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CONSTITUTIVE EQUATIONS FOR FLOW OF AN
INCOMPRESSIBLE VISCOUS FLUID THROUGH A POROUS MEDIUM*
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Herein we present a set of equations which are proposed to describe the flow of an
incompressible viscous fluid through a rigid porous medium. Terms are included which
may account for capillary forces, for drag forces and for viscous shear effects. There are
three unspecified coefficients in these linearized equations and we suggest how these may
be evaluated, first by indicating a simple setting in which the equations reduce to D’Arcy’s
law, another in which they take the form of the classical diffusion equation (Fick’s law)
and finally by considering boundary exchange in a situation involving both free and
entrapped flow. We cannot claim any substantiation of the validity of these equations. We
advance them here because they seem to be the simplest elementary constitutive equations
which include these three effects.

The equations arise when one seeks elementary constitutive equations within the
general theory of mixtures advanced by the author and others (see [1, 2]). They are
consistent with the thermodynamic theory advanced in [2]; indeed, we here present a
sketch of the final reduction from the general theory in order partially to substantiate this
claim. The generalization to the case in which the porous matrix is deformable may be
easily found from results in [2], as may the corresponding nonlinear equations.

The application of mixture theories to the case of flow in a porous medium is a natural
and obvious one, and there are a great many similar derivations in the literature: an
excellent description may be found in the survey article of Atkin and Craine [3]. The
justification for offering yet another consists in three points. First, and most important,
the theory presented here seems to offer a minimum of complexity among this class of
theories, and hence offers the best opportunity for experimental confirmation or refutation
and hence for prediction. For example, we find it possible to use data from [4] to obtain
estimates for the magnitude of the viscous terms in comparison with the drag terms and
use these to make error estimates for measurements of relative permeability. Although
some solutions have been made for previous mixture theories, it is not clear that any can
be completely determined experimentally, and this presents very serious limitations on
their use in practical applications.

Second, the effect of capillary forces is modeled, albeit roughly, and this leads to a
reduction to the diffusion equation in certain conditions. Such a reduction, common in
soil mechanics, does not appear in the general theories unless the fluid is supposed
compressible.

Third, as discussed at length in [1], the general theory upon which this is based offers a

* Received November 1, 1977. The author wishes to thank M. E. Gurtin and P. A. C. Raats for criticisms of a
previous draft of this article. Gurtin, in particular, pointed out that the linearized form (33) must obtain.
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natural interpretation for boundary forces and it is felt that this may help visualization of
this difficult problem of mixture theory.

General balance of forces. In a series of papers [1, 2, 6, 7] an axiomatic foundation
for a continuum theory of mixtures has been formulated. We here propose to apply the
results of this theory to flow through a porous medium. Thus from the beginning we take
the continuum point of view: we have a fluid body ®; and a solid body ®; coincident in
space, moving separately but interacting due to their coincidence. We can easily derive
equations of balance of mass, which we express in the following way:

0 .
E(ps¢s) + div (psesv5) = 0,

3 _ (1)
E;(wa) + div (o/e/07) = 0.

Here we assume no chemical interactions or other sources or sinks of mass. We have set p,
to be the mass density of the solid making up the porous matrix, and ¢, its volume ratio
(volume of solid per total volume); v, is the velocity field of the solid. Clearly ¢.p; is the
mass density of the porous medium, the body ®, . Similar interpretations apply to the fluid
equation. By definition we must have

est o < 1. (2)
Note that we do not assume these sum to one, and thus the saturation
or/(1 = ¢5). 3)

may differ from one.
The other equations which we shall consider here are the equations of balance of force.
These take the following form:

div Ts + bs, + bs° = psesas ,
diV T/s - bsf - bfs = 0, (4)
div Tf + b/s + bfe = presas .

Here T is the stress tensor in the porous body ®; ; similarly, T; is the stress tensor in the
disperse fluid body ®, . (Thus if the fluid suffers a true internal pressure p, then

T, = —¢up/l

where 1 is the identity tensor, for ¢, measures the fraction of area contacted by the fluid.)
The tensor T, measures the stress of the solid on itself, 7, that of the fluid on itself; the
stress T, is an interaction stress, describing the forces exerted by each on the other.' It
should be noted that it is assumed that no body-couples act, so that all stresses are
symmetric tensors. The term b, denotes the external body (volume-distributed) force
acting on the solid while b,, denotes the volume-distributed force exerted on the solid by
the fluid. Finally, a, is the acceleration of the solid dv,/dt + Vo, . Another insight into

"In [1] it is seen that if 8 is a surface in B, and &, then fs T onda = F;(S) + F,/(8) where F4(8) is the contact
force exerted by the solid on the fluid across 8, and F,/(8) the force exerted by the fluid on the solid across 8. (It is
arguable that T,, = 0 is a reasonable constitutive assumption.) Such interaction stresses, representing effects of
various phases on one another, appear also in the work of Raats [5].
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the nature of the stresses is given by examining the boundary conditions which they
satisfy. If the bodies ®; and B, occupy a common region ®, with boundary ®, then if n is
the exterior normal to o@®,

Ten = 18 + 0,,°8 (5)

where 7, is the external force applied to the solid part of the common boundary and o,,°?
is a surface force exerted on the solid within ® by the fluid within @, e.g., a capillary force.
Similarly,

Tin = 7°+ 0,98 6)
while Ty, must satisfy
Tyn = —a,°8 — a,,°B. )
We may rearrange Egs. (4) into the form
div (T + 4Tys) + Hbsr — bys) + b = psesas
div Tys — by, — by, =0, ®)
div (T; + 3Tys) + Hbrs — bs) + bF = presay .

We choose this form in order to make it easy to use the results from [2], in which
constitutive equations were written for ¥b;, — b,;) and T;; and (8), was regarded as an
identity giving the constitutive description of b,; + b, .2

We now simplify the equations by supposing the porous medium to be at rest and
rigid, and so allow ourselves to ignore the equations of balance of force and mass for the
solid. We also suppose the fluid to be incompressible; more precisely, we suppose p; to be
independent of place and time. In this way our set of equations reduces to the pair

2 . _
21¢ + div (¢v) = 0,

. 3 ®)
div (T, + 4T;) + b + b° = ptp(; v+ Vvv)-
In (9) the inessential subscripts have been dropped and & =3(b;;, — bs,).

We remark that (9) is exactly the equation of force considered in the usual mixture
theories. The difference between this approach and the traditional one lies, at this level of
specialization, in the form of the constitutive equations as restricted by the Clausius-
Duhem inequality.

Finally, we note that we shall have occasion to deal with the volume flux or seepage
velocity

q = ev.

Constitutive equations. In order to formulate constitutive equations it is useful to
introduce thermodynamic variables and thus one needs to consider also the equations of
thermodynamics. In [2] this has been done for a general mixture theory and the results
there have been specialized to a case of a mixture of a viscous fluid and an elastic solid. We
here shall further specialize those equations.

*In [1] it is argued that T, + 4 Ty, and T, + 4 T,, may be interpreted as the partial stresses of the traditional
formulation of mixture theory.
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In [2] the constitutive equations begin as giving, in particular, T,, T,, and 5 as
functions of the deformation of the solid, of the fluid velocity gradient, of the volume
fractions of both solid and fluid, and of their gradients as well as of the thermodynamic
variables. Assuming that T, is linear in Vv and Ve, and applying the second law of
thermodynamics, one obtains (ignoring dependence of all quantities on temperature and
on the presumably unvarying solid volume-fraction)

Tf = _pl + 2/4‘70,
T, = 251, (10)
b= b, Vv, ¢, Vo).

Here p, p are arbitrary pressures, | is the identity tensor, u is a scalar-valued function of
¢, and Vo is the symmetric part of Vv.?
The residual thermodynamic restrictions on these equations are:

u>0,  bv—PB)Vev<08 (1
Assuming that b is linear in v, Vv and Ve, we obtain:
b=—-av+avVe
where a and & are functions of ¢. We find that (11), requires
a0, a=8§. (12)

Then (12) and (11), complete the thermodynamic restrictions on these constitutive equa-
tions.
Under this set of assumptions the balance equations (9) become

%¢+dwwm=a

2 (13)

Y, v+ Vvv)-

—Vp+2div(uVo) —av + Ve + b = p¢(
Here p is an indeterminant pressure.®
To proceed we need information about the material parameters u, «, 8, all of which are
functions of ¢. For u a partial guide may follow from results for fluid mixtures. It appears
that for mixtures of fluids

=™
is appropriate; here 7 is the viscosity of the base fluid and the factor ¢? reflects both that 7;
is an averaged stress (across the mixture area) and that the fluid only *“sees” a fraction ¢ of

adjacent fluid (see [8] for references). The porous matrix may present less ‘“‘window” for
the fluid to react on itself, or may enhance the drag, so we are led to guess

m= Ao (14)

3 To obtain (10) and (11) it is necessary to assume that the entropy flux is of the form heat flux divided by
temperature, and that the term which represents the rate of working due to volume expansion is linear in div v.

4B(p) is the derivative of a certain free-energy function with respect to ¢; the coefficient v of (10) is the
derivative of that function with respect to solid volume-fraction.

5 Thus pj is to be determined by external conditions. But recall that when the medium is not saturated external
conditions must include the effect of the undesignated third constituent.
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where X is a positive viscosity factor dependent only on the solid parameters, i.e. for us a
constant.
Thus our equations of motion are

(15)

% o + div (o0) = 0,

—Vp + 29\ div(ﬁ@) —av + Ve + b° =p¢<%v + Vuv)-

In the succeeding sections we shall examine how one might evaluate «, 3 and A.

D’Arcy’s law. We first reduce the set of equations by considering a situation common
to measurements of D’Arcy’s law. We suppose that the flow is saturated, in a uniformly
porous block of large cross-section, and that the only driving force is an applied pressure
gradient. We suppose steady-state conditions have been established. Thus the viscosity
term is negligible (wide cross-section), Vo = 0, 5 = 0 and @ = 0. Hence

- Vp—av=0. (15)

Now p/¢ is, within a constant term, the fluid pressure applied at the ends of the section
(see below), so that in the usual terms

- Vpappl = - (a/¢2)q
where ¢ is the volume-flux. Thus
a = /K (16)

where K is the specific permeability, as usually measured.

Fick's law. We consider a situation in which the fluid does not saturate the material
and let the pressure be supposed uniform. We presume that viscous effects are negligible
and that the flow is established as steady. Then

0= —av+ BVe. (17)
Hence
v = (8/a)Ve
and the conservation of mass then requires
Lo+ div (§¢v¢>=o.
This is the equation of diffusion, and the coefficient of diffusion is
D = —(B/a)e.

D is traditionally assumed constant, although it is now often suggested that it take the
form Dge". In any case, with (16), this yields

B = — en(D/K). (18)

A situation in which 8 may be measured is as shown in Fig. 1. Were D constant, one
would obtain

B = avl/m, (19)
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where m; is the (fixed and uniform) porosity of the medium. (In general, however, D
cannot be expected to be constant over such a large variation of ¢.)

Boundary flow at permeable walls. Here we shall study the effect of the viscosity factor
and how one might measure it. Clearly it is significant only near a boundary, but the
difficulty of measuring gradients against a solid boundary rule this out as a model
situation. Hence we are led to consider an open wall, that is, a case in which the porous
medium terminates in a pool of the fluid. We may presume that no capillary forces are
evident and we remove the likelihood of other surface affects by supposing all fluid flow is
parallel the wall. Thus the significant effect is viscous shear.

In [4] Beavers and Joseph consider this problem from the opposite point of view, that
of determining boundary conditions for the flow past a porous wall.® They propose a
boundary condition which ignores variation of flow through the porous medium, namely

v _ v
dy 0 - K (Ulo qave) (20)

where the situation is as shown in Fig. 2 (a reproduction of their Fig. 1); v is the velocity
and ¢ay. is the average volume flux through the porous medium. The flow is driven by a
constant pressure gradient. They state that v seems to be independent of viscosity n, and

8 See also [9], in which the relation of Beavers and Joseph is derived, via averaging arguments, from micro-
scopic flow rules.
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present some experimental results, later augmented by more precise measurements in [10].

This proposal is not satisfactory to us here, as it ignores variation of velocity in the
porous matrix. We shall instead solve the flow equations in both regions and devise a
matching procedure as follows. On a heuristic basis we may argue first that the velocity in
the free stream must be zero on the solid parts of the boundary and must match the
diffusing velocity of the fluid on the “holes” in the boundary. An area average of zero
velocity and the interior velocity v is of course ¢v, and we postulate

Uoutside = ®Uinside -

Second, we suppose that the fluid and the solid each receive a shearing stress from the
external stream. The part taken by the fluid is ¢n (dv,u/dn), and this must equal the force
exerted by the interior fluid, Ap?n(dv/dn); here n is the normal to the surface. Hence

aUoutslde = )\ é_lﬁnslde
on $"on -

Thus we shall choose to match more or less according to the illustration (Fig. 2 here) of
Beavers and Joseph.
In Fig. 3 we picture our model situation. Qur equations are

_dp

dx+7]W=0, y >0, (21)
and
d, 1 d*v
—¢:1%_¢2n(l?u_}\d—)/?)=0‘ y <0. (22)

The matching conditions are

v(0+) = ov(0-), (23)

dv dv
dy (0+) = oA & 0-).
The solutions we may write as
v = Vyh® — y*) + Cth — y), y >0,

_ sinh oy sinh é(y + /) i <0,
0= Vit Ve Gnhol sinh 37 Y

'y

i

2 ® o x X
- 077777

FiG. 3.
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where 4 and C are determined from (23). Here
6 = 1/(K\)V2, (24)

Vo(h* — y*) — Vo(h — p) is the classical channel flow solution and V 4is the classical D’Arcy
flow solution. More significant is that

dv o s [ eVy }
7 (04) = A3 {Sinh Lo+ [0(0+) — V] coth bl

so that in the limit as 6| — © we obtain (20):

G 0+) = M00+) = V4] = (VKIT0+) - eV

Thus N6 = (X /K)"* is approximately equal to the coefficient /K introduced by Beavers
and Joseph.

The measurements in [4] give values of v in the range 0.1 to 2 for various porous
media, while the presumably more accurate readings of [10] give 0.1 for a particular
foametal medium. Thus we may presume 0.01 < X < 4 for this class of materials. A value
of A greater than | gives an augmented viscosity in the porous medium, one less than | a
reduced viscosity.

For the purposes of measuring A a more direct measurement can be made, using simple
viscometers. As an example we compute a simple shear solution. In Fig. 4 we diagram the
model situation. We have the same geometry as before, but v(h) = V and there is no
pressure gradient. Solutions are

v(y) = v = ApdA(h — y).  y >0, (25)
v(y) = A {sinh 6y + tanh 4/ cosh &y}, y <0,

where 4 = V/g(tanh 6/ + Aoh). The shear force per unit area required to drive the shearing

18

v
N . (26)

1
+ o
h Nod tanh 6/

The measurement of the shear force then yields A. Alternatively, we can say that the
viscometer with porous base has an effective width of

I+ "; \/1}? tanh 1/(K\ Y2,

y i

——
h

__E s

70

X

FiG. 4.
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Appropriate values (from [4]) are K >~ 107®in? and A =~ 1072, so (K/A)"? =~ 1072 in and the
values of 4 must be quite small if the effect is to be noticed.

Equations and boundary conditions. We now may regard our equations of balance
as settled. Thus we have

% ¢ + div (o) = 0,

. . =~ o' D 0
— Vp + 29\ div (¢*Vv) — KUVTeny Ve + b® = pe (5‘{ v+ Vvv). (27)

The only boundary conditions so far discussed are the defining condition
(T/ + % Tfs)'bndry = Tfe -0

where ¢ is the term 4(o,s — 05/), and the tangential flow conditions of the last section. o,
which represents the solid-fluid interaction, can have many causes. One thinks immedi-
ately, of course, of capillary forces; there may be more esoteric effects such as surface
close-packing which would create a retarding force proportional to velocity and a decrease
in the viscosity window; both effects would necessarily be modeled as surface-concen-
trated.

Of more immediate interest are the velocity boundary conditions. First, at an impene-
trable boundary we adopt a no-slip condition:

v-n =0,
where n is the normal to the boundary.

Next let us consider a boundary across which there appears free fluid. Let the external
velocity be v, , the internal velocity », . The continuity of mass requires

Vo'n = @U;'n,

and in the previous section we have argued the same should hold for the tangential flow.
Hence we are led to

Uy = @U; (28)

on the boundary. We have also argued in the previous section that the normal derivatives
of the tangential flow are related according to a factor Ae: we extend that here to suggest

9 g &y
on UO—AQO on Vg . (29)

It is interesting to note that (28) and the constitutive equations for the stress are in a
real sense not compatible unless A = 1. We shall see that we are forced to postulate that ¢
includes a shearing force exerted by the solid matrix upon the fluid.

To develop the ideas most clearly, let the surface be plane, let n denote its normal; if » is
a vector let », denote its (scalar) normal component and v, its (vectorial) tangential part,

" Eq. (28) states that v, and ¢ are equal at the boundary; here we see that the connection is not smooth (C*).
Even had we chosen to linearize T in ¢ rather than in v, we should not have had a C' connection unless the
viscosity coefficient was equal to one.
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0/ 0n the directional derivative in the direction of n and 8/87 the vector derivative in the
plane of the surface (e.g., 8/0x1 + a/dyJ).
The force exerted on the surface by the entrapped fluid is

—pn + Ae™Von + Ne™n(Vv,))"n + o
and that exerted by the free fluid is
—pn + nVuven + Vo, Th.

We may argue as before that the shearing force of the free fluid should divide between
solid and entrapped fluid on the basis of area average. Here this yields, in our special
notation,

av ov ov ov
2 iT 2 in - o1 on ,
AN T H AT S o= en Tt en 0
By using (28) and (29), this becomes
OU;in 7 ov
o;= o0 [¢p 3;- + v —a—t - Ap e } " (30)

Clearly it is not reasonable to suppose that o, is always zero even if A = 1.

For normal forces we take account of the transport of momentum, and require the
entrapped fluid to accept the fraction ¢ of the external normal force plus the momentum
transfer of the external fluid. Thus

- v v2 ov Uo?
_ 2, in i - _ on o,
P+ 2 ™y an + 0, + ¢0pUin > ep + 2¢m “n + pUon >
By using (28) and (29), this becomes
v? v?
=Pt epOn T+ 0n = —ep + Ui

We will presume that o, arises due to capillary forces or surface peculiarities of the
medium. Supposing it is zero here, we shall require

2
p=ep+ell = Mpvin S 31

For a porous medium terminating in a pool (28), (29) and (31) are appropriate conditions.

Finally let us return to the unsaturated situation. It is not difficult to convince oneself
that the pore pressure p, should be constant when the medium is unsaturated. Thus the
contribution to p due to T, would be ¢p, . But p, also acts on the solid, with a true pressure
pr on an area fraction ¢ of the solid. Thus the stress on the solid, as averaged over the
solid, is (1 — ¢)ep; . Still arguing on a microscopic basis, the stress the fluid exerts on the
solid is then (1 — ¢)e¢p, , and the stress T, , as defined in [1], represents the sum of the
forces: 2(1 — ¢)pp, . Thus we may expect that in the non-saturated cases the pressure g
should take the form

5 = op; — 2 (1 — ¢)ep,

b = o’y
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where p; is uniform, but of arbitrary magnitude. Thus the equation of motion becomes

2,
20\ div (p*V9) - €L v — (21), +1 2) eV + be = p¢(iu + qu)-
K at

Boundary conditions appropriate to this case seem to be that ¢ and v must be given on
the boundary.

Corrections to flow calculations. We have rough estimates for A and K which should
enable us to estimate the effect that the viscous drag may have on flow calculations in
which viscosity is normally ignored. As an example let us take a situation which might
describe a common laboratory measurement of the permeability. Consider the two-
dimensional flow pictured in figure 5. Assuming a constant pressure gradient through the
uniform porous block, we solve

(v @)
P—M(K Ady’

to find the x-velocity v satisfying
- v o
v(h) =0, dy 0) = 0.
With V, = KP/en we find

_ _ cosh Bg>
o) = Vo (1 cosh 6h

with § as before. The average volume' flux is then

. _tan&h)
q_Vo¢’<1 '6'h

_kp (1 _ tanh 6h>
7 oh

and thus the usual calculation, since P is the negative of the pressure gradient, gives an
apparent permeability

_ _ tandh)
K_K<1 oh )

T2,
S Rl X H|R
g

E

Y

FiG. 5.
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Our estimates, K ~ 107%in2and A\ ~ 1072, give 6 ~ 10*in~*; thus the correction to (1) is less
than 1/h 10~* where A is in inches. If & is of significant size this shows that the correction
due to viscosity is, as expected, small.

A modified diffusion equation. In order to reduce the equations to the classical diffusion
equation we found it necessary to ignore viscous effects. Here we shall determine the form
that the equations take if the terms involving viscosity are left in the system. For simplicity
we restrict our attention to the case of one space dimension. We denote partial derivatives
by subscripts and set

e = 2\K.

Then if we neglect inertia and Vp® we obtain

et (e0)s =0,  €(e’x): — @ — Dyp, = 0. (32)
Here v is a scalar. We may eliminate v from these equations; the result is

(eoxx + @)’0r = (€0orix + Dogy)i(eprx + ¢) = (€peix + Dop: Xewrz + €)x
except where e, + ¢ = 0; then it takes the form
eopx + Dop, = 0.
If the equation is now linearized about ¢ = 0 it becomes
¢t — €oixx — Dorr = 0. (33)

This equation occurs often in the literature. We know that ¢ > 0, and D > 0 seems
reasonable to assume. If so, the equation is well-behaved: Ting [11] has established a
classical uniqueness result and mild minimum and maximum bounds. Barenblatt, Koch-
ina and Zheltov [12] have found several solutions and, of particular interest here, have
shown that the response to a sudden change in boundary value at x = 0 from an initially
uniform distribution shows a jump at x = 0 which decays exponentially. Chen and Gurtin
[13] have observed that (33) admits stationary discontinuities in ¢.xx , Which decay in
amplitude.

Note added in proof. 1 have found that the incompressibility condition was not
completely exploited in [2]. For the situation considered here, it follows that in the
saturated case the pressure term should have the form —¢Vp rather the —Vp. This correc-
tion to the general equation does not affect any of the calculations appearing here.
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