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1. Introduction. Plevako [1] introduced a representation for the displacement and
stress in an isotropic elastic solid in which the elastic parameters vary with the Cartesian
coordinate z. Here an integral operator method introduced by Bergman [2] in connection
with the hodograph equations of subsonic and supersonic gasdynamics is employed in
combination with the Plevako equations to obtain representations for the displacement
and stress in terms of harmonic functions. If the elastic parameters of the material are
taken to be arbitrary functions of z, then the displacement and stress are shown to be
expressible in terms of two infinite series involving two harmonic functions and their
derivatives. If, however, the elastic parameters take on certain specific forms then these
series are shown to consist of only a finite number of terms. In particular, for an
incompressible material with shear modulus given by n = n0{ I + c \z \) (where n0 and c are
positive constants) the stress and displacement are written down in terms of a single series
which contains only two terms. The representation thus obtained is used to consider the
problem of a pressurized crack. The crack problem is reduced to a Fredholm integral
equation. The first two terms in the iterative solution of the Fredholm equation are
derived and used to obtain an expression for the crack tip stress intensity factor.

2. The basic formulation. The linearized equilibrium equations for an isotropic
Hookean elastic solid are

where

= 0, / = 1, 2, 3 <jij = Tji), i = 8/8xi, (2.1)

tu =\Ekkbij + 2juEtj, i,j = I, 2, 3. (2.2)

Here, tu, Eu, represent Cartesian components of the stress and strain tensors respectively,
while X and n are the Lame elastic parameters. The strain displacement relations are

En = l/2[^ij + njj]. (2.3)
If we write (jti, jc2, x3) = (x,y, z) and if X, n and Poisson's ratio v are assumed to vary in

the z-direction alone, then the Plevako [1] representation for the displacement and stress is
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as follows:

u = (cV2 - -*) SJL + M _ JL) Ik - M
1 12n V gz2/ g* gj;' V gz2/ g>> dx'

T(v'-£)£ + i[U"v'~i?)L]}- <2-4)

(fx? 0" y> ) «#;v<+ a'
8f 8x28z2

f^rV2! ^

~ ("Tjyi 7",v2i ]

dx2 ' ' g/g*2.

82L

r + 9 _£!*
M g„v g/

I - 2, 82N

"v'-£
dx 8y M

g2 82

g.v2 g/_

82L 82N

8x8y

_8^_ g^
g.v2 g/J

g2 g2~

g*2 g/_

g2 g2

. <9*2 g/.
I, (2.5)

N,

Jlk- + i^Ll om
gxgz dydz.8y8z * 8x8z'

where primes denote derivatives and L and N satisfy

~ vi) - {(v° - £;) l} {^}"-°- ("I

V2N + = 0. (2.8)
/x gz

3. The Bergman series approach. In the spirit of the work of Bergman [4] which was
developed in the context of the hodograph equations of gas dynamics, solutions to (2.7)
and (2.8) are sought in the form

L = i Fnfn(z), N = X Gngniz), (3.1, 2)
n = o n = 0

where Fn, Gn are harmonic functions of .v, y, z obeying the recurrence relations

8Fn/8z = F„_„ 8Gn/8z = Gn-U n = 1, 2, • ■ - . (3.3, 4)

This approach is analogous to the formal wavefront expansion method of geometric optics
which has been widely used in recent years (see Karal and Keller [3]).

Combination of (3.1) and (2.7) provides

n =0

where

Hence, if we set

= 0, (3.5)an"Fn + {2an' + bn"){8Fn/8z) + {2bn' + /»{"}"} (d2Fn/8z2)

a» = (l- ")fn"/n, bn = 2(1 - v)fn'/n. (3.6, 7)

an" + {2an+i + bn+1") + ^2bn+2' + /»+«{-}"} = 0, n = 0, 1, 2, • • •, (3.8)

2a0'+ b0" + 2b1'+ = 0, (3.9)

2b°' + = 0 (3.10)
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then (3.5) is automatically satisfied.
Insertion of (3.2) into (2.8) provides

gn" + —gn>Gn+<2gn' + *-g;
SGn

o n I u ~o n. o' MH ) { /x J 8z

and this is automatically satisfied if we set

= 0 (3.11)

gn" + — gn'+ 2gn+1'+ — gn+l = o, n = 0, 1,2, (3.12)

2go + J So = 0. (3.13)

Thus, the relations (3.5)—(3.10) iteratively define the fn in (3.1) while (3.12)—(3.13) itera-
tively define theg„ in (3.2). Further, in view of the recurrence relations (3.3) and (3.4), we
have

L(x,y, z) = £ fn(z) fV„(0[(z - 0"-'/(« - 1 )\]dt
n-0

= f S fn(z)(z - t)n~W(n- mF0(t)dt, (3.14)
Zq n = 0 J

N(x,y,z) = £ gn(z) r J G0(t)[(2 - tf^/in - 1 )\}dt
n = o *>zQ v n =o

= /_{z £»(z) (Z - r)"-V(/i - 1)! j G0(t)dt, (3.15)

where the interchange of the order of summation and integration is valid in the region of
uniform convergence of the kernels

CO CO

Z fn(z)(z - ty~V(n - 1)!, z gn(z)(z - ty-V(n - 1)!. (3.16,17)
n=0 n=0

In (3.14) and (3.15), z0 and z0 are reference constants. The convergence properties of (3.16
and (3.17) depend on the form of the/„ andg„ which in turn depends on the nature of the
inhomogeneity of the elastic parameters.

4. A particular class of solutions. Attention is now restricted to the case

v = constant, n(z) = n0(\ + cz)b (c > 0). (4.1,2)

It is readily seen that the system (3.6) — (3.10) admits solutions of the form

fn = an( 1 + czf- (4.3)
where, from (3.10),

/? = j [b + 1 ± {{b + 1)[1 - vb/{\ - H)I/2] = j [b + 1 ± v] (4.4)

while (3.8), (3.9) provide solutions to (2.7) in the form

L = (1 + czf i jr an(1> (1 + cz)-» Fnw + (1 + cz)«*£ (1 + cz)-n Fn{2) , (4.5)
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where

(r, - Jn + n2 - <h 4- ->V~
n = 1,2,a 111 =un

(17 — 2n+ l)2 - (A + 2f
8 n (4.6)

= (n + 2n - l)2 - (A + 2 )2
8« c« = 1, 2, •••, (4.7)

0, = \ [b + 1 + 17], /?2 = y [A + 1 - 77] (4.8, 9)

and a0(i) i = 1,2 are arbitrary non-zero constants. Similarly, (2.8) admits solutions of the
form (3.2) with

gn = dn( 1 + czf~n (4.10)

where (3.13) shows that

7 = -A/2 (4.11)
while (3.12) provides

dn =
(2/i - l)2 - (b - l)2

8n cdn-t,n = 1,2, ••• (4.12)

where is an arbitrary non-zero constant. Thus,

= (1 + cz)"6/2f; rf„(l + cz)-"G„ . (4.13)
n = 0

It is noted that the recurrence relations (4.6) and (4.7) and (4.13) may be written
respectively as

7 (i) _  U + n) Arl,1\ n = 0, 1,2, • • •,

1 n + 1

(a + «)(/? + n)

(1 + ")
(y + n)(8 + n)An>2 ,n °' '' 2' " ' ' (414)

where

= -TTTrU J . ̂ '21 = -W( 7)". = 7-f 4)". C4.15)a„(1) \ 2 / ' " anl2,\2/ ' " rf„V2

anU) / 0, / = I, 2, ^/„ ^ 0, together with

a = [b - 77 + 3]/2, /? = [-A - 77 - l]/2,

7 = [if - 1 - A]/2, 5 = [77 + A + 3]/2,

e = A/2, f = (A - 2)/2.
(4.16)

Hence, if at least one of the parameters in each of the pairs (a, /3), (7, 5), (e, f) is unity, the
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relation (4.14) generates the coefficients of confluent hypergeometric functions of the type

For particular inhomogeneities, the constituent series in (4.5) and the series (4.13)
terminate. Thus, if

ar+i{i) " as+1l2) = dt+i = 0 (4.17)

so that

(ij - 2r - l)2 - (b + 2)2 = 0, (tj + 2s + l)2 - (b + 2)2 = 0,

(It + l)2 - (b - l)2 = 0, (4.18)

then solutions are generated in the form

n = r r)r~n(h n = s r)s~n\b
L = T, ~an v (1 + czy-" + £ an{2) (1 + cz)"-" , (4.19)

n = 0 oz n = o c u

N = (1 + czy^Z dn(\ + cz)-"-|3-, (4.20)
n = 0 CZ

where 0, \p and x are arbitrary harmonic functions of x, y, and z.
In plane strain, a particularly simple case is that in which v = 1/2 (so that the material

is incompressible) and b = 1, whence we obtain

L = —c$ + (1 + cz) — , N = 0, (4.21)
ez

where $ is an arbitrary harmonic function of x and z. The displacements and stresses are
given by

u w  8^_
8x2 8z2.

ek o — 83L + A
8x ' ' n dx2dz 8z

82L 82L
L4ix\~8x2 8z2! J (4.22)

84L ' 8AL -d'L
"x 8x28z2' 8x4' T" ' (4'23)

5. A crack problem. The stress field distribution in the neighborhood of a crack in
an incompressible inhomogeneous material with shear modulus /u = /u0 (1 + c \z\) where
jiio > 0 and c > 0 are constants is now investigated. The crack is assumed to lie in the plane
z = 0 and to occupy the region — a < x < a, — °° < y < °o. By symmetry, it is necessary to
consider only the stress and displacement in the half-space z > 0 where the boundary z = 0
of the half-space is subjected to the boundary conditions

u2 = 0 for |x| > a, (5.1)

<r2 = —p*(x) for |.x| < a, (5.2)

where the normal traction p*(x) will be restricted to be an even function of x.
An appropriate form for the harmonic function occurring in (4.21) is

= (R f A(p)zxp{ip(x + iz)) dp (5.3)
^0

where A(p) is a function to be determined and (R denotes the real part of a complex
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number. Use of (5.3), (4.22) and (4.23) now provides the following expressions for uz and
oy.

/CO
A(p)p*exp(ip(x + iz)) dp, (5.4)

0

a2 = — (R f {c + (1 + cz)p)A{p)p,e\p(ip(x + iz)) dp. (5.5)
J 0

Hence, from (5.1) — (5.5) it follows that A(p) must be chosen such that

(R f A{p)pis\p(ipx) dp = 0 for |x| > a, (5.6)

(R J (p + c) A(p)p*exp(ipx) dp = p*(x) for |x| < a. (5.7)
^ 0

Sincep(x) is restricted to be a real function of x, it is sufficient to take A(p) in the form

Aip) = />" [ r(t\Jo(pt)dt, (5.8)
J 0

where r(t) is a real function to be determined and J0 is the Bessel function of order zero.
With this choice of A(p), the condition (5.6) is automatically satisfied while (5.6) yields

f cos(px)pdp j r(t)J„(pt) dt + c I cos(px) dp j r{t)J0(pt)
J n J o

dt

= p*(x) for 0 < x < a. (5.9)

On interchange of the order of integration and use of standard results for integrals
involving Bessel functions, it is seen that

d rx r(t) C r(t) dt
~dx i„ (x2 - t2)1'2 dt + C J x (t2 - x'Y72 = P*^ f°r 0 <x <a- (5-10)

Use of the inversion formula for Abel's integral equation and interchange of the order of
integration in the resulting double integral now provides

r(t)+ — / K(s, t)r(s) ds = — f f2 for 0 < t < a,
7T J o 7T ^ o V* U )

(5.11)

where
pmtnts, t) ^rK(s, t) = t

j 0 [(f2 - u2)(s2 - u2)]1'2

= — f —   (5 12)4 J.T [^2 + t2 - 2st cos0]1/2

The stress <j2 near the crack tip or z = 0 for x > a may be now generated in the form

<5j3)
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whence

lim (x - aY/2(Tz(x, 0) = r(a)/(la)1/2. (5.14)
x —a +

Thus, once the Fredholm equation (5.11) has been solved, the stress intensity factor may
be determined from (5.14).

To obtain some idea of the behavior of r(a) for small c, the first two terms in the
iterative solution of (5.11) will now be obtained for the case of constant applied pressure
p*(x) = p0. From (5.11), the first term is

r(t) = p0t,

while, again from (5.11), the first iteration yields

r(t) = p0t - f K(s, t)sds
7r J o

2p0c f' du [ " sds
~P0 V 'Jo (.t*-uT2'u

= Pot

(s2 - u2)1'2

_ 2go£L r'2 _ t2 sin20)l/2 d6
7T J o

Hence, for small c,

and so, from (5.14),

r(a) ^ p<fl 1 - -2-C-
7T J

lim (x - a)V2crz(x, 0) ^ p^a
2c_
7T J

(5.15)

(5.16)

This indicates that the pressurized crack in an incompressible elastic material with shear
modulus ix = n0( 1 + c | z |) is more stable than the corresponding crack in a homogeneous
elastic medium with shear modulus n0.

Finally, it is noted that a number of simpler boundary-value problems such as the
problem of determining the effect of a distributed load on an inhomogeneous half-space
may readily be solved by straightforward modifications of the procedure used in this
section.
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