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A PROCEDURE FOR DETERMINATION OF THE EXPONENTIAL
STABILITY OF CERTAIN DIFFERENTIAL-DIFFERENCE EQUATIONS*

By
R. DATKO

Georgetown University

Abstract. Certain continuity properties of the spectra of linear autonomous differen-
tial-difference equations which depend on a parameter are developed. These results are
used to obtain a practical criterion for determination of the exponential stability of these
systems.

Introduction. In this paper a problem arising from the study of linear differential
difference equations is considered. Suppose we are given an n-dimensional family of
differential difference equations of the type

m

di [x(z) - > Byx(t— ah,)J = Y Ax(t—ah), a>0, (0.1)
t j=1 j=0
where 0 = hy < h; < h, < -+- < h,, are fixed constants. We ask the questions: “In what
manner do the stability properties of (0.1) depend on a change in a? In particular, if (0.1)
is asymptotically stable for « = 0, how large can we take a and still preserve this
property?”’

In the case where B; = 0 for all j, i.e. the retarded case, the answer to this last question
is quite easily given. In this case the roots of the characteristic equation (see e.g. [5]),
although infinite in number, possess a continuity property which allows one to determine
or at least approximate the size of the largest g for which « ¢ [0, ¢) guarantees that the
corresponding system (0.1) is asymptotically stable. If B, # 0 for some j, the above
questions become more difficult. The procedure used in this paper to study these questions
may be outlined as follows. For each a in [0, ) we define o(a) = sup Re{s: s is in the point
spectrum of (0.1)}. Then for « > 0 we can prove that ¢(«) is continuous. In the retarded
case o(a) is also continuous at &« = 0. In the general case o(a) is continuous at « = 0 for a
particular class of systems which contains the uniformly exponentially stable systems.
Thus classes of systems (0.1) for which g(«) is continuous on [0, =) provide us with a
method of determining whether for a given «, the system is uniformly asymptotically
stable. For if ¢(0) < 0 and ay &€ [0, ¢q), where g is the smallest number which satisfies o(«)
= 0, then o(x,) < 0. But from the general theory of retarded and neutral functional
equations (see e.g. [6] and [7] we know that o(a,) < guarantees that for the value
(0.1) is uniformly exponentially stable.

The idea of studying stability though examination of the manner in which the point
spectrum of (0.1) varies as « varies is similar to the method of D-partitions used to study
the stability of retarded linear systems. A good outline of this method can be found in [5,
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p. 132]. The results in this paper are an outgrowth of a report [4] on the stabilization of
linear functional differential equations. In particular, Theorems 2.2 and 2.3 represent a
considerable extension of the work reported there.

1. Preliminaries.

Notation. 1. The symbols B;,j = 1, --- mand 4;,j = 0, 1, - - - m will denote specific
complex n X n matrices, / will denote the n X n identity matrix. The norm, | B |, of any n X
n matrix B = {b,,;} will be defined to be sup,; {|b;;|}. Ann X n real or complex matrix B
will be said to be Hurwitzian if the real parts of its eigenvalues all lie in a half plane Re z <
—B, 8 > 0. The Euclidean norm of any complex n-vector x will be denoted by |x|.

2. X will stand for the Banach space of all continuous mappings from an interval [—#,
0] into R*, the Euclidean n-space. The norm X is given by |¢ | = {sup |¢(1) |: ¢ E [—h, 0]}.

3. R* will denote the nonnegative half line [0, =). The complex plane will be denoted
by C. An infinite vertical strip in the complex plane of the form {s: a < Re s < b} will be
denoted by (a, b). If the strip is closed, i.e. we consider {s: a < Re s < b}, we write [a, b]. If
b = +x, the strip is called a right half plane (open or closed as the case may be), ifa = —
o, a left half plane.

Although we shall also use (a, b) and [a, b] for open and closed intervals of R, we
believe no confusion will arise since the context will indicate whether we are considering a
vertical strip or an interval. The reason for the above notation for vertical strips in the
complex plane is that it is common usage in much of the work involving almost periodic
functions (see e.g. [1]).

4. Let Q(s) be an n X n complex matrix dependent on the complex variable s. We
define 0(Q) = sup {Re s. det (Q(s)) = 0}, if det(Q(s)) # O for at least one finite value of 5. If
det(Q(s)) # O for all finite s we define ¢(Q) = —. In either case we shall, from now on,
refer to a(Q) as the spectral limit of the matrix function Q.

2. The parametric dependence of the spectral limit of certain matrix functions.
Let « be in R* and

O=h<h <+ <hy,=h 2.1)
Consider the matrix function
Fo(s) = I:sl - i A, exp (—ash,)} . (2.2)
j=o

THEOREM 2.1. For each a in R* o(F,) is finite and defines a continuous function as «
varies.

Proof. (i) It can be shown (see e.g. [6]) from the general theory of autonomous
functional differential equations that for each a in R* det(F(s)) = 0 has a solution in C
and that o(F,) < = for each a. (ii) Proof of continuity. Again from the general theory of
functional differential equations, it is known that given a, in R* there exists s, in C such
that det(F, (s)) = 0 and o(F.,) = Re so. Suppose {a,} C R* tends to ap. By Hurwitz’
theorem [8] there exists {s,} C C such that {s,} tends to s, and for each » det F, (s,) = 0.
Since, by definition, Re s, < U(F“n)__iE follows that lim o(Fa,) = Re s = o(Fy ).

We shall now demonstrate that lim o(F,,) < o(F,,) and thus prove continuity at a, and
hence, since «, is arbitrary, continuity on R*. The demonstration is by contradiction.

Suppose there exists ¢, > 0 and a subsequence {a,} ¢ {a,} such that for all @, o(Fo ) =
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o(F,) + €. We may also assume without loss that all «, satisfy
ap — (€0/2) L ayg £ ap + (€/2).
Let

L, = {SEC:Z > |4, exp [— (ao - %‘3) a(ao)h,] > |s| and Res =5, + -623} .
j=o0

Let s; > a(a) + 2¢, be such that

5> jf 14, | exp [—si(co — (eo/2)))]

and define
L, = {s & C: Res < sy}.

If K = L, N Ly, then K is compact and by our construction all the zeros of det F, (s) = 0
with Re s > 5, + ¢,/2 must lie in K. Thus to each index «, there corresponds at least one
point s, in K such that det F, (s,) = 0. Moreover, on K it is trivial to prove, since {a,} tends
to a,, that {det Fy (5)} converges uniformly to det F,(s). Thus let {s,} C {s,} be a
convergent subsequence with limit s,. Then it follows that Re s, > o(F, ) + €/2 and
lim det F, (s,) = 0 = det F, s,).
But then o(F,,) > Re s, = oF(a,) + €/2, which is impossible. This contradiction proves
that lim oF(a,) < o(Fy) < lim F(a,) and hence that o(F,) is continuous at a, and
consequently on R*.
We next wish to consider matrix functions of the type

Gu(s) = s<1 - > Bjexp (—ash,)) — Y A,exp (—ash)),a € R*. (2.3)
i j=o
The continuity of o(G,) is a more difficult problem for these functions and will require

some preliminary lemmas. First let us define the sequence of points {w,} C R* as follows.
Let

h=w<w, < - w, <+
where, for each n, w, is a linear combination of the form
wp = n,hl + nzhz + -0+ nmhm (24)

witn N, 1 < j < m, either zero or a positive integer.
LeEMMA 2.1. Assume {H,} is a sequence of real n X n matrices such that for some 6, Zj=l°°
|H;| exp (—6w;) < ®. Let ay > 0 and n > 0. Define

Ao(s) = sl = 3 H,exp(—asw;) (2.5)
i=
and assume that
¢ (sI - Y H, exp(—aoswj)> -2 + 7. (2.6)
Jj=1 aO

Then o(A4,) is continuous at «ay.
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Proof. We shall restrict ourselves to neighborhoods of a, depending upon whether § <
0,6 =0o0ré>0.

(i) If 6 < 0 we consider only those a for which |a, — a| < as?9/2]8].

(i) If 6 = 0 all @ > 0 will suffice.

(iii) If & > 0 we consider only « such that @ > «,/2 and |a, — a| < a,?p/46.

We do this to ensure that for this range of « >.,.," |H, | exp(—aw, Re 5) < « if Re s >
(6/ao) + (n/2).

Proceeding as in the proof of Theorem 2.1, we can show using Hurwitz’ theorem [8]
that if ap = lim, . a, then lim o(4,,) > o(A,,). We then show that lim o(A4, ) < o(A.,) by
assuming the contrary. By our restrictions on @ we know that det[s/ — ) ;.," H; exp
(—aw,s)] converges absolutely if Re s > (6/a,) + (1/2). Thus if im o(A4,,) > 0(A4,,) we can
argue, as was done in proving Theorem 2.1, that there exists ¢, > 0 and a compact set K C
C such that K C {s: Res = (8/a,) + 1 + (€,/2)} and det[s,] — D_,-," H, exp(—aow;s;)] = 0
for some s, in K. This is a contradiction. Hence Tim ¢(4,,) < 0(4,,) < lim o(A4,,), which
proves the continuity of o(A4,) at «.

The next lemma is a modification of Rouché’s theorem [8]. It is stated without proof,
since its proof is basically the same as that of the original (see e.g. [8]).

LeEMMA 2.2, For each A &€ [0, 1] let f(s, A) and (&f/as)(s, A\) be analytic is s in some
region G of the complex plane and uniformly continuous on G X [0, 1]. Let J be a closed
Jordan curve contained in G such that |[f(s, A) |= € > 0 for (s, \) € J X [0, 1]. Then,
inside of J, f(s, 0) and f(s, 1) have the same number of zeroes counting their multiplicities.
Let

1443

B(s) =1— Y B,exp(—sh,). (2.7)

j=1

Observe that B(s) is an almost-periodic analytic matrix function. One property of such
functions is that if | B(s) | is uniformly bounded on an open vertical strip (s, — 8, 5, + 8), &
> 0, and if ¢ > 0 is given there exists /(e) such that every open interval of length /(¢)
contains a point 7 such that | B(s) — B(s + it) | < e for all s € (s, — 6, 50 + 8) (see e.g. [1, pp.
141-143]). This in turn implies the existence of a sequence {r,} such that 1 + 7, < 7,,,, for
all n and such that

|B(s) — B(s + itn) | < (2.8)
for all n and all s & (s, — 6, 8o + 0).
Let
As) = 3 A, exp(—shy) (2.9)
and
G(s) = B(s) — % A(s) . (2.10)

LeEmMa 2.3. If s, + i7, is a zero of det B(s), then for any 6 > 0 the open vertical strip (s, — 6.
So + 6) contains an infinite number of zeros of both det B(s) and det G(s).

Proof. We shall first show that (s, — 6, s, + &) contains an infinite number of zeros of
det B(s). Since det B(s) is a nonzero entire function in the complex plane we can find n such
that 0 < < 8/2and n < I, and an € > 0 such that | det B(s) | = € on the circle |5, + ity —
z | = 5. Also, because det B(s) is a uniformly bounded almost periodic function on (s, — 8,
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so + 0), there exists a sequence of real numbers {7,} suchthat | <7, 7, + 1 <r7,,,foralln
and foralln and s & (s, — 6, 5o + 6)

|det B(s + ir,) — det B(s) | < ¢/4.
We claim that in each disc of the form
K(so + i(ro + 72)n) = {50 |50 + i(1o + 70) — 5| <1} 2.11)

there is a zero of det B(s).

Suppose the contrary. Then for some n and all s € K(s, + i, + 7,,),n) g.1.b. | det B(s) |
= m > 0 where, m < ¢/4. From the theory of complex variables it follows that |det B(s) |
attains its minimum value at some point s, on the boundary of K(s, + i(7, + 7,),n). But by
our construction s; must be of the form s, = § + ir, where |§ — (s, + i7,) | = n. We then
obtain the inequality

€ < |det B(S)| < |det B(§ + ir,) — det B(S) | + |det B(S + ir,) |

<-4+ m<

]

HSim
N

which is a contradiction. Hence det B(s) has at least one zero in K(s, + i(1, + 7,),1). This
proves the first conclusion of the lemma.

To prove that det G(s) has an infinite number of zeros in (s, — 68, 5, + 6), observe that
for n sufficiently large |det (B(s) — (A/s)4(s)) | = & /4 uniformly for € € [0, 1]if s € {s:
|so +i(to + 7,) — s | = n}. Thus by Lemma 2.2 det B(s) and G(s) have the same number of
zeros in the disc K(s, + i(7o + 7,).n) if n is sufficiently large. This completes the proof of
the lemma.

The formal Dirichlet series obtained by inversion of B(s) in (2.7) is of the form

©

B i (s)~1+ Y, H,exp(—w,s) (2.12)
j=1
where {w;} are defined by (2.4). The wiggle in (2.12) denotes the Fourier representation of
B~'(s) (see e.g. [1]). However, in any closed right half plane of the complex plane in which
det (B(s)) has no zeros this convergence is absolute in the sense that

™

[B'(s)| <1+ 2 |H,| exp(—w; Res) > = .
Jj=1

This statement is the content of the following lemma.
LeMMA 2.4. The Dirichlet series of B~!(s) given by (2.12) converges absolutely in any
closed right half plane in which B~!(s) is uniformly bounded. Hence if (s,, ®) is free of
zeros of det B(s), then given any € > 0, B~!(s) converges absolutely in [s, + €, ®).

Proof. It is shown in [3] that the sequence {w;} defined by (2.4) has the property that
lim, .« (In n/w,) = 0. Since w, > 0 for all n, a result due to Bohr [2] states that under these
conditions the Dirichlet series of B~'(s) converges absolutely in any closed right half plane
in which it is uniformly bounded. This proves the lemma.
LEMMA 2.5. Let « > 0. Then the set of zeros of

det B,(s) = det I:I - i B, exp(—ashj)} . (2.13)

if they exist, is the set of zeros of {s,"/a} where {s,"} is the set of zeros of det B(s).
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Conversely, if {s,”} denotes the set of zeros of (2.13) then the set of zeros of det B(s), {s,"},
satisfies for each n the relation

S = as,”. (2.14)

Proof. The proof is obtained by direct substitution.
THEOREM 2.2. The matrix function

Gu(s) = [s (1— Z": B; exp(—ashj)) - f: A; exp(—ash,-)} (2.15)

has a spectral limit function ¢(G,) which is continuous on (0, «).

Proof. To prove this theorem we shall show that ¢(G,) is continuous at an arbitrary
point @, in (0, ©). Thus let o, > 0 be fixed. Notice that one consequence of Lemmas 2.3
and 2.5 is that 6(Gg,) > o(B)/a,. We consider two cases: (i) 6(Ge,) > a(B)/a or (ii) 6(Gy )
= ¢(B)/a,.

Case (i). There exist §, > 0 such that ¢(G,) = (6(B)/a,) + 6,. Hence by Lemma 2.4 the
Dirichlet series

©

m -1

|:I - Z B, CXp(—aoshj)jI =1+ Z Hj exp(—aow,S) (2.16)
J=1 k=1

converges absolutely in the closed half plane [(d(B)/a,) + (60/2), ©). Furthermore, det

Gq (s) = 0 has solutions in this closed half plane. Thus ¢(G,,) is determined by the

expression

Gy ($) l:l - i B, exp(—ozoh,s)]l

=sl — (Z A; exp(—a&h,)) (1 + 2 Hy CXP(‘%‘»M))
Jj=0 k=1

©

=5l — Ay — 2, Hpexp(—agwps) = Aq(S), (2.17)

where A,(s) is absolutely convergent in the half plane [(a(B)/a,) + (80/2), ®). Thus if
a >0,

sl — Ay — > Hyexp(—aws) = Aqls) (2.18)
k=1

is absolutely convergent in the half plane

(22 %) ). @19)
Also notice that det A4(s), « > 0, can have at most a finite number of zeros in the right half
plane (2.19). This is because in the closed right half plane (2.19) |det A.(s)| tends to
infinity as |s| tends to infinity. We also know that by assumption det A, (s) has at least
one zero in the plane [(6(B)/a,) + (6,/2), ®). Hence by Lemma 2.1 o(4,) is continuous at
a,. Let B, be defined by (2.13) and notice that by (2.14) ¢(B,) = o(B,)/a if « > 0. Hence
a(B,) is continuous on (0, «). Thus it follows that for « sufficiently close to a, 6(Gy) =
d(A,). Hence

lim 6(G,) = lim o(4,) = o(Aa,). (2.20)

a—ag a—ag
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which proves continuity if 0(Ga,) > o(Ba ).

Case (ii). Assume 0(G,,) = (B, ). Again by (2.14) we know that ¢(B,) is continuous at
a,. Thus if {a,} tends to a,, lim 6(Gy) = (B, ) = lima—a, 0(By).

Assume lim (G, ) > 0(G,,). Then there exists ¢, > 0 such that

0(Ga,) + € < lim o(G, ).

But then in the closed half plane [o(B.,) + €/2, ©) Egs. (2.16) and (2.18) converge
absolutely, and using (2.19) we see that for « sufficiently close to «, (2.18) converges
absolutely in the half plane [o(B, ) + (¢,/2), «). Since Iim 0(Gy ) > o(B, J) 1€, det 4, (s)
= 0 has a solution in the closed half space [¢(B, ) + }¢,, @) for an infinite number of a,,.

Again applying the arguments used in proving Theorem 2.1, we can find a compact set
K & [0(Ba,) + %€, @) such that for some s, € K det A, (s,) = 0. But this leads to the
contradiction

0(By,) + 36 0(Ge,) + 56 < Res; < a(Gy,).

Hence lim 0(Gq,) < 0(Gy,) < lim 0(G,,), which proves continuity at a.

Example. In general, matrix functions of the type considered in Theorem 2.2 do not
possess the property that o(G,) is continuous at a = 0. The following example illustrates
this. Let

™

Gus)=(G+1) <I + dexp(—a B s) — %exp(—oms)) :
Fora = 00(G,) = 1. Fora # 0, G(2i/a) = 0 and Gu(s) # 0 for Res > 0. Hence fora # 0
G(G%)he: f(o)ilowing theorem states a condition which guarantees ¢(G,) is continuous at
?‘H:EOOI;EM 23.1If

det [1 - i B, exp(—sh,)} =0

J=1

has all roots lying in some left half plane (—%, —G,], 8, > 0, then ¢(G,) is continuous at
a = 0.

Proof. Observe that if « > 0 then by (2.14) and the hypothesis of the theorem ¢(B,) <
—Bo/a. Consequently

lim ¢(B,) = — <. (2.21)

If Re s = —B,/2a we use (2.17) to obtain
s <I - > B exp(—ash,)) — > A;exp(—ash;)
1 Jj=0

= [sl — A, — i H, exp(—asw,)] |:I— f: B; exp(—ash,)}

et =

= Au$)B(s) = Gofs).

(2.22)
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Because of (2.21) and (2.22) we see that on compact sets, K, in the complex plane

B—T) AL(5)Bo(s) = (sl — Ay — i H,) (1 - i B;‘)

J=1 J=1

= (1 -3 B,) - 34 (2.23)
i=1 j=o
and that this limit holds uniformly on K.

Using our version of Rouché’s theorem (Lemma 2.2), (2.22) and (2.23), we conclude
that if {«,}, @, > 0 for all n, tends to zero there exists, for n sufficiently large, {s,} in C such
that det A, (s,) = 0, Re s,/ = — B8,/2 and lim,_ Re s, = a(G,). Hence for n sufficiently
large 0(G,,) = 0(A4,) and lim 6(G,,) = lim 0(4a,) = o(Go).

If we assume that lim o(4,,) > a(G,) we can repeat the type of argument used in the
proofs of Theorem 2.1 and Lemma 2.1 to construct a compact set K C C such that inf{Re
5: 8 € K} > 0(G,) and such that for some s, € K det[s,(/ — 3,-,™ B;) — X,-" 4,] = 0.
This contradiction proves that

lim o(4a,) < 0(Go) < lim o(A.,)

and hence, since 0(G,,) = 0(4,,) for a, sufficiently small, that o(G,) is continuous at
a =0.

Remark 2.1. If 6(G,) is determined by o(A4,), there exists s, such that Re s, = a(G,).
This is a consequence of the fact that in any right half plane in which 4,(s) is analytic, det
Aq(s) = 0 can have at most a finite number of roots.

CoROLLARY to Theorem 2.3. The family

‘% [x(t) — Bx(t — ahm)] = 3 Ajx(t — k), «>0 (2.24)
j=o

of differential-difference equations gives rise to a family of matrix functions {G,(s)} such
that o(G,) is continuous for all « € [0, ) if det (\/ — B) = 0 has all roots in the disc |\ |
<l,ie |oB)| < 1.

Proof. The point spectrum of (2.24) (see e.g. [6]) is obtained from the solutions of

det [S(I — B exp(—ashy)) — i A exp(—ashm)] =0,
Jj=0

i.e. det,(Ga(s)) = 0. By Theorem 2.2 o(G,) is continuous for @ > 0. The hypothesis of the
corollary states that ¢(8,) = In |6(B)| < 0if o(B) # 0 and o(B,) = —« if 6(B) = 0.

Definition 2.1. An interval [a, b) in R* is an interval of exponential stability for the
family of retarded differential-difference equations defined in R" by

L (x0) = 35 Axtt - ahy), (2.29)
t Jj=0
if (2.25) is exponentially stable for all « in [a, b).

Similarly an interval [a, b) in R* is an interval of uniform exponential stability for the
family of neutral differential-difference equations defined in R" by

m

"% [x(t) - zm: Bx(t — ah,-):' = Z Ax(t — ahy), (2.26)

Jj=1

j=0
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if (2.26) is uniformly exponentially stable for all « in [a, b).
THEOREM 2.4. If on [a, b) a(F,) < 0 for every member of the family (2.25), then [a, b) is an
interval of exponential stability for the family (2.25).

Proof. The proof is a consequence of the general theory of functional differential
equations [6], since o(F,) < 0 is a necessary and sufficient condition for a linear au-
tonomous retarded functional differential equation to be exponentially stable.

Definition 2.2. A neutral differential-difference equation of the type (2.26) is said to be
uniformly exponentially stable if there exists 8(a) > 0 such that for « fixed all solutions
satisfy an inequality of the form

|xa(t, @) | < M exp(=B(a)t) 6], 120,

where ¢: [—ah,,, 0] - R" is continuous,

l¢ | =sup{lo@)]:t € [—ahn, O]},

and
xa([v ‘p) = d’(’) on [_ahm’ O]

THEOREM 2.5. If ¢(G,) < 0 on [a, b), then every member of the family (2.26) is uniformly
exponentially stable.
Proof. The proof of this statement is due to D. Henry [7].

3. Some applications. In this section we shall apply the results of Sec. 2 to show how
the exponential stability of autonomous retarded and neutral differential-difference equa-
tions can sometimes be inferred from a knowledge that related ordinary differential
equations are exponentially stable. The first result of this section is a consequence of
Theorem 2.1 and properties of linear retarded functional differential equations.
THEOREM 3.1. Let

Fu(s) = sl — i A; exp(—ash;) 3.1)

and assume o(F,) < 0. Then there exists a maximal interval [0, g), ¢ > 0, such that ¢(F,) <
0 on [0, g) and hence for all « on this interval (2.25) is exponentially stable. If ¢ < ®, g(F,)
= 0 and system (2.25) has a periodic solution for a = g¢.

Proof. Since, by Theorem 2.1, o(F,) is a continuous real-valued function on R* and
o(Fy) < 0it follows that there exists a largest relatively open connected set in R*, [0, ¢), ¢
> 0, such that o(Fjo,) C (—, 0). By Theorem 2.4 this implies that every member of,
(2.25) with & & [0, gq) is exponentially stable. If ¢ < o, then by the maximal property of
the interval [0, ¢) it follows that ¢(F,) = 0. But for linear autonomous retarded differential
equations it is known that o(F,) is always the real part of a root of the det F,(s) = 0 (see
e.g. [6]). Hence det F¢(s) = 0 has a root of the form s = iw, w real. Again from the theory
of functional differential equations [6], this implies that for & = g there exists a nontrivial
solution of (2.25) of period w.

THEOREM 3.2. Assume det [/ — Z,~=1'" B; exp(—sh;)] = 0 has all roots in some closed half
plane (—», —3,], B, > 0, i.e. 6(B,) < —8,. Let

Gals) = 5 (1— 3 8, exp(—ashj))— 3 4, exp(—ash)) (3.2)

and assume a(G,) < 0. Then there exists a maximal interval [0, q), g > 0, such that ¢(G,) <
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0 on [0, ¢) and hence for all « on this interval (2.26) is uniformly exponentially stable. If ¢
< o, ¢(G,) = 0 and the system (2.26) has a periodic solution for a = gq.

Proof. By Theorems 2.2 and 2.3 o(G ) is continuous on [0, ©). Hence since o(G,) < 0
there is a largest relatively open connected set in R*, [0, q), such that ¢(G .4 ) C (—=, 0).
By Theorem 2.5 every member of (2.26) with a & [0, ¢) is uniformly exponentially stable.
If g < o, then ¢(G,) = 0. This implies, since a(B,) < —B,/q <0, that ¢(G,) = a(A4,). By
Remark 2.1 this implies that there exists iw, w real, such that det G,(iw) = det A4 ,(iw) = 0.
From the general theory of neutral functional differential equations this implies the
existence for @ = g of a nontrivial periodic solution of (2.26) of period w.

The next two theorems give sufficient conditions which guarantee that (2.25) and (2.26)
are uniformly exponentially stable for all values of «.

THEOREM 3.3. If ),_,™ 4, is Hurwitzian and

det |:iw1 - f: Ajexp(—iwah,-)} =0 (3.3)
j=o0

has no solution for w real and @ > 0, then for all @ = 0 (2.25) is exponentially stable.

Proof. The proof is an immediate consequence of Theorem 3.1 since the nonexistence
of real solutions of (3.3) guarantees o(F,) # O for any a. On the other hand, D_,.," 4,
being Hurwitzian guarantees that o(F,) < 0. Hence a(F ) C (—, 0), which proves the
theorem.

THEOREM 3.4. If det [/ — >°,.,™ B, exp(—sh,)] = 0 has all solutions in (=, —3,], 8o > 0, (/
— - Byt X,-0™ A, is Hurwitzian and det G,(iw) # 0 for all a, w = 0, then (2.26) is
uniformly exponentially stable for all @ > 0.

Proof. The first condition of the theorem guarantees, because of Theorems 2.2 and 2.3,
that ¢(G,) is continuous on [0, «). The second condition states that ¢(G,) < 0 and the
third that ¢(G,) # 0 for any g in R*. Hence by Theorem 3.2 the system (2.26) is uniformly
exponentially stable for all « > 0.

Example 3.1. Let

and

== 0 l > .
A ( ~1 0
Consider the family of delay differential equations of the form

xX(t) = Agx(t) + A x(t — h). 3.4)

For h = 0(3.4) is exponentially stable. Let us compute the value of g, if it exists, for which
[0, ¢) is the maximal interval described in Theorem 3.3. Thus we seek w real and g > 0 such
that

det [iwl — A, — A, exp(—iwg)] = 0 = (iw® + 1) + exp(—2iwg). (3.5)

Equating real and imaginary parts of (3.5), we arrive at the equations

—w?+ 1 = —cos 2wy, (3.6)
2w = sin 2wq. 3.7)
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It is easily verified that (3.6) and (3.7) have no common solution for w real. This implies,
by Theorem 3.4, that (3.4) is exponentially stable for all nonnegative values of A.

Example 3.2. Let us alter (3.4) slightly in that we assume

A1=< 0 T) where 7> 1.
-7 0

Then (3.5) becomes
(fw + 12 + 72 exp(—2iwg) = 0.
Separating real and imaginary parts of the above equation, we obtain
w? — 1 = 7% cos? wg, 2w = 1%5sin wgq .
The positive real solution of the above equations for w is
w=71—-1,
Then with a little manipulation we obtain

1 o, 27
q—T__ltan 2 -1

as our value for ¢ which satisfies Theorem 3.1.

Example 3.3. Consider the neutral system which satisfies the hypotheses of Theorem
3.2

:?t_ [x(t) — Bx(t — h)] = Aex(t) + Aix(t — h) (3.8)

s-( 30 a=( 2) (2D,

For h = 0 it can be easily verified that the system is exponentially stable, since (I — B)!
(A, + A)) is Hurwitzian. Furthermore, the eigenvalues of B are + i/2, and hence inside
|s| < 1. We could repeat the procedure used in Example 3.1 to seek ¢ such that det Gy (iw)
= 0. However, this leads to an expression which required more analysis that this example

warrants. Instead let
(11 )
y_<i—i X (3.9)

where

Then (3.8) transforms into

L 1y0) — Byt — )] = Ap(0) + Ag(c ~ ) (3.10)

where

~=éi0) . -_(:‘0)’
B (O _él ) AO_AOY AI_ 0_’

Clearly the stability properties of (3.8) and (3.10) are the same. For (3.10) with w real we
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obtain
det G (iw) = 0 = [iw(] — i exp(—iwg)) + 1 — i exp(—iwg)]
X [iw(1 + §i exp(—iwg)) + 1 +iexp(—iwg)] . 3.11)

Separating real and imaginary parts of the first factor in (3.11), we obtain

%cos wg + | = sin wg, (3.12)
|: S—]D-—w—q} = COS wq. (3.13)
From the second factor in (3.11) we obtain the equations
w .
T 5 coswq + 1 = —sin wq, (3.14)
w[l + 4sin wg] = —cos wg. (3.15)

After first verifying that cos ¢ = 0 is not a solution of (3.12) and (3.13) we eliminate w
to obtain

—(2 = sinwg)(1 — sin wg) = 1 — sinwg

or sinwg = 1. But this is impossible; hence (3.12) and (3.13) have no solution for real w.
Examining (3.14) and (3.15) we see that cos wg = 0 is not a solution. Eliminating w
between these two equations, we obtain

2sinwg —sinwg —3=0
or sin wg = —1, which is again impossible. Hence the system (3.10), or what is the same
(3.8), is uniformly asymptotically stable for all # > 0.
Example 3.4. Let the system be given by Eq. (3.10) where 4, and B are as in Example
3.3 but A4, is the matrix
- (7 0
A‘_<O—Ti)’ > 1.

Again o(G,) is Hurwitzian and o(B) = }; hence o[/ — B exp(—s)] = —In 2 < 0. Thus the
hypotheses of Theorem 3.2 are satisfied and

det G (iw) = 0 = [iw(l — -;— exp(—iwq)) + 1 =7 exp(—iwq)}
X [iw(1 + jexp(—iwg)) + | + 7i exp(—iwgq)] .

Equating real and imaginary parts of both factors leads to the two pairs of equations

%cos wg + 1 = 75sin wg, (3.16)
w[l — 4sin wg] = 7 cos wgq, (3.17)

and

= 5 coswg + 1 = =7 sin wg, (3.18)
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w[l + 4sinwg] = =7 cos wq . (3.19)
Elementary calculations on (3.16)-(3.17) lead to the solutions
. _2r 41 (3= 1))
sin wqg = 4y 52 S0swq =T (3.20)
and
1/2
w = A?—(Tz - )2 (3.21)

Thus G,(iw) = 0 has a solution for some ¢ < © and w real if > 1. Similarly calculations
on (3.18)-(3.19) yield the negative values of w and sin wg expressed by (3.20)-(3.21).
Example 3.5. As a final example we shall show that a system of the form

% [x(2) — Bx(t — h)] = Ax(1) (3.22)

where A4 is Hurwitzian and o(B) < 1, i.e. o(I — B exp(—s)) < 0, can satisfy the hypotheses
of Theorem 3.2 and have a maximal interval of uniform exponential stability [0, ¢), with ¢

< o,
(5 0) )

Consider (3.22) where
It is trivial to verify that the system (3.22) with 4 and B given above satisfy the hypotheses
of Theorem 3.2. Furthermore,

det [iw(I — B exp(—iwg)) — A] =0
= liw(l — jexp(—iwg)) + 3 — iJliw(l — texp(—iwg) + 4 + i] .

The above equation leads to two systems of equations

— Ssineg+4=0, (3.23)

w(l — dcos wg) = 1, (3.24)
and

- ‘g sinwg + 4 = 0, (3.25)

w(l — dcoswg) = —1. (3.26)

The solution of both sets of equations is w = 1, sin wg = 1. Thus the smallest value of ¢
which satisfies Theorem 3.2 is ¢ = w/2.
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