QUARTERLY OF APPLIED MATHEMATICS 325
OCTOBER 1978

A GLOBAL PARTICULAR SOLUTION TO THE INITIAL-VALUE
PROBLEM OF STELLAR DYNAMICS*

BY RUDOLF KURTH (Southern Illinois University, Edwardsville)

Summary. An explicit global particular solution of the initial-value problem of
stellar dynamics is presented.

1. After the local existence and uniqueness of a solution to the initial-value problem
of stellar dynamics was demonstrated in 1952 [S], Batt proved, in 1963, the global
existence and uniqueness for a modified, “mollified” initial-value problem, approximating
the mass dersity function by a local average [2]. There was still the question whether or
not there are global solutions to the original initial-value problem. Neunzert expressed
doubts [10]. Recently, however, Batt has proven the global existence and uniqueness for a
class of solutions which are distinguished by certain symmetries [3, 4]. Apparently no
explicit example of a global solution has been known thus far. In this note, such an
example is given. It exhibits the same symmetries as the solutions investigated by Batt, and
generalizes a model of stellar systems discussed by v. d. Pahlen [11] and Scherrer [12] in
which it was assumed that there is no velocity scattering. That model is related to
Newtonian cosmology, which, however, is marred by a singularity on the time axis [5, 9].
The solution presented here yields a model of Newtonian cosmology without such a
singularity (without an initial “big bang).

2. Let x and u be arbitrary points of the three-dimensional Euclidean space E® (x
being the “position vector”, and u being the “‘velocity vector”), and let ¢ be the “‘time
variable,” defined on the real axis £'. The initial-value problem of stellar dynamics then
reads:

to determine, if possible, a non-negative real function f (the “frequency function™),
defined on E7, such that:

(i) thereis a region D C E” in which f is positive (excepting, possibly, a set of measure
0) and has continuous partial derivatives with respect to all its variables. The intersection
of D with every hyperplane ¢ = constant in E7 is nonempty. Outside the closure of D, f
vanishes.

(ii) f satisfies, in D, Liouville’s equation (the *“Vlasov equation’’)

ﬁi_}_ﬂu_a_ff_z:o
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* Received November 14, 1977; revised version received January 25, 1978. The author is greatly indebted to
the referee for his helpful criticisms.
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is the ‘““gravitational potential” generated by the ‘““mass density”

px | 1) = /;sf(x,u | 1) du.

G is the constant of gravitation, 8/dx and 9/0u denote gradients with respect to x and u;

the products are scalar products.
(i) f(x, u | 0) = fo(x, u) for all (x, u), where f,: E® — E' is a given non-negative
continuously differentiable function such that

0< f folx, ) d(x, u) < o,
EG

For any such function f and all values of ¢,

f fox,u | 0y dx, u) = f folx, u) d(x, u) = M,
ES ES®
the “total mass of the system.”

3. Considering a system of spherical symmetry in the configuration space (the space
of the position vectors x), we choose the units of length, time, and mass in such a way that
M = 1, G = 1, and the initial radius of the system (i.e., its radius at the time r = 0) is unity.
We introduce a function ¢ of the time variable ¢ (which later will turn out to be the radius

of the system):
Let ¢ be a real-valued function of the time variable ¢, defined in a neighbourhood of

the time zero by
¢ + ¢ =1,
¢(0) = 1,
#(0) = H = const.

(¢ and ¢ denote the first- and second-order derivatives of ¢.) Then the solution of this
initial-value problem can be extended to the whole time axis, and ¢(¢) is positive for all ¢.

In particular:
(o) IfH =0, then ¢(¢) = 1 for all ¢.
(i) If 0 < |H| < 1, define the numbers v, and ¢, by

cos v, = H, 0< v <m,
—(1 — H*)*?%ty = vy, — H sin v,
and, on the whole real line, the function ¢ — v(¢) by
v— Hsinv = (1— H*»?(t — t,).
(Kepler’s equation, elliptic case.) Then,

_ Il —Hcosv
¢ T

(ii) If |H| = 1, define the function v by
v+ =20t + %)
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Then,

¢ = ¥1 + v?).

(Parabolic case.)
Gii) If |[H| > 1, let

cosh v, = H,

__(H2 - 1)3/2t0 = Vy — H Sinh Uo 5

and
v — Hsinho = (H?— 1)*2(t — t,).
Then,
_Hcoshv -1
= T

(Hyperbolic case.)
In the elliptic case, ¢ is a periodic function of ¢, the period being 2x(1 — H?)~¥Z%. In the
parabolic and hyperbolic cases, ¢(f) — © as |[t]| — .

4. Now the announced explicit solution to the initial-value problem can be given:
The function f:E” — E', defined by

fleul0 = 5 [‘ - %)2 = (gu = §x) + (x X u)z]_m

where the radicand is positive and |x X u| < 1,

0 otherwise,

is a solution to the initial-value problem of stellar dynamics, f, being given by f(. | 0).
(““X”* denotes the vector product.) The corresponding mass density p and potential ¥ are

o 0= (%) 601 it 1xl <o,

= (0 otherwise.

and
Vix | 1) = 4 x[¢(0)]° = $o()]" for |x| < ().
The assertion is proven by straightforward verifications: the conditions (i) — (iii) of
Sec. 2 are satisfied.

(For the proof note that the condition |x X u| < 1, which is invariant under the
“phase flow”, and the inequality |x| < ¢(¢) are equivalent. For, let

§=x/¢, n=¢u— éx,

and define R? and T? by
R+ T =9 BT =(Xn)?=(xXuo
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The radicand in the definition of f now reads:
I — & — (R + T?) + £
It is positive if, and only if,
(1 — &)1 —T%) > R~
Therefore,
<l ],

which implies that
(x X u) = £2T*< 1< ‘i’ =gl <1,

as has been asserted.)

The solution has been constructed by a combination of three results already known:
(1) Schiirer’s space-time transformation [13], (2) its application to self-gravitating systems
[7, 8], and (3) Ahmad’s construction of a stationary self-gravitating system of uniform
density [1].

5. If in the differential equation for ¢ given in Sec. 3 the right-hand side 1 is replaced
by 0, the corresponding equation of v. d. Pahlen’s and Scherrer’s model [11, 12] and of
Newtonian cosmology is obtained. The term ignored in these models corresponds to the
velocity scattering, that is, in the hydrodynamical interpretation, to pressure [9]. It thus
becomes understandable why, in these models, a collapse of the whole system into a single
point, i.e. a singularity on the time axis, can (and does) occur: there is no pressure
counteracting gravitation. Or, kinematically, the simultaneous arrival at the centre of all
the ““‘mass elements” is possible only because, at any given point x of the system, there is
no local scattering of the initial velocities.

In a cosmological interpretation of the frequency function f, the real number H would
be the (dimensionless) Hubble constant. Since its empirical value is of the order of unity,
but is not known very precisely, the qualitative character of the function ¢ (i.e. of the
radius of the “Universe” as a function of the time variable ¢) would (still) be empirically
uncertain.
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