

(J2n+l),a = 0 (4.13)

and the solution is

j = i£*_ _ i£i = i (4 14)
50, «902 «902 A 1 '

which is just the general conclusion (4.5). Eq. (4.12) now becomes

ea%,a(A1/2Ay%Ayi3 =0. (4.15)

The asymptotic solution is thus determined by (4.14) and (4.15). We note that (4.15) is an
identity for axisymmetric problems.

In case the undeformed surface S is isometric with the plane, then (4.15) becomes

= 0, (4.16)

and the asymptotic solution is determined by (4.14) and (4.16).
For plane stress problems, the two equations (4.14) and (4.16) remain unchanged, but

the surface coordinates da may be replaced by Za . These two equations are exactly the
same as those obtained for the class of plane-strain-superposed-on-uniform-finite-exten-
sion problems discussed by Adkins [26] (see also p. 116 of [3]). It follows that there exists a
kind of correspondence principle between the two classes of problems. In particular, the
reciprocal theorem due to Adkins [26] also applies. In practice, though, the existence of
such a correspondence principle is not really that useful in that there are just not that
many nontrivial explicit solutions.

For materials defined by (2.44) and (2.46), relations similar to (4.4) may be obtained.
These are

Tab = Tcjnt, (Soap-film), (4.17)

t"s = fj.J'1/2aaS (Blatz-Ko). (4.18)

It follows that the conditions (4.5) and (4.7) also hold for these two cases.
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