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Abstract. The boundary-value problem for the ionized atom case of the Thomas-
Fermi equation is transformed to a certain convex nonlinear boundary-value problem.
Two iterative procedures, previously developed for such problems, are constructed for the
ionized atom problem. A comparative analysis of the efficiency of the iteration schemes is
presented. The existence and uniqueness of a solution is established and the solution is
shown to have monotonic dependence on the boundary conditions. Numerical bounds are
obtained for a specific problem.

1. Introduction. Luning and Perry [1] have recently derived an iterative technique
for the solution of the Thomas-Fermi equation, which may be written in the form

y"(x) = x-l/2[y(x)]3'2 . (1.1)

The ionized atom case of the Thomas-Fermi equation is prescribed by the boundary
conditions

y(0) = 1, y(a) = 0. (1.2)
Luning and Perry first transform the nonlinear boundary value problem (1.1), (1.2) into
an eigenvalue problem. By linearizing this eigenvalue problem an iterative scheme based
on the construction of eigenpairs is shown to converge to a solution. In addition, the
isolated neutral atom case in which (1.2) is replaced by

>>(0) = 1, lim y(x) = 0 (1.3)
X->co

is shown to have a solution which can be uniformly approximated by the iteration scheme
for the ionized atom case.

By using an approach very different from that of Luning and Perry we demonstrate
two iterative procedures which are shown to converge monotonically to a solution of
problem (1.1), (1.2). Our approach is based on the convexity of the nonlinearity f(x, j(x))
= x~"2 [>'(.v)]3/2 appearing in the Thomas-Fermi equation. Iterative procedures for general
boundary-value problems with convex nonlinearities have been obtained in Mooney and
Roach [2] and are described in the following section. An indication of the physical
applications of these problems can be obtained from the references ([6]-[10]). To these
applications we now add the ionized atom case of the Thomas-Fermi equation by showing
that it can be transformed to one of a class of boundary-value problems described in [2],

The results of Luning and Perry rely on Sturm-Liouville theory for a certain class of
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ordinary linear differential operator and their iterative method is developed specifically for
the problem (1.1), (1.2). In contrast, the methods described here can be applied to certain
elliptic partial differential operators and to a whole class of nonlinear functions / includ-
ing, of course, the case f{x, y(x)) = x~1/2 [v(x)]3/2. The simplicity of our iterative schemes,
developed from the Picard and Newton algorithms, complements the unifying aspects
already mentioned (see [3]).

Subsequently the schemes developed for the Thomas-Fermi problem are compared
and numerical bounds are presented for a particular case. The solutions are also shown to
depend monotonically on the interval length a and to be unique for each choice of a.

2. Monotonicity theory. Before we introduce the iterative schemes, we describe the
general class of boundary-value problems discussed in [2] and [5]. We restrict our
attention to ordinary differential operators.

L is a second-order selfadjoint operator defined for all x in an open real interval D by

Lu(x) = - ^~(«(*)^) + a0(x)u{x).

The coefficient a is continuously differentiate, a0 is continuous and a0(x) > 0, for all x
G D.

We are concerned with equations of the form

Lu(x) = f(x, u(x)) (2.1)

where i £ fl and / is a given function.
It is not necessary to consider here the general boundary conditions given in [2], We

require that if 8D = D D, then a solution u of (2.1) must satisfy

u(x) = 0 for all x £ 8D. (2.2)

Here D represents the closure of D.
To construct our iteration schemes we need some properties for the nonlinearity / in

(2.1). Naturally the construction of a Newton iteration scheme involves greater differen-
tiability requirements for / than a Picard scheme (see [2, 12]). Since we will introduce both
schemes for the Thomas-Fermi equation it is simplest if we require / to satisfy the
following conditions.

(i) f(x, 0) is continuously differentiable on the two-dimensional space
{(.x, 0(.y)): x E D,<t> E C\D) and 0 > 0 on D}; (2.3)

(ii) f(x, 0) > 0 for all x E £>; (2.4)

(iii) fu(x, 0)= J_y( u)
du

> 0 for all x G D and 0 > 0 (monotonicity

condition); (2.5)
(iv) fu(x, 0) > fu(x, ip) for all x G D and 0 > \p > 0 (convexity condition). (2.6)

We can now give our iteration schemes. A sequence of Picard iterates |u„(.v)}, n > 0, is
formally defined by

L un + ,(.v) = f(x, «„(*)), -v G D ^

un + 1(x) = 0, X G SD
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where u0(x) is a given function defined on D. For Newton iterates n > 0, the
corresponding definition is

L vn + 1 = f{x, vn) + fu(x, vn)(vn+1 - i>„), x E D
(2.8)

Vn + l =0, xE 8D

where v0(x) is a given function defined on D.
The uniform convergence of the iteration schemes (2.7) and (2.8) to a solution of the

problem (2.1), (2.2) is discussed in the monotonicity theorems which follow. It is well
known (see [2], p. 84, for references) that certain problems of the type (2.1), (2.2) possess
positive solutions and that there is a minimal positive solution u(x) (i.e. 0 < u(x) < u(x) on
D for any solution u(x)). These existence theorems do not apply to the Thomas-Fermi
problem (1.1), (1.2) for a reason given in the next section. Instead, we use a monotonicity
theorem based on the existence of a subsolution and a supersolution for the problem (2.1),
(2.2).

If v satisfies the differential inequalities

L u(x) — f(x, u(x)) <0, x £ D
(2.9)

u(x) <0, x (£ 8D

then v is called a subsolution of the problem (2.1), (2.2). By reversing the above inequality
signs a supersolution of the problem (2.1), (2.2) is defined.
Theorem 2.1. If u0 is a subsolution and U0 a supersolution of problem (2.1), (2.2), subject
to the conditions (2.3) - (2.5), and Uo , U0 are such that u0(x) < U„(x) for all * £ D, then
problem (2.1), (2.2) has at least one solution u(x) with u0(x) < u(x) < U0(x) and

(i) the Picard iterates (2.7) beginning with u0(x) converge uniformly and monotonic-
ally upwards to the least solution of (2.1), (2.2) which lies above u0(x) and below
U0(x);

(ii) the Picard iterates (2.7) beginning with U0(x) converge uniformly and mono-
tonically downwards to the greatest solution of (2.1), (2.2) which lies below U0(x)
and above u0(x).

This existence theorem is used in [2] (Lemma 2.2), and a more general form of the
theorem is proved in [12] (Theorem 1). Many extensions ofTheorem 2.1 can be found in
the literature (see, for example, [14] and [15]). In particular, u0 = 0 is a subsolution of
(2.1), (2.2) since L u0 = 0 and f(x, u0) > 0, using (2.4).

We now state a uniqueness theorem contained in Mooney and Roach ([2], Theorem
4.1). This result is applicable to problem (2.1), (2.2) when / satisfies the conditions (2.3) —
(2.6).
Theorem 2.2. If U0 > u0 = 0 is a supersolution of problem (2.1), (2.2), subject to the
conditions (2.3) - (2.6), then the Picard iterates (2.7) with initial iterate UB(x) converge
uniformly and monotonically downwards to the least solution of (2.1), (2.2) above u0 = 0
and below U0 provided U0 is not a solution. The proof of this is essentially contained in [2,
Lemma 4.2],

Comparing this result with Theorem 2. l(ii), it follows that there is a unique u(x)
satisfying 0 = u0(x) < u(x) < U0(x) on D where U0(x) is a supersolution of problem (2.1),
(2.2) and u(x) is a solution of (2.1), (2.2) subject to the conditions (2.3) - (2.6) on /. This
unique solution can be approximated from above or below using the monotonic Picard
schemes described in Theorem 2.l(i), (ii) above.
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We complete our monotonicity theorems with a result on the Newton iterates (2.8).
Theorem 2.3. If U0 ^ 0 is a supersolution of problem (2.1), (2.2) subject to the above
conditions on /, then the Newton iterates (2.8) beginning with v0(x) = 0 converge
uniformly and monotonically upwards to the unique solution u{x) of (2.1), (2.2) satisfying
0 < u{x) < U0(x).

This result is a consequence of [2, Theorem 3.1]. To see this we use the existence of U0
which guarantees by Theorem 2.1 that a unique solution w(x) exists with 0 < u{x) < U0{x).
u(x) is clearly a positive function since u{x) = 0 is not a solution of (2.1), (2.2) subject to
(2.3) — (2.6). If another positive solution U(x) exists, then U(x) is a supersolution.
Consequently the Picard iterates (2.7) starting at u0{x) = 0 converge to u{x) and 0 < u(x)
< U(x). u(x) can therefore be described as the minimal positive solution and the result for
the Newton iterates follows immediately from [2, Theorem 3.1].

It would appear that the conditions (2.3) — (2.6) for / and the boundary condition
(2.2) are restrictive. In practice these conditions can be weakened and suitable transforma-
tions used to obtain a problem of type (2.1) - (2.6) (see examples in [3]).

In the following section we consider a suitable transformation for the Thomas-Fermi
problem (1.1), (1.2).

3. Iteration procedures. The ionized atom case of the Thomas-Fermi equation
clearly has no real solution y(x) for which y(x) < 0 on D = [0, a].

Since y"{x) = x~l'2\y{x)]3'2 on (0, a) and >'(0) = 1, y(a) = 0 then the graph of any
solution is concave upwards on [0, a] and so is bounded above by the line >' = 1 — (x/a).
Consequently any solution y must be a positive solution satisfying

y(x) < 1 - - on [0, a],a

Let u(x) = (1 - {x/a)) - y{x). Then 0 < u{x) < 1 - {x/a) on D and problem (1.1), (1.2) is
transformed to the problem

-u"{x) = xl 1 - ~) -u(x)a

u{x) = 0 at x = 0 and x = a

(0, a),

This problem is of the type (2.1), (2.2) and it is easy to show that f{x, u{x)) = .v~1/2[( 1 ~{x/
a)) — w(x)]3/2 satisfies (2.3), (2.4) but does not satisfy (2.5) where 0 < u{x) < 1 — {x/a).

However, since the coefficient a0{x) in the operator L defined in Sec. 2 is any continu-
ous positive function of we write problem (3.1) in the form

u" {x) + k2x~1/2u{x) = X -1/2 1 - 3/2 + k2x~1/2u{x), x E (0, a),
a,

u{ 0) = u(a) = 0. (3.2)

This problem is of the type (2.1) — (2.4) where L u{x) = —u"{x) + k2x~1/2u{x) and f(x,
u{x)) = x1/2[{\ — {x/a)) - u{x)]3/2 + k2x~l/2u{x), with 0 < u{x) < 1 - {x/a). Since

fu{x, <t>{x)) = k2x-1'2 - [(1 - {x/a)) - (j){x)Y'2 > k2x-l/2 - |x"1/2[l - (x/a)]1'2

>{k2- 3/2)x"1/2>0 on (0,a),
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provided k2 > 3/2 and 0 < 4>(x) < 1 - (x/a), then (2.5) is satisfied. Similarly, (2.6) is
satisfied.

Consequently problem (3.2) with k2 > 3/2 is of the type (2.1) — (2.6) where 0 < 4>(x) <
1 - (x/a).

The restriction <p(x) < 1 - (x/a) prevents the application of the existence theorems in
[16, 17] to problem (3.2). However, we now show that Theorems 2.1 - 2.3 are applicable
to this problem.

u0 = 0 is a subsolution for (3.2) and U0(x) = 1 - (x/a) is a supersolution, since

L U0(x) = k2x'i/2U0(x) = f(x, U0(x)), x E (0, a)\

U0(0) = 1 > 0, U0(a) = 0.

Consequently, Theorems 2.1, 2.2 imply that a unique solution u(x) of (3.2) exists with 0 <
u(x) < 1 - (x/a). Thus (3.2) has a unique solution and it follows by Theorems 2.2, 2.3 that

(i) the Picard scheme (2.7) defined by

-un + i"(x) + k2x l/2un+1(x) = X u 1 ~ ~) - Un(x)
3/2

2 v — 1/2.+ k2x 1,2un(x), x G (0, a),

m„+i(0) = un+l(a) = 0 (k2 > (3.3)

converges monotonically upwards if Uo(x) = 0, and monotonically downwards if u0(x) = 1
- (x/a), to the unique solution of problem (3.2).

(ii) the Newton scheme (2.8) defined by

- vn + 1"(x) + k2x 1/2i;n+1(x) = x 1/2 3/2 + k2x~1/2vn(x)

1 ~ ~a J ~ Vn^
1/2

- f„(x)

vn+1(x)-vn(x)l, x £ (0, fl),

u„ + ,(0) = vn + 1(a) = 0 (f^|)

converges monotonically upwards if v0(x) = 0 to the unique solution of problem (3.2).
The Newton iteration scheme reduces to the form

-vn+l"(x) =

3

- Vn(x)

— v-l/2
2 * - 4] - Vn(x)

1/2
(u„+i(jc) - vn(x)), x E (0, a),

a,

u„ + 1(0) = vn+i(a) = 0. (3.4)

Thus we have constructed three iteration schemes of which two converge monotonically
from below and one converges monotonically from above to the unique solution of (3.2).

Consequently the solution y of the original problem (1.1), (1.2) is unique and is
obtained from the solution of problem (3.2) by using y(x) = (1 - (x/a)) - u(x).

4. Comparison of iteration schemes. We prove two results which are of practical
interest in the selection of an efficient iteration scheme of the form (3.3), (3.4).
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Theorem 4.1. The rate of convergence of the iteration scheme (3.3) to the solution of
problem (3.2) is maximized by choosing k2 = 3/2.

Proof: (a) We consider (3.3) with u0(x) = 0. Thus

~u" + k2xxl2u, = x"1/2 1 - -
L a_

For k2 = 3/2, we write

-W," + y jc"1"*, = x~in 1 a J

Thus,

-(w, - w,)" + |x""\ - A:2*-"2^ = 0,

i.e.

-(wi - Ui)" + | x 1/2(>Vi - = ^£2 —x 1/2«i > 0

when k2 > 3/2. It follows from the maximum principle [18] that Wj — Ui > 0, i.e. Wj > w,
when k2 > 3/2. Assuming that wr > ur, we have

-w = V"1'2^r + l 2 ^r + l

— Ur+i" + k2x i/2ur+i = x 17

Consequently,

1 - f ] - »V
3/2 3

+ y x_1/2wr = f(x, wr), say;

3/2
+ k2x'll2ur [ k2 > 4

-(wr + 1 - Ur + i)" + y X 1/2(wr+, - Wr + I)

(^2 - y) X"l/2wr + 1 + ( J - k2^j Ur + f(x, Wr) - f(x, Ur) > 0

since k2 > 3/2, ur+t > ur, wr > ur and / satisfies (2.5).
Thus we deduce from the maximum principle that wr+] > ur+1 . Consequently it

follows that the sequence |wr}, with k2 = 3/2, converges faster than any other sequence of
the form (3.3) with k2 > 3/2.

(b) By taking u0(x) = I - (x/a) in (3.3), a similar proof to the one above establishes
that the sequence (3.3) with k2 = 3/2 converges faster than any other with k2 > 3/2.
Theorem 4.2. The rate of convergence of the Newton scheme (3.4) to the solution of
problem (3.2) is faster than the rate of convergence of the scheme (3.3) when the same
starting iterate Uo(x) = 0 is used for both schemes.

Proof: From (3.4), (3.3) with k2 = 3/2, and v0 = u0 = 0, we have

3 / x \1/2 3-(y, - «,)" + y x"1/2(j - -jJ v, - y x~I/2Ui = 0,

i.e.
3 / v V/2 3

-(v, - uj + jr1/2(l - f) (v, - w.) = y x~1/2 1-1
x\l/

a)
Ui > 0,



MONOTONE METHODS 311

and so Vi > ux. We now assume vr > ur . Writing

h(x, Vr) = x~l/2 1 - f ] - Vra i

g(x, Vr) = X~ 1- Vr

we have that

-Vr + i" = g(x, Vr) - h(x, Vr)-{vr + i ~ Vr),

ur+l" + y x~V2ur+1 = g(x, ur) + .

Putting f(x, ur) = g{x, ur) + (3/2)x~1,2ur and writing the first of above equations in the
form

3
-Vr + i +TX V2Vr+1 = g(x, Vr) +2

it follows that

j x~1/2 - h(x, vr) {Vr + l ~ Vr)+ ~ X 1/2Vr

~(vr + l - Ur + i)" + ~ X 1/2{vr + 1 ~ Ur + i) = [f(x, Vr) ~ f(x, Mr)]

+

2

~ X~V2 - h(x, Vr) (Vr +1 - Vr) > 0

since / satisfies (2.5). Consequently vr+i > wr+1 , which completes the proof of the theorem.

5. Properties of the solutions. Using the constructive schemes developed in Sec. 3,
we derive some properties of the solutions of the ionized atom problem. First we show that
there exists a unique solution of this problem for all a > 0.
Theorem 5.1. Problem (1.1), (1.2) has a unique solution for all positive values of a.

Proof: (1.1), (1.2) can be expressed in the form (3.2). Any solution u(x) of (3.2)
satisfies 0 < u(x) < 1 - (x/a). It is established in Sec. 3 that 1 - (x/a), 0 is a supersolution,
subsolution respectively of problem (3.2). Consequently a unique solution for (3.2) is
implied, for any a > 0, by the results of Theorems 2.1, 2.2. Thus problem (1.1), (1.2) has a
unique solution for any a > 0 and this solution is positive on (0, a).

On substituting .r = ta, problem (1.1), (1.2) takes the form

w{t) = a3/2rU2[w(l)Y'2, / G (0, 1)

w(0) =1, w( 1) = 0

where w(t) = y(ta). Similarly, the transformed problem (3.2) becomes

-ii{t) + a3/2k2rl/2u(t) = a3/2r1/2[{ 1 - t) - u(l)} + a3/2k2r1/2u(t), t £ (0, 1)

u(0) = u( 1) = 0

(5.1)

(5.2)

where u(t) = (1 — t) — w(t).
Next we prove that the solutions of the Thomas-Fermi problem (5.1) are monotonic

with respect to a.
Theorem 5.2. If 0 < a < 0 and wa(t), wg(t) are solutions of problem (5.1) with a = a, (3
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respectively, then wa(t) > w$(t) for all t £ (0. 1). Furthermore, if ua(t) = (1 — t) — wa(t),
then

ua(t) is a subsolution of problem (5.2) with a = /3, and
Ufj(t) is a supersolution of problem (5.2) with a = a.

Consequently the schemes (3.3), (3.4) applied to (5.2) give iteration schemes which
converge monotonically upwards (resp. downwards) from ua(t) (resp. ug(t)) to the unique
solution of (5.2) with a = /3 (resp. a = a).

Proof: In (5.2) we have

-iia(t) = «3/2[d - t) ~ «-(0],/a < 03/2[d - uM)]3'2.

Thus ua(t) is a subsolution of problem (5.2) with a = (3. Similarly up(t) is a supersolution of
problem (5.2) with a = a. Consequently Theorem 2.1 implies that 0 < ua{t) < up(t). Thus
wa(t) > Wff(t) for all t (E (0, 1).

Since the solution ua{t) is a subsolution of problem (5.2) with a = (5 this solution can be
used as a starting iterate in the Newton and Picard schemes to obtain the solution uB(t).

6. Numerical bounds for solutions. From (3.3), we have

3 ( x\3/2
-u1"(x) +~x-l/2u1(x) = x-l,2[\ - , *G(0,a)

m,(0) = «,(a) = 0,

on putting k2 = 3/2 and u0(x) = 0. The solution u^x) of this problem is a lower bound for
the solution of (3.2), by Theorem 3.2. On letting u^x) = (1 - (x/a)) - y{x), we have

/(*) - jx-^y(x) = x-"2(l - ~ -}*"»(' - f), .£(«.«)
>'(0) = 1, y{a) = 0 (6.1)

and consequently the solution of this linear boundary-value problem provides an upper
bound for the solution of (1.1), (1.2).

Theorem 4.2 implies that a tighter upper bound is provided by the solution of the
problem

1-T*x) - -f- f)"'- X e (0, a)

y(0) = 1 y(a) = 0 (6.2)
which is obtained from the first iterate of the Newton scheme (3.4). Again, using (3.3) with
initial iterate Uo(x) = 1 - (x/a), we have

y"(x) - ^ x~V2y(x) = 0, x E (0, a)

}>(0) = I, y(a) = 0 (6.3)

where y(x) = (1 - (x/a)) - ut(x). The solution of (6.3) provides a lower bound for the
solution of (1.1), (1.2).

Unfortunately there are no known analytic solutions for problems (6.1)—(6.3). The
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TABLE 1.

1

a,„ 1 2 0.5 0.04761 0.00238 0.00007
fl1+3„ 0 0 0 0 0 0
a2+3„ a2 0.4a2 0.05a2 0.00303a2 0.0001 la2 0

simplest equation, in (6.3), has the solution

u(x) = exp f x{x)dx

where z(x) is the solution of the Riccati equation z' + z2 = (3/2)x~l/2, and Liouville has
shown that this equation has no closed-form solution in terms of elementary functions
[19]. In addition, the Liouville-Green approximation [20] which provides an approximate
analytic solution for many problems of the form (6.3) fails because the term 0 neglected in
the approximation and given by

= -/-»/«(*) A t/-V4W] with f(x) = | X-"2 - 1,

is not small on (0, a).
The solutions of problems (6.1 )-(6.3) can, however, be obtained in the form of power

series expanded about the origin. We conclude this section by using Eqs. (6.1) and (6.3) to
provide upper and lower founds for the solution of the problem (1.1), (1.2) in the case
when a = 1.

We consider a series solution of (6.3), with a = 1, of the form

y{x) = £ an xn/2 .
n = o

The boundary condition ><0) = 1 gives a0 = 1 and the series coefficients are listed in Table
1. The boundary condition y(\) = 0 leads to a linear equation in a2 with solution a2 =
— 2.4430. The numerical solution y(x) of (6.3) is given in Table 3.

Applying the same form of series to (6.1) with a = 1 and using the boundary condition
j(0) = 1, we obtain the coefficients given in Table 2. A linear equation in a2 is obtained
from the boundary condition y(l) = 0. We have a2 = -1.8938. The numerical solution
y{x) of (6.1) is given in Table 3.

The solution y{x) of (1.1), (1.2) with a = 1 is bounded above, below by y(x), y(x)
respectively. The construction of a series solution for the problem (1.1), (1.2) itself is
complicated by the fact that the coefficient a2 is required to satisfy a nonlinear equation by
the boundary condition y(a) = 0.

TABLE 2.

n 0 I 2 3 4 5 6

a3n 1 1.33333 0.33333 0.03571 0.00179 0.00020 0
o1+3„ 0 0 0.04286 0.00321 0.00046 0.00001 0.00004
a2+3„ a2 0.4o2 0.05a2 (0.00303a2 + (0.0001 la2 + 0.00007 0

0.00095) 0.00003)
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TABLE 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

I .816 .677 .560 .459 .370 .288 .212 .139 .069 0
,-.(v) I .851 .730 .623 .524 .432 .343 .256 .170 .085 0

7. Concluding remarks. Iteration schemes of the type we have described can be
constructed in a similar manner for higher-dimensional forms of the Thomas-Fermi
equation. Numerical computations employing finite differences and the iteration schemes
developed above will be published elsewhere. These methods give much better bounds
than those in Table 3; however, the latter were obtained without a computer.

The solution of the isolated neutral atom problem can be approximated uniformly and
arbitrarily closely by using solutions of the ionized atom problem. This is discussed in [1],

1 would like to thank Professor R. R. Burnside for drawing my attention to this
problem and also the reviewer for his constructive comments.
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