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Abstract. Plane deformations of nearly incompressible elastic solids are examined
with a view to calculating the volume changes accompanying an arbitrary (plane) defor-
mation. The dilatation is shown to be determined from a knowledge of the deformation
appropriate to the corresponding incompressible material under the same boundary
conditions. This work parallels that given in a previous paper for three-dimensional
deformations and relies on the decomposition of the deformation gradient into its dilata-
tional and isochoric parts.

It is emphasized that the manner in which the response function of an incompressible
material is transmitted into that of a nearly incompressible material is of critical impor-
tance in the calculation of the dilatation. This is illustrated for a specific boundary-value
problem and for isotropic materials. In particular, it is shown that when the in-
compressible neo-Hookean solid is considered in the compressible context mutually
contradictory results may be obtained. These results are assessed in the light of experimen-
tal evidence available for rubberlike solids.

1. Introduction. Let X be the position vector of a material point in the undeformed
configuration (assumed free of stress) and x(X) its position in the deformed configuration.
On a rectangular Cartesian basis X and x respectively have components A'; and xt (/' = 1, 2,
3). Attention is confined here to plane deformations for which xs = X3 and such that Xi
and x2 are independent of Xs .

The (plane) deformation gradient dxi/dXj (/, j = 1 or 2) is denoted by atJ and
symbolically by a. The dilatation, denoted by e = / — 1, is obtained from

J = det a. (11)
We consider an elastic material possessing a stored-energy function W per unit

undeformed volume. In the present context W is interpreted per unit undeformed area of
the (l,2)-plane and is regarded as a function of a (subject to its indifference to rigid-body
rotations of the material after deformation).

The (in-plane) components of nominal stress are therefore given by

Sji = 8W/8atJ, s = 8W/ da. (1.2)
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and the equilibrium equations can be put as

div s = 0 (1.3)

when there are no body forces, div denoting the divergence operator relative to X.
The stress normal to the (l,2)-plane required to maintain the plane-strain conditions

will not be needed explicitly, and no further reference is made to it.
We note that the Cauchy stress d is given by

Jd = as = a(8W/ 8a), (1.4)

the product as being interpreted in the usual matrix sense.
For an incompressible material the subscript zero is attached to all relevant quantities.

The deformation is given by Xo(X), and the deformation gradient denoted a0, where

det a0 = 1. (1.5)

Let ^(ao) denote the strain-energy function per unit area of the (l,2)-plane. Eq. (1.5)
states that the area does not change with deformation.

The nominal stress So is now given by

So = (8W0/8a0) - A>(fo, (1.6)

where (3^ = a",1, superscript T denotes the transpose, and p0 is an arbitrary (plane)
hydrostatic stress.

The corresponding Cauchy stress d0 is given by

d0 = a0S0 = a0(8tV0/8a0) - p05, (1.7)

where 5 is the (two-dimensional) identity. For future reference we note that

i tr(do) = ho" {8 fV0/8a0) ~ p0 , (1-8)

where the dot denotes the scalar product and tr denotes the trace. Thus tr(d0) = 5-d0 =
do • 5-

2. Decomposition of the deformation. The notation used above parallels that
adopted in [1] for three-dimensional deformations. In [ 1] we decomposed the deformation
gradient into its isochoric and dilatational parts along the lines suggested by Flory [2],
Here we employ an analogous decomposition appropriate for plane deformations.

We introduce the isochoric part a* of the deformation gradient a defined by

a* = J-U2 a, (2.1)

where J is given by (1.1). We refer to J as the dilatational part of the deformation. From
(1.1) and (2.1) it follows that

Let (3T denote a"1. Then

det a* = 1. (2.2)

(2.3)
and (3*r is the inverse of a*.

In what follows we shall require the formulae

8J/8 a = J§T (2.4)
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and, in index notation,

dah/dotij = J'll\bikbn - htil3*u)- (2.5)
The derivation of (2.5) requires the use of (2.1), (2.3) and (2.4).

We now regard W as a function of a* and J independently, but subject to the constraint
(2.2). We write

W = W(a*, J). (2.6)

From (1.2), with the help of (2.1), (2.3), (2.4) and (2.5), we now obtain

where Wd denotes 8W/8J (at fixed a*).
The term in curly brackets in (2.7) should be compared with the right-hand side of

(1.6).
From (1.4) and (2.7) we now obtain

8 W ( 1 8 IV\= « = «* + [JW, - ^ 5. (2.8)

It follows immediately from (2.8) that

i tr(d) = Wj , (2.9)

and this should be compared with (1.8).

3. Nearly isochoric deformations. Nearly incompressible materials are characterized
by the property that, under given boundary conditions, the deformation differs from that
in the corresponding incompressible material by a "small" quantity. Expressed mathemat-
ically we have

x = x0 + tju, (3.1)

where r] (« 1) is essentially the ratio of shear to bulk modulus and u(X) is typically of the
same order as x0. Full details are given in [1]. We note here that (3.1) is valid provided the
order of magnitude of the applied tractions does not exceed that of the shear modulus.
Note that the dilatation e = J — 1 is of order rj.

It follows that

a = a0 + yd u/dX (3.2)

and hence, from (1.1) and (1.5), that

J = 1 + r,(8u/8X)-QT0 = I + rj tr(8u/8x0) (3.3)

to the first order in r/. From (2.1) we obtain

a* = a0 + y{8u/8X - | tr(«9u/<9x0)a„}. (3.4)

As in [1] we expand W(a* J) as a power series in e. Thus,

fV(a *,J) = lV(a* 1) + iWJ( a* 1) + h2Wjj( a*, 1), (3.5)

to the second power in e. For our purposes higher-order terms are not needed.



340 R. W. OGDEN

For compatibility with the linear theory we must have

W(5, 1) = H^/5, 1) = 0, 00/5,1) = * (3.6)
where k is the bulk modulus in the undeformed configuration. Thus the term 1) is
typically of order k.

As discussed in [1], the terms ^(a* 1) and W/a* 1) are typically of the order of the
shear modulus fx in the undeformed configuration. With ii/k = and, by (3.3), the fact
that e is of order ri it follows that the second and third terms in (3.5) are each of order nrj.

Substitution of (3.5) into (2.7) and use of (3.4) leads to

s = J^(a°' 1}~ l)~ ^(a°' ujr. + Moo,) ■ (3.7)

If W(a0, 1) is identified with the incompressible strain-energy function W0(a0) then (3.7)
can be rewritten as

s = s0{l + 0(r/)}, (3.8)

where So is given by (1.6), provided p0 is identified with the term in curly brackets in (3.7).
Thus

i9 W
Po = too-—- WM0, 1) - tWjJio„, 1) • (3.9)

oa0

The equations of incompressible elasticity are equivalent to the zero-order equations of
compressible elasticity when these are expanded as a power series in 77. In view of (3.3),
tr(du/<9x0) is determined from (3.9). The displacement function u is obtained from the
first-order equations, which we do not require here, and this must be compatible with
(3.9).

With the help of (1.8) Eq. (3.9) may be rewritten as an equation for e = rj tr(3u/<9x0).
Thus

efVjAa0, 1) = J tr(do) - W/a„, 1). (3.10)
We note, in particular, that (3.10) provides an expression for the dilatation in terms of the
deformation a0 appropriate to the incompressible material with strain-energy function
W0(u0). It also requires a knowledge of the functions Wj(a*, 1) and Wjj(u*, 1) associated
with the compressible material.

The formula (3.10) is valid for all elastic materials independently of any material
symmetry.

4. Isotropic elastic solids. For an isotropic elastic solid W depends on a through the
(positive) principal stretches \u X2 and is indifferent to their interchange. We denote the
pair (Al5 X2) by and introduce the pair of'modified' stretches (see [3] for a description of
this terminology in the three-dimensional context) defined by 1* = J~1/2'X by analogy with
(2.1). Note that J = AjXj and = 1. The notation 3.0 = (X0i, X02) is reserved for the
stretches associated with the incompressible material.

For convenience we write

W(a0, 1) = ^„(a„) = 0(^„), Wj(a„, 1) ± X(*o), 0, 1) = H^o),

in the isotropic context, where (/>, x and 1p are symmetric in X0i and X02-
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From (3.6) we then have

0(1) = x(l) = 0, *(1 )=K, (4.1)
where 1 denotes the pair (1, 1).

The strain-energy function (3.5) can now be written

W = 4>(1*)+ eX(l*) + (4.2)
and (3.10) becomes

«*&>) = *tr(d„) - x(*o) - ~ x(*o) ' (4-3)

Noting the approximation 1 = (1 + i e), we have

= + (4.4)

to the first order in r/, and (4.2) can therefore be rewritten as

W = 0(3.) + £{x(^) + i «V(**)- (4.5)

The difference between the forms of (4.2) and (4.5) is significant and will be explained
shortly in relation to rubberlike solids.

In view of (4.3) we remark that the dilatation depends on x(^o) and \p(X0) in general as
well as on the hydrostatic part of the (plane) stress.

In general 0 and x (and also \p) are independent functions.

5. Applications to rubberlike solids. As discussed fully in [1] and [3], experimental
evidence shows that is independent of in simple tension for values of the stretches
up to about 2. No reliable data are available for larger values of the stretches so we
assume, tentatively, that i/'Q.o) = noting (4.1). Our calculations will in fact be confined
to values of the A0i's for which this has been shown to be valid.

Eq. (4.3) now becomes

Kf = I tr(do) - xQ-o) = i V-fr- Q.0) ~ Po ~ xP-o) (5.1)
O Ao

and the strain-energy function can be expressed as

W= 0(^*) + exa*) + !«2. (5.2)
We recall that attention is restricted to circumstances in which t = 0(i7).
For rubberlike solids, under the incompressibility approximation, the strain-energy

function is derivable as a 'network' response function, and we may write

fVo = $(*o). (5.3)

The function $(^0) reflects the network structure of the long chain molecules.
When the compressibility is taken into account the network response function is

supplemented by a 'liquid-like' contribution to the strain-energy function which depends
only on the volume ratio/(Flory [2]). In the present context this is the term fre2. However,
there are essentially two distinct ways in which the incompressible network response



342 R. W. OGDEN

function 4>(^0) can be set in the compressible context. We can interpret this function as
either <f>(^*) or $(^).

In the former case

W = 1 Kt\ (5.4)

while in the latter

W = $0) + I Kt2. (5.5)

The strain-energy functions (5.4) and (5.5) are equally valid.
A comparison of (5.4) with (5.2) shows that

*(V) = 0P.*), xfr*) = 0 (5.6)
and hence, from (5.1),

Ke = Hr{60) = ~ Po ■ (5.7)
oXq

The Taylor expansion of $(}>) in (5.5) shows that

s>(i*) = ta*), (5.8)
on comparison with (5.2), and (5.1) in this case becomes

" = U'J^(1)~ Po- (5'9)
The constant term has been introduced in (5.8) to ensure that x(l) = 0.
If full generality is retained then x(^*)> as given by (5.8), can be treated as independent

of 0Q»*). However, if one starts with a specific form of the network response function this
is no longer the case, but one can retain the option of adding an arbitrary term exP-*)to
either (5.4) or (5.5). The form of x(^*) given by (5.8) in respect of (5.5) can then be
absorbed into this new term. A discussion concerning the physical implications and origin
of such a term is given in [4].

The distinction between (5.4) and (5.5), and hence between (5.7) and (5.9), is impor-
tant since (5.7) and (5.9) may predict entirely different behaviour for the dilatation c. This
is now illustrated for a particular boundary-value problem.

6. Shear of an annulus: the incompressible solution. Incompressible elastic material
is contained within a circular annulus of radii A and B (> A). In the undeformed
configuration we take polar coordinates R and 0 with A < R < B, 0 < 0 < 2tc and,
correspondingly, r and 0 in the deformed configuration.

Subject to the boundary conditions r = R on R = A, B and 0 = 0oni?=/4,0 = 0+ Y
on R = B, we may write the deformation in the form

r = R, 6 = 0 + h)(R) (6.1)

where cc(R) is a function to be determined from the equilibrium equations. Then

u(A) = 0, U(B) = y. (6.2)

The principal stretches A0i and X02 are such that \0i\02 = 1 and we write
Aqi X, A 02 A l,
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assuming, without loss of generality, that X > 1.
We introduce the notation

q = X - X"1 (6.3)
and it is easily shown that

q = Rw'(R), (6.4)

where the prime denotes d/dR. Details may be found in [5].
The material has strain-energy function W0 = This can be regarded as a

function of X or, equivalently, of q. Following the analysis in [5], we adopt q as the most
appropriate variable and write

W0 = $(<?). (6.5)
From [5], in which different notation was used, we have

$,(?) = C/R\ (6.6)
where denotes d$/dq and C is a constant related to the shear stress required to
maintain the deformation. In fact

C = SB/2 7T, (6.7)

where S is the shear stress on R = B.
When the form of the strain-energy function is specified (6.6) determines q. The

argument presented in [5] indicates that q is determined uniquely as a function of R from
(6.6). Hence w(R) is obtained from (6.4).

The arbitrary hydrostatic pressure p0 is then obtained from the equilibrium equations
which give

Q- p0 = C f R~W(R) dR + D (6.8)

[5], where Q = <1\{q)/q and D is a constant.
Detailed results for a number of different strain-energy functions have been given in

[5], For present purposes, however, it is sufficient to confine attention to the neo-Hookean
form of strain-energy function which, in the present (plane-strain) context, has the form

$(*„) = i m(A02i + X„22 - 2), 4>(q) = k (6.9)

where /u(> 0) is the shear modulus in the undeformed configuration.
This gives Q = n, while (6.6) gives nq = C/R2. Eq. (6.8) then simplifies to

Po = n - D + i O/nR*. (6.10)

In view of (5.6)! it follows from (6.9), with the help of (6.3), that

lo-j^(l0) = n(q2+2), 1-^(1)= 2n. (6.11)

7. Shear of an annulus: the local dilatation. In respect of the strain-energy function
(5.4), Eq. (5.7) with (6.10) and (6.11) gives

Kf = D + i C2/ixR\ (7.1)



344 R. W. OGDEN

while, for the strain-energy function (5.5), Eq. (5.9) with (6.10) and (6.11) gives

xt = D - I C2/ixR\ (7.2)

In view of the boundary conditions given in Sec. 6 the overall volume of the material is
unchanged in the (nearly incompressible) deformation. Thus

/ 8 eRdR = 0,
A

and (7.1) and (7.2) therefore become

Ke ~ ~ A2B2) ^

<74)

respectively.
In respect of the neo-Hookean strain-energy function the forms (5.4) and (5.5) of

nearly incompressible strain-energy function predict opposite values for the dilatation,
namely (7.3) and (7.4).

In particular, (7.3) corresponds to (5.4) and therefore (5.2) with x = 0. With x = 0, Eq.
(5.1) shows that e depends only on the hydrostatic part of the stress. This is also true for
more general (three-dimensional) deformations [1, 3]). In [1] and [3] it has been shown
that a x-term is necessary in order that the predictions of the theory agree with experimen-
tal data. In the present circumstances, therefore, (5.4) is unrealistic and consequently so
also is (7.3).

As for (5.5): this leads to

X(^*) = MM - M)2 (7.5)
which is positive, and from (7.4) we see that

e < 0 for A < R <(AB)1/2,

(>0 for (AB)1/2<R< B, (7.6)

t = 0 for R = {A By2.

The experimental evidence discussed in [1] and [3] indicates that x should be positive.
There is no experimental data available for the local dilatation accompanying the present
deformation but intuitively the results (7.6) are consistent with what one would expect.
This view is reinforced if we note that for the neo-Hookean solid it may be shown that

where <rrr is the radial traction on a circle of radius r. This means that local volume
decrease (increase) is associated with compressive (tensile) normal stress. For other forms
of strain-energy function, however, the situation is less simple. In fact it may be shown
that, in general,

Ke = +

where Q is defined in Sec. 6.
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Since no volume change data are available for the specific deformation considered
here, it is not possible at this stage to determine whether or not (7.5) needs to be
supplemented by a term independent of 0Q.*). Such a term is required in simple tension
[1].

The circular shear problem considered here has also been examined from an entirely
different standpoint in respect of a highly compressible elastic material [6]. It is notewor-
thy that the results (7.6) have also been found to hold for this material.

In conclusion we remark that the present analysis provides an insight into the proper-
ties required of the constitutive law of a compressible elastic material. The theory is in
accord with what one might expect on intuitive grounds and is consistent with the limited
experimental data which are available (see [1] and [3] for a discussion of this). In
particular, we are able to reject (5.4) in favor of (5.5). This is consistent with Penn's
deduction [7] which was discussed in [1],

References

[1] R. W. Ogden, Nearly isochoric elastic deformations: application to rubberlike solids, J. Mech. Phys. Solids 26,
37-57 (1978)

[2] P. J. Flory, Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57, 829-838 (1961)
[3] R. W. Ogden, Volume changes associated with the deformation of rubberlike solids, J. Mech. Phys. Solids 24,

323-338 (1976)
[4] R. W. Ogden, On the anisotropy of compressibility of rubberlike solids, to be published.
[5] R. W. Ogden, On plane deformations of incompressible isotropic elastic solids, Math. Proc. Cambridge Phil.

Soc. 83, 127-136, (1978)
[6] R. W. Ogden and D. A. Isherwood, Solution of some plane-strain problems for compressible elastic solids,

Quart. J. Mech. Appl. Math. 31, 219-249 (1978)
[7] R. W. Penn, Volume changes accompanying the extension of rubber. Trans. Soc. Rheol. 14, 509-517 (1970)


