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1. Introduction. This paper deals with an inverse problem for wave propagation in
an absorbing medium. Specifically, the problem we consider is a generalization of that
considered in [5], The motivation for the work in that paper came from a one-dimensional
electromagnetic inverse scattering problem in which the conductivity <r(z) and permittivity
e(z) of a slab of finite thickness situated between z = 0 and z = L were obtained by
working in the space-time domain. The data required for the reconstruction of e and a
were determined by a portion of an incident plane wave and portions of the resulting
reflected and transmitted waves. It was then shown that the actual reconstruction could be
achieved by solving a single Gelfand-Levitan type integral equation.

The hypotheses used in [5] were motivated by the assumption that for 0 < z < L the
functions e and a were continuous. In the present paper we relax this assumption by
allowing 6 and <x to have any finite number of jump discontinuities on 0 < z < L, as well as
being discontinuous at z = 0 and z = L. Our solution of this problem is again carried out
in the space-time domain. We show that the data for the solution can again be obtained
from finite portions of a single incident, reflected and transmitted wave, although slightly
"more" data are needed than in [5], The reconstruction of t and a can then be achieved by
solving a linear integral equation containing advance and delay terms.

The problem we consider is modeled by

uxx ~ utt + A{x)ux + B(x)ut + C(x)u = 0, -°° < x < °°, -«> < t < (1.1)

where we assume there exist constants xt, 0 = x0 < Xi < ■ • • < xn = I such that

(a) Support A, B, C C [0, /].
(b) A, B, C are piecewise continuous on [0, /] with all discontinuities occurring at the

points xt, i = 0, 1,
(c) A' and B' are continuous on the subintervals (.*< , xi+i), / = 0, 1, • •• , n — 1.
(d) The solution u(x, t) is everywhere continuous and piecewise C2.
(e) There exist nonzero constants ct such that ctux(xt +, /) = ux{xt —,/),/= 0, 1, • • ■ ,

n. (Notice that the quantity c0 in this paper is equivalent to c0_1 in [5].)

We assume that the coefficients A, B, C of Eq. (1.1) (and therefore the location and
number of discontinuities; i.e., the points xt and the integer n) are unknown on (0, /), and
seek to determine information about these coefficients by using information concerning
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the solution u of (1.1) in "free space", x < 0 and x > I. Specifically, we have that a plane
wave u'(x — t) propagating in the +x direction gives rise to a reflected wave ur propagating
in the — x direction for x < 0 and a transmitted wave u' propagating in the +x direction
for x > I. Thus, in the "free space" region, Eq. (1.1) has the solution

u(x, t) = u\x - t) + ur(x + t), x < 0

= u'(x — t) , x > I.

We require that u'{s) = u'(s) = wr(-j) = 0 for j > 0, and that these functions be
continuous and piecewise C2 (as mentioned in (d) above).

Now let us impose the additional hypotheses

(f) k"(0-)^0.
(g) Let S denote the set of all quantities (xt — Xj), 0 < j < i < n. We assume that no

element of S can be expressed as a linear combination (with positive, integral
coefficients) of other elements of S.

(h) A finite upper bound for xn is known.

We-show in this paper that if hypotheses (a)-(h) are satisfied, then knowledge of the
scattering data u'(s), u'(s), ifi-s) for -41 < s < 0 is sufficient to determine the coefficient
B(x) and the combination of coefficients C - A'/2 - A2/A on (0, /), as well as the points
xt and the integer n. The hypotheses (f)-(h) are imposed only to guarantee that the kernels
of the reflection and transmission operators (see Sec. 3) and certain constants related to
these operators can be determined. (This is elaborated in Sec. 4 and 5.) However, there are
cases in which (g) is not satisfied and these quantities can still be determined. (For
example, let n = 3 and x0 = 0, Xi = . 15, x2 = .85, x3 = 1.)

If hypotheses (f)-(h) are not satisfied, the inverse problem is still solvable, but certain
data may have to be obtained by means other than looking at scattered waves. In
particular, the synthesis problem is still solvable. In other problems, such as biological
applications, the number and location (or approximate location) of the jc/s is known and
so hypothesis (h) can be dropped and it may be possible to relax (g), depending on the
geometry.

As mentioned above, the motivation for our work comes from an electromagnetic
scattering problem. To see the connection between this and Eq. (1.1), consider an electro-
magnetic wave propagating along the z axis normal to the slab. The transverse electric
field E(z, t) satisfies

Ezz - e(z)n0Ett - o{z)fx0Et = 0, -oo < z < <*>, -oo < t < co, (1.2)

where ii0 is constant and t and a have jump discontinuities at the points zt, where 0 = z0 <
Zi < ■ ■ ■ < z„ = L. As shown in [5], the change of variable

x = [ [e(s)n0]I/2ds, x(zt) = Xi ,u(x,t) = E(z, t) (1.3)
J 0

reduces (1.2) to the form (1.1) with

Ct = [f(z,+ )/6(z,-)]1/2.

The solution of inverse wave propagation problems in absorbing media has been
studied by several authors. The work of Buzdin [1] is concerned with a half-space
problem, but results in a system of seven coupled nonlinear integrodifferential equations.
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Jaulent [2] considers both one-dimensional and radial inverse problems in absorbing
media by means of a steady-state approach. Under certain hypotheses the solution of the
inverse problem then reduces to the solution of two sets of dual linear integral equations
and a nonlinear initial value problem. Weston [8, 9] and Weston and Krueger [10]
consider a one-dimensional slab problem (using a space-time technique) whose solution is
obtained from a dual set of linear integral equations. In all of the above problems,
however, the hypotheses imposed imply that the properties of the absorbing medium must
vary smoothly in the spatial variable. In other words, when writing these problems in the
form (1.1), the coefficients A and B are C1 for - < x < and C is continuous for - °° <
x < oo. Such conditions are quite restrictive since they do not allow for the fact that the
interface between two different media is characterized by discontinuities in A, B, C.

Of course, considerable analysis has been done for the case A = B = 0, C piecewise
continuous. (For example, see Roseau [7] for a time-dependent approach, and Kay [4] for
a steady-state approach.) However, these analyses do not take into account the jump
discontinuities in ux given in (e) and consequently are not applicable to certain types of
problems, such as electromagnetic inverse problems using a fixed angle of incidence.
Therefore, as was brought out in [5, Sec. 2], the results presented here also have appli-
cation to some unresolved inverse scattering problems in nondissipative media.

The outline of this paper is as follows: In Sec. 2 we generalize the weak Riemann
function developed in [5] to allow for multiple jump discontinuities. Using this function
we can then express the solution u of (1.1) in terms of the waves u' and ur, or u'. Sec. 3 is
concerned with the development of the scattering operators for (1.1). In Sec. 4 an analogue
of the Gelfand-Levitan equation is developed. This equation contains, in general, both
advance and delay terms and its solution yields the coefficient B and the combination C -
A'/2 - A2/4. We also present a numerical method of solution. Sec. 5 is concerned with
how certain data for the solution of the inverse problem can be obtained. Finally, Sec. 6
deals with the special case of an electromagnetic inverse problem in which the conductivity
and permittivity are piecewise constant functions.

2. The weak Riemann function. As in [5] we begin by solving the Cauchy problem
for (1.1) with the data being u(x, t), ux(x, t) with x = 0+ or x = I—. In this case we use a
generalization of the weak Riemann function developed in [5], Letting £ = x + t, v = x —t,
we require that the weak Riemann function g(£, 77; £„, Vo) now satisfy

(a) L*g = 0 for £ + t] 2xt , i = 0, 1, • • ■ , n (where L* is the formal adjoint of L);
(b) g is a continuous function of £, 77, £0 , Vo;

r<£0+w2

<«o+1o>/2

1 /•(i+v/2

1 1 /•<f„+'?)/2
(c) g(£0 ,r,Zo, Vo) = exp Sy / (A(s) + B(s)) ds

/ l r <«+v2
(d) g(£, Vo; £0, Vo) = exp Sy / (A(s) - B(s)) ds

' (*o+1o>/2

(e) [g{ + ^]{+,=2*'+{+n-2*,- = [d]2x>+2x,-g\t+v-2x, for / = 0, 1, ■•■,«, where we
denote differences in function values with [/]9P = f(P).

It is clear that such a function exists and is unique.
We begin by expressing the solution u of (1.1) in terms of Cauchy data on x = /—. In

what follows, 6 is the Heaviside function, d(s) = 0 if s < 0, 6(s) = 1 if s > 0.
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Lemma 1. For x < I and any t we have
n - 1 /• S(

2u(x, t) = gu\P + gu\Q + £ 0(x, - x)(ct - 1) / guxds
i =0 J Rt

+ [ {w(g5 + g„) - - ^(/- )ug) ds (2.1)
J P

where £0 = x + t, ti0 = x - t, P = (/-, t + x - /), £? = (/-, r — x + /), = (jc( +, t — x +
Xt), St = (Xt +, t + x — Xi). The integrals under the summation sign are along the lines a: =
Xj+ and the last integral on the right-hand side is along the line x = /—.

Proof: To fix our ideas, consider a given point (£0, Vo)- We integrate the expression
gLu — uL*g = 0 over all regions in the (£, 17) plane (bounded by the characteristics through
(£0, Vo) and the line £ + r\ = 2/-) in which the expression is continuously differentiable. In
general, these regions are bounded by the lines £ + 77 = 2x, and also by the characteristics £
= 2Xi — t]o and 77 = 2xt — £0 along which the discontinuities in g{ and g„ are propagated
respectively. Applying Green's formula and adding the resulting integrals, we find that the
properties of the weak Riemann function cause the integrals along the lines £ + 77 = 2x, to
reduce to the summation of integrals on the right-hand side of (2.1) and the integrals along
the characteristics £ = 2xt — 770, 77 = 2xt — £0 cancel out. Thus we arrive at (2.1) and the
proof is completed. (Notice that the integral on the right-hand side of (2.1) along x = /— is
actually composed of a sum of integrals along x = I—, the integrand in each single integral
being continuously differentiable.)

We now introduce operators 3Ct and Xt which will be used to trace internal reflections
in the slab. If v is any function of x ± f, we define the shift operator 3Ct by

5Ctv(x ± t) = j(Ci + 1M* ± t) - — 1 )v(2xt — x ± t) exp J B(s) ds

taking either the upper or lower signs throughout. Furthermore, we require that for any
functions of x, say / and g, we have

3Q,i[f(x)v(x ± t) + g(x)w(x ± /)] = fix) 3C,v(x ± /) + g(x) 3C,w(x ± t).

We define the linear operator similarly, with

XiV{x ± t) = Ka + I )v(x ± t) + Kc,; - l)t;(2x( - x ± t) exp J B(s)

We define composition of these operators in the obvious way,

(JC, o 3Cj)v(x ± t) = 3C((3Cjv(x ± t)) = 5C( o SCjV{x ± t).

Observe that if we let & denote the identity operator,

$ f(x)v(x ± t) = f(x)v(x ± t),
then we have

Lemma 2. c,_1 ° = ct~x 3Cj o xt =
Proof:

o SCtv(x ± t) = KCj + 1) Ktv{x ± t)

1 ds,



AN INVERSE PROBLEM 239

~~ 2(0 — 1) exp |t J B(s) rfjj Xtv(2xt — x ± t)

= i(Ci + 1 )2v(x ± t) - l{ct - \)2v(x ± t)

= ctv(x ± t).

Clearly, a similar result holds for 3C( o xt , and the proof is completed.
Now for any integer k, 1 < k < n, let J(k) denote the set of all sequences j = (Jk ,jk+1 ,

■ • ■ ,jn) such that:

(a) Each j, is either —1, 0 or +1;
(b) The last nonzero jt in any sequence is 1;
(c) The nonzero entries in the sequence (jk , jk+1 , ■ • • ,y„) alternate in sign.

Notice that if we set

J{k, 0) = \j £ J(k): £ jt = 0

and

J(k, 1)= {/ G J(k): £ jt = l} ,^ i >
then

J(k) = J(k, 0) U J(k, 1).
Now for j G J(k) set

0 = 2^ jiXt, Cj+- = pk fj (gtyJi1 G{xif3>
I"* l~k

where

Pk = l*-"--1 J| (Ci + 1), gi = (Ci - 1 )/(c, + 1), G{x) = exp {- f B(s)ds,
i-n K J 0 '

It can now be shown that

3C* o 3C»+1 o • • • O 3Cnv(x ± t) = X CjMn + X ± t)- G(x)T1 ^ cMn - * ± 0
j£j(k,o) jej(k, 1)

(2.2)
taking either the upper or lower signs throughout. The expressions foriK* ° Xk+1 o • • ■ o
Knv(x ± t) are similar to (2.2), except that the minus sign between the two summations is
replaced with a plus sign.

In an analogous manner we define J{k) to be the set of all sequences j = (J0 ,j\ , ■ • • ,jh)
such that:

(a) Each jt is either -1, 0 or + 1;
(b) The first nonzero jt in any sequence is 1;
(c) The nonzero entries in the sequence alternate in sign.
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Now set

J\k, 0) = \j G /(*): t ji = 0} , J(k, 1) = \j E J~(k): £ h = l} ,
^ /=0 > K 1=0 >

and, for j E /(&),

o = 2Z M= Pn fl (gi)u>]G(xtyj>
to

where

p*= 2_s_i n (Ci +1).
i =0

It follows that

3Cft o jc*_i o ■ ■ • o X0v(x ± t) = £ Cj+v(?j + x ± t)+ Gix)*1 £ Cj+v(?j — x ± t).
jej(k,o) jejtk.i)

We now show that it is possible to express the solution u of (1.1) in terms of right and
left moving waves at x = I. In the statement of the theorem, we assume k is an integer, 1 <
k < n, and D±(x) = C(x) - lA'(x) ± W(x) + j{B2(x) — A2(x)).

Theorem 1. Assume the Cauchy data for Eq. (1.1) is

u(l, t) = v(l — t) + w(l + t)

«,(/, 0 = cnv'(l - t) + cnw'(l + t)

where v and w are continuous, piecewise C2 functions. Then there exist piecewise continu-
ously differentiable functions M±"(x, y, I) defined for x < xk , x < y < 21 — x such that if
xk-i < x < xk , then

u(x, t) = exp jy J (/l(j) - B(s)) rfsj jjC* ° 3C*+1 o o Xnv(x - t)

+ J v(y - t)M+k(x, y, /) rfyj

+ exp {2 / + 0 3C*+1 0 • ■ • 0 3Cnw(x + t)

+ J w(y + t)MJ(x, y, /) dyf . (2.3)

Furthermore,

M+"(x, x, I) = ipkD+(x), xk-l<x<xk. (2.4)

Proof: In the same manner as in [5, Lemmas 3 and 4] it can be shown that functions
K±(x, y, Xi), L±(x, y, xt) can be defined by the following relations:

K+(x, y, x^ exp j 1J ' (^(5) - B(s)) dsj = gv(2xi - y + t, y - t; x + t, x - t)
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K.(x, y, Xi) exp |~ J ' (A(s) + B(s)) dsj = g^{y + t, 2xt - y - t; x + t, x - t)

L+{x, y, Xi) exp j1.J (/4(.s) - B(s)) cfaj = g(2x, — y + t, y — t\ x + t, x — t)

L.(x, y, x^ exp |i J ' (/4(j) + B(s)) dsj = g{y + t, 2xt - y - t\ x + /, x - t).

These functions satisfy the following conditions:

K±{x, 2xi - x, Xi) = i(A ± B) \ x._ exp j± J B(s) d^, xt-i < x < xt,

K±(x, x, Xi) = i D±(x), x ± Xj, 1 <j < n,

L±(x, 2xi - x, x^ = exp j± J B(s) dsj,

L±(x,x,xt) = 1.

We now show that for any integer k, 0 < k < n,

gu|P + gu| Q + X (ct ~ 1) f guxds + f {u{g( + g„) - Uxg - A(l-)ug| ds
i = k J J P -1

= exp jyj (A(s) - B(s)) dsjjje, 0...0 3Qnv(x - t)

+ J v(y - t)M+"{x,y, I) dyj+ exp jy J (A(s) + B(s)) ds

[sfCft ° •"" ° 5Cnw(x + 0+ J w(y + t)MJ{x, y, I) dyf (2.5)

where M+k(x, x, I) satisfies (2.4). (IfA: = n, the summation on the left-hand side does not
appear). To simplify matters in what follows, we exploit the linearity of (1.1) by assuming
w = 0. Clearly we can likewise consider the case v = 0, w # 0 and add the results to ob-
tain our desired conclusion.

To verify (2.5), we proceed by induction on the number of discontinuities considered
(i.e., the number of terms included in the summation on the left-hand side of (2.5)). The
case k = n has already been shown in [5, Theorem 1], (Notice that the quantity N+(x, y, I)
in [5] is equal to 2M+n(x, y, /).) Thus, assuming (2.5) is valid for k = i + 1, we now con-
sider k = . Our induction hypothesis implies that u(x, t) is given by (2.3) for x > xL by
setting k = / + 1. Using (2.3) to express ux(xj +, t) (making use of the remark following
the proof of Lemma 1), we now form the integral

/ g(x, + s, xt — s\ x + t, x — t)ux(xt +, 5) ds
Jt-x + xt

and integrate by parts the terms involving v'. This gives

f'guxds = exp U f (A(s) - fl(s))</sf £ Cj+v(rj + x - t)
JR. ^ Jx ' L jej(t+i,o)
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+ G{Xi) £ Cj+v(rj - 2xt + x - t)~G(x)G(Xi) 1S £ C/uCv + 2x, - x - t)
jeja+i,i) vGe/(< +1,0)

r r,+ 2xi~x

+ C(Xi) X! - * - Of + Z Q4 I v(y - t)\K+{x, y - rh xt)
jEJ(i+1,1) J y£«/(i +1,0) Jry+;r

- G(x)G!(x,)^,A:.(x, 0 + 2x, - >\ x,)-h(A{xt +) - B(Xi +))L+(x, y - rt, *0} dy

+ G{xt) £ CJ+f v(J ~~ tW+(x, y - rj + 2xt, x,)
jEJ(i + l.i) rr 2xi+x

- G(x)G{ XiY'K-ix, rj - y, x,) + l(A(x, + ) + B(xt +))G(x)G(xi) 'lL.{x, r, - y, x,)j dy

- M+i+1(Xi + , xt + , /) [ ' v(y — t)L + (x, y, x,) dy
J X

- G(x)G(xi) lM+i+l(xi + , 21 - {Xi +), /)

f v(y - t)L-(x,2l - y,xi)dy + [ v(y - t)Zi+1{x,y, I) dy
J2l-2xt + x J r

(2.6)

where Z' + 1{x\ y, I) is a sum of integrals, and Z' + 1(x, x, I) = 0.
To complete the induction step, multiply (2.6) by Ko — 1) and add to (2.5) with k =

i + 1. The terms on the right-hand side of the resulting expression which do not involve
integrals sum up to 3C; ° 3Ci+1 o ■ • ■ o 3C„d(x - t). The remaining terms can be written as
and add to (2.5) with k = / + 1. The terms on the right-hand side of the resulting
expression which do not involve integrals sum up to 3C< o 3Ci+i o • • ■ o 3Cnv(x - I). The
remaining terms can be written as

f v(y — t)M+'(x, y, I) dy

where

4- M+'{x, xj) = 4~ M+'+1(x, x, /)
ax ax

+ KC-I pi+lK+(x, x, xt)~ pl+1 exp | J B(s) dsf K-(x, 2xt - x, x,

~ hpi+i(A(Xi+ ) - B(xi+ ))L+(x, x,xt)~ M+t+l{x, + , xt+, l)L+(x, x, xt)

+ Zi+\x, x, I) = kPiD+(x), Xi^t < x < Xi .

Hence, Eq. (2.5) is justified, and the proof of the theorem now follows from Lemma 1.

Corollary I. Assume the Cauchy data for Eq. (1.1) is

w(0, 0 = v{-t) + w(t), ux(0, t) = c0~lv'(-t) + c0"lw'(t)

where v and w are continuous, piecewise C2 functions. Then there exist piecewise continu-



AN INVERSE PROBLEM 243

ously difierentiable functions M ±"{x, y, 0) defined for x > xk , —x < y < x such that if xk
< .v < .V/,. + i , then

u(.v. i) = exp ji J (A(s) - B(s)) cfaj jjC* o Xk-t o • • • o X0v{x - I)

- J v(j' - t)M+"(x, y, 0) dy^+ exp j§ J (/l(.y) + B(s)) d.^j

j-Tv* ° 3C*_! o • ■ ■ o X0w(x + t)— J w{y + t)M-"{x,y, 0) dy^ ■ (2.7)

Furthermore,

^ M-k{x, x, 0) = \q hD-{x), xk< x < xk+1 , (2.8)

where
k

qk = 2-*"1 XI (c<_1 + 1).
1=0

Proof: Using the change of variables £ = / — x, -c = t + I and u(x, t) = «(f, t) we
convert the given problem to one in which data is given on f = /, namely,

% - uTT + /f(D"f + tf(D«r + C\f)" = 0
where A(f) = -A(x), fl(f) = B(x) and (*(f) = C(x). The data itself is obtained from

v(x - t) = v(21 - £ - t) = w>(f + r),

w(x + t) = w(t - D = tj(£ - 7).

Finally, the f derivative of w has jump discontinuities at = / — xn-t , 0 < i < n, given by
t) = c,Wf(f, +, r) where 0 < / < n. After applying Theorem I to this

new problem, we obtain our result by converting back to (x, t) coordinates.

3. The scattering operators. The scattering operators for Eq. (1.1) map any incident
wave u' satisfying the hypotheses given in Sec. 1 into the corresponding reflected and
transmitted waves. To simplify our expressions for these operators, we introduce some
notation. Let 3C\ X' denote shift operators defined by

Xrv{~t) = ha-{X1 o X2 o • • • o xnv(x - t) - c0X:° X2° ■■■ ° Xnv{x - t)} |,_0,

X'v(-t) = ha-{3C, o 3C2 o • • • o MnV(x - t) + c0X, o X2 o • • • o x„v(x - /)) |,-0

where

a± = exp j (/l(j) ± B(s)) ds^ .

Thus, for any s we write

Xrv(x) = -ha- Mc0 - 1) £ Cj+v{r, + s) + (c0 + 1) £ Cj+v{r} + s)( , (3.1)
;W(1, 0) jeJ( 1,1)

3CH0 = ha- (c„+ 1) Z CMrj + S) + {Co - 1) £ C/»(o + *)f . (3.2)
./«</( 1,0) ;'€«/(!,l)
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Theorem 2. There exist unique piecewise continuous functions V and W such that

ur(t) = JCru'(-t) + f° V(s + t)u'(s) ds, t > 0, (3.3)
J -t

u'(t) = 3CV(0 + J° W{i - s)u'(s) ds, t < 0. (3.4)

Proof: For 0 < x < Theorem 1 gives us

u(x, t) = exp jy J (A(s) - B(s)) dijjjCi ° 3C2 o • • • o 3Cnu'(x - t)

/21-X I
u'(y- t)M+\x,yJ)dyj. (3.5)

Setting x = 0+, we obtain

u'(-t) + ur(t) = a- {(SC. o JC2 o • • • o 3Cnu'(x - 0)U-o

-J ut(s)M+1(0, s + t, I) dsj.
(3.6)

+

Now differentiate (3.5) with respect to x, set * = 0+ and integrate from 0 to t (using the
fact that ur, u' are continuous and piecewise C2) to get

-«'(-/) + ur(t) = oX2o ■ ■ ■ o X nu'(x - f))U=0 p ^

+ J w'(j)Fi(j + t)
where Vl is piecewise continuous. The theorem now follows from (3.6) and (3.7).

By inverting (3.4) (i.e., by solving for u' in terms of u') we obtain the forward scattering
operator or transmission operator. Before this can be done, we need some additional
notation. We put the elements of 7(1, 0) in a one-to-one correspondence with the first 2"-1
nonnegative integers, 0, 1, • • ■ , 2n~l — I with the sequence (0, 0, ■ • • , 0) corresponding to
0: (0, 0, • • • , 0) «-» 0. The particular ordering of the other elements of 7(1, 0) is not
important as long as the ordering which is chosen is used consistently. Similarly, we put
the elements of 7(1, 1) in a one-to-one correspondence with the integers 2"'1, 2"_1 + 1,
• • • , 2" — 1. Now if j (5 7(1) and i is the corresponding integer, j <-> i, we denote rj by rt.
With this notation, Eq. (3.4) can be written

u'(t) = a.p0 2^ atu'{t + rt) + f W{t - s)u'(s)ds (3.8)
i= o J t

where we have set N = 2" - 1 and

at = Cj+/Pi if i -iG 7(1,0)
= goCj+/Pi if i ~j £7(1, 1).

Finally, let [[7-]] denote the greatest integer less than or equal to t, and let

C(k, , k2 , • ■ ■ , kN) = T  + (multinomial coefficient).
!/c2 ! • • • kN\
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We now apply [6, Corollary 2] to Eq. (3.8) to obtain

Corollary 2.

u'(t) = 3Xi+u'(t) + f T(t — s)u'(s)ds, —x < t < 0 (3.9)
J t

where
S (*) S(X) SN(X^

3x,±v(t) = ia-Po)'1 £ H •• T, (-aiTi-a*)*2
kl = 0 /e2 = 0 kN = 0

■ ■ ■ (-aNf><C(ki ,k2,---, kN)v( t± X ktrij,
^ i = 1 '

and ^(x) = [[x/ri]],

■*;(*) = [[(*- Yj kmrm)/rt]], 2 < i < N.
m = l

Here, T satisfies

3Q,'T(t) + a,.+ ff(/) + f 7Xj)W(r - s)ds = 0, -x < ? < 0. (3.10)
•>t

We next derive the back-scattering operator or reflection operator by substituting (3.9)
into (3.3). This yields

ur(t) = (Bx<+u'(—t) + f R(s + t)u'(s)ds, 0 < t < x, (3.11)
•> -t

where, for any s

»,(*> v*1 V*1 / n \
&x,±v(s) = 2 X " ' Z , k2, ■ ■ • , ± X

/?, = 0 = 0 k ft =0 * i = 1 '

*(*, , A.-2 , • • • , M = (-fl^K-a,)*' ■ • ■ ,^2, ■ • • , kN)

C(ki I, k2, ka , ' ' ' , /cjv) , &2 1, ^3 , ■ * * , kjy)

~ ~C(k, , k2, • , — 15 "'' 5 k/v)]

go '[C(A'i , k2, ■ , km , &M+1 — 11 kni+2 , • • • , A^)

+ • ■ • + C(*, , A2 5 ''' . Atjv-i , kN — 1)]} (3.12)

and we define M = {N - 1 )/2 and C(a, , a2, ■ • • , ctN) = 0 if any

ixt < 0. Furthermore, R satisfies the relation

R(t) = 3CT(-0 + 3X,-V(t)+ f V(t + s)T(s)ds, 0 <t<x (3.13)

where we define T(t) = V( — t) = 0 if t > 0.
Notice that if at least one of the kt s is nonzero, then

C{ki , • • • , kN) = C{kx - 1, k2, • • • , kN) + C{kx , k2 - 1, k3, • • ■ , kN)

+ ■ • • + C(ki , ■ • ■ , k jv — 1)
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and so we can write

K(kt , • • ■ , kN) = (-ch)"- • • • (~aNf "(go- g0)[C(A:1 , • • • , kN)

-C(ki - 1, k2, ■■■ , kN) - ■■■ - C(k, , • , kM - 1, , M]-

It follows that if kt = 0 for M + 1 < i < N and at least one is nonzero tor I < / < M,
then K(ku • • • , kN) = 0. Furthermore, certain other terms in (Rx,+u'( — t) also vanish. For
example, the coefficient of u'( — t + 21 — 2x2 + 2x,) sums to zero.

As we now show, the vanishing of certain terms in the reflection operator is to be
expected, and means that we can sense the location of the discontinuities within the
medium. To see this, assume w" is continuous everywhere except at 0, w"(0—) ^ 0. Then,
since this discontinuity can only propagate along characteristics x ± t = constant, it
follows that only certain discontinuities in the derivative of the reflected wave url are
possible, namely, those which correspond to physically attainable reflections within the
medium. For example, looking at the situation pictured in Fig. 1, we see that the first
reflected discontinuity locates the leading edge of the slab, the second reflected discontinu-
ity locates x, , the third locates jc2 . the fourth can be shown to be a second reflections off of
.Vj , and the fifth locates ,x3 = /.

We now derive a result analogous to [5, Lemma 5], For convenience, we define M_*(x,
t, 0) = 0 if | /1 > a and set M."(x, t, 0) = M" x(t). Also, for any integer k, 0 < k < n — 1
and / = 0 or 1, define

£kJv(x ± t) = (c0c, • ■ ■ c*)-1 Y, Cfvirj " 2/-V + * ± r).
j€J(k,i)

Lemma 3. If xh < x < xh,, for any integer k, 0 < k < n - I, then

M+"{x, /, 0) = £*,,/?(.v + 0

G(x) £ki0R(x + t) - (R2x,+M* x(-t) - R(s + i)M"-x(s) ds
J -t

— X < t < X.

Proof: If we use v = w = ur as the Cauchy data in Corollary 1, then it follows by
causality that u(x, /) = 0 if t < x. We now use the reflection operator to express ur in terms
of u' in (2.7). Thus, for / < x we arrive at a delay Volterra equation for u' of the type
considered in [6]. By the uniqueness result of [6, Corollary 1], it follows (since u' is
arbitrary) that the kernel in this integral equation must be identically zero, and our result
follows.

Finally, we develop an expression for G(x) in terms of M_"(x, t, 0).

Lemma 4. If xh < x < xk+i for any integer k, 0 < k < n — 1, then

G(xY1 = a„{x) j/8* + J £k,0R(x + 0 dt- J M" x{t) 1 + (R2x,-9(x + /)

+ I R(s + t)ds dt
J-t
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where

\

\

t
/

//
\

>0\ \
\ N

N /

/
/

/
/
\

\
\

\
\

\
A/

/
/

/

//"■V
\ /

V/• \
/ \

/
/

V\ \ \ \

Y\

/////

//
\

/

X1 x2 x3

Fig. I. Pattern of reflected discontinuities.

a*(x) = X €j+ ~ £ Cj - f £*,iR(x + t) dt) ,
ej(k.o) jejtk.v x

0* = Z Cj- - Z Cj\
jej<k, o) jej(k.i)

Proof: Set v = 1, w = -1 in Corollary 1. It follows by uniqueness that the left-hand
side of Eq. (2.7) is identically zero. Now use Lemma 3 to express M+" in terms of M J,
and the proof is completed.

4. The inverse problem. In this section we present our main result (Theorem 3), an
integral equation whose solution leads directly to the coefficients of Eq. (1.1), We begin
with

Lemma 5. For any integer k, 0 < k < n — 1, and for all x, t we have

exP jy J (A(s) - #(s)) j<£fc ° K'u'(x — t)
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+ exp |y J + B(s)) dsjj £k o 3Cru'(-x - t)

CXP IT / ~ B{s)ds 3C* + i ° ° ° 3Cnw'(A' t),

where £* = (c<a '-' ck) 1 Xk ° 3CS_, ° • • • ° 3C0 .
Proof: Using Lemma 2, our problem is reduced to showing that

OClu'(x - t) + G(x)3Cru'(x + t) = a_3C0 o 3C, o • • • o Knu'(x - t). (4.1)

Now the right-hand side of (4.1) can be written

Co £ Cj+u'(rj + x -t)- G(x) £ Q+"'(o - * ~0
-jej (i,o) jej (i,d

= ha.(c0 + 1) £ Cj+u'(rj + x- t)- G(x) £ Cj+u'(rj - x - t)
Lyejti.o) jej (i,i)

- \a-{c0 - 1) G(x) £ Cj+u'irj - x - t) - X Cj+u\r, + x - t)
jej (l.o) jej (i,i)

But, as can be seen from (3.1) and (3.2), this is the same as the left-hand side of (4.1) and
our result follows.

In the following theorem we use the notation

Fk{x, t) = ak(x) J £k,0 R(x + s)ds~^&k + / £*,„ R(x + s) ds \fk,o (x, t) + /*,, (x, t),

fk.oix, t)Gk(x, t, s) = -ak{x) I 1 + Q{x + s) + J R(s + y) dy

+ ha- X Cj+~Yjd{rj + x - t)9(x + t - rj)R{s + t - rj)
jej(i)

S ̂ 2x) s2(2x) sn(2x)

+ z z ••• z
kt = 0 k 2=0 kN=0

■Kikt , k2, • • • , kN)d (x + s - £ ktr})W ^ £ ktrt - s - t"j

+ f R(s + y)W(y - t) dy - K(j + t\
*-S

y, = (c0+ 1)
y, = (Co - 1) if ;'£■/( 1,1)

and, for / = 0 or 1

fkii(x, t) = £klifV(x -t) + £kJV(x + t)~fX W{s - t)£kJR{x + s) ds
J -X

-ha- ^ Cj+yjd(rj + x - t) £kJR(x + t - rj).

Here, £kilR(x + s) = {£k,iR(x + t)\t,s.
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Theorem 3. For any integer k, 0 < k < n - 1 and any x, xH < x < xk+1 we have

3CrMk-*(t - 21) - X'{d(x + t - 2l)S{2x,+Mk'x(t - 21))

= Fk(x, 21 - t) + f M"'x(s)Gk(x, 21 - t, s) ds, —x < t < x (4.2)
— X

where 3C'acting on d(x + / - 2l)(R2x,+M>''x(t ~ 21) shifts the arguments in both functions.
Proof: We fix x, xk < x < xk+l , and express u{x, t) in terms of u' by using Theorem 1,

and also express u(x, t) in terms of u', ur by using Corollary 1. Equating these expressions,
we then use Theorem 2 to write u\ ur in terms of ul. In the resulting equation the terms
not involving integrals can be shown to cancel out by means of Lemma 5. Setting t = x
in the remaining integrals yields an expression of the form /_**(• )u'(y - x) dy = 0, which,
by virtue of the fact that u' is arbitrary, shows that the portion of the integrand in paren-
theses is identically zero. (This is in fact a restatement of the causality result of Lemma
3, but in a more complicated form.) Now using the fact that the integrals of the form
/-**(• )ul(y - t) dy are identically zero, we set t = 21 - x and, by the same reasoning as
above, conclude that the integral jx2l~x(')u'(y — 0 dy is identically zero because its
integrand is zero. Finally considering 21 - x < t < 21 + x and using the fact that u' is
arbitrary yields an integral equation involving M±*(x, y, 0). Using Lemma 3 to eliminate
M+h(x, y, 0) and Lemma 4 to eliminate G(x) and replacing the variable t with 21 - t yields
Eq. (4.2) and completes the proof.

Although the integral equation (4.2) looks quite formidable in its most general form, it
simplifies considerably when considering a specific problem. (We shall demonstrate this
presently.) In some cases this equation can be reduced to a Fredholm equation of the
second kind (for x fixed) by using the technique in [6], In other cases, because of the
presence of both advanced and delayed arguments, this reduction may not be possible.
However, we present in this section a numerical method of solution which is applicable in
either case.

Upon solving Eq. (4.2) for M."(x, t, 0), —x < t < x, xk < x < xk+x , we then apply
Lemma 4 to obtain G(x) for xk < x < xk+1 . We next determine B(x) on the same interval
from the relation B = —G'/G. Finally, we obtain the quantity C - A'/2 - A2/4 forxk < x
< xk + I from Eq. (2.8). Doing this for all subintervals (jcft , xk+1) completes the solution of
the inverse problem. Notice that it is not necessary to solve for MJ, ■■■ con-
secutively.

Looking at (4.2) it is readily determined that the data required for the construction of
that integral equation can be derived from the following items:

(a) Reflection kernel R(s), 0 < s < 41,
(b) Transmission kernel T(s), —4/ < s < 0,
(c) Constants a^p0, gnG(xn)~\ xn and ct, x, , G(x,), / = 0, 1, • • ■ , n — 1.

For example, knowing T(s), we can determine H-X?) from (3.10) using the results from [6]
on delay Volterra equations. We similarly obtain K(i-) from (3.13).

Observe that we are required to know T(s) for —4/ < s < 0, whereas for the problem in
[5] we only needed the transmission kernel for —21 < s < 0. The difference here occurs in
solving Eq. (3.13) for V. For the special case in [5] the resolvent kernel for the analogous
equation is W, while for the present problem W is not the resolvent kernel.

As indicated in the introduction, the data (a), (b), (c) can be determined from u'{s),
uc{s), ur{-s) for -41 < s < 0 if hypotheses (/), (g), (h) of Sec. 1 are satisfied. This can
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be done in much the same way as indicated in [5, Section 2], The constants in item (c) are
most easily derived from the coefficients of the shift operators (R2i+,+ , 321+,+ and from the
corresponding shifts (see Sec. 5). The kernels R, T are obtained from Volterra integral
equations as shown in [5].

The nature of the integral equation (4.2) can be determined by examining the terms on
the left-hand side of that equation. We do this for the case of a single discontinuity at x,
(and, of course, discontinuities at x0 = 0, x2 = /). We restrict our attention to the case Xi <
1/2, the case Xi > 1/2 being similar to what is done here. For 0 < x < x, the left-hand side
of Eq. (4.2) reduces to

d0M-°(x, t, 0)

where

dk = -a+c0(cl + l)(c2 - l)[-gag,G(x1)-1/4]V(2(c0 + 1)),

and so (4.2) is a Fredholm equation of the second kind. For Xi < x < I - xt the left-hand
side of (4.2) becomes

^ fk(t)MJ(x, t + 2kxi, 0)

where s(x) = [[x/xx]],

fk(t) = dk[ 1 - 6(x + t - 2xl)gl2/4], 0 < k < j(x) - 1, fsW(t) = ds,xt .

It follows that in this case (4.2) can be reduced to a delay equation of the form considered
in [6], and is therefore equivalent to a Fredholm equation of the second kind. Finally, for
/ — Xi < x < I we obtain

T, h(t)M-\x, l + 2kXl, 0) + X hk(t)MJ(x, t - 21 + 2(k + l)x, , 0)
k = 0 fc-o

where

hk{t) = dkgig2~1G(x1)~lG(l)d{x + t + 2x, - 21), 0 < k < ^(x).

Thus, the integral equation contains both advanced and delayed arguments. However, for
this particular case notice that for —x < t < 2xx — x, Eq. (4.2) is

M_l(x, s, O)^^^, 21 — t, 5) ds.5"! dkM_'(*, t + 2kXi , 0) = Ft{x, 21 — t) + [
k=0 J

It follows that

^ dkM_\x, t — 21 + 2(k + 1 )a') , 0) = F^x, 4/ — 2xx — t)
k = 0

+ / M J(x, s, 0)G1(x, 41 — 2x, — t, ^) ds, 21 — 2a*i — x < t < x.
— X

Therefore, our integral equation for I — Xi < x < I can be rewritten as

+ 2kxlt0)
k=0

= Fi{x, 21 - t) - gtg21G(x1)1G(l)F1(x, 4/ - 2xr - t)0(x + t + 2xx- 21)
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+ J* MJ{x,s, 0)[G,U, 21 - t, s)

- gigi-'GiXi^'GiOG^x, 41 - 2xi - t, s)0(x + t + 2x, - 21)] ds

and this equation is again reducible to a Fredholm equation of the second kind.
Although in the more general case the above reduction is not always possible, we now

show that it is in fact quite straightforward to set up a system of equations for the
numerical solution of (4.2). This is done in a manner similar to that for a Fredholm
equation [3]. We begin by fixing k,0 < k < n — 1. For a fixed x, xk < x < xk+l , we assume
we can choose a grid size d such that 2xt is an integral multiple of d, 1 < i < n, and 2x/d =
m, an integer. This can be done, for example, if the jf('s and a: are rational numbers. Now
set

Mp = M-*(x, — x + pd, 0), p = 0, 1, • • • , m. (4.3)

We choose a quadrature formula

/.x mM.k(x, s, 0)Gk(x, 21 -t,s)ds zP(t)Mp (4.4)
X p = 0

where the zp(tYs are known. Using (4.3), (4.4) in (4.2) and evaluating at t = —x, ~x + d,
—x + 2d, ■ ■ ■ —x + md we arrive at a system of (m + 1) linear algebraic equations for the
(m + 1) unknowns M0 , ■ , Mm.

5. The scattering data. It was mentioned in Sec. 4 that the data in item (c) could be
determined from the shift opeartors (R2t+.+ > 32[+,+ . We now demonstrate this. Assuming
u"(s) is continuous everywhere except at j = 0, u"(0—) = 5 / 0, it follows from hypothesis
(if) in Sec. 1 that the reflected discontinuities in ur' specify the number and location of the
points xt in consecutive order, / = 0, 1, • • • , n. Specifically, 2x, is the time interval be-
tween the initial discontinuity in ur' («r'(0+)) and the discontinuity in ur' at the point
2.Vj([«r'(/)]'"2:ci+(_2I|_). In this way it can be determined whether a discontinuity in ur' is
due to multiple internal reflections off of previously located interfaces xt , or is due to a
new point of discontinuity Xj . Hypothesis (h) of Sec. 1 implies that after a finite time we
need look for no additional discontinuities.

To determine the other required constants, first notice that since «r'(0+) = -g08 and
w"(0-) = (a_/70) '5, it follows that c0 and a-p0 are known. To obtain the remaining
constants it is easiest to use the transmitted wave. Knowing the Xi s, we can associate
discontinuities in u" with internal reflections off of specific interfaces by using hypothesis
(g) and the fact that the velocity of propagation is unity. We introduce the notation

Df = gtGixt)*1, i = 0, I, • • • , n

Ei = DrDt-,+, / = 1, 2, • , n (5.1)

Ft = ZVA-2+ -2£i£,_i, / = 2, 3, • • • , n. (5.2)
Now from (3.9) it can be shown that

( =  2X- ) +
[«"( — /)] ~ = -(a.p0)-"EA i = 1,2,

and
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r n, t = (2xl-2xi_l)+ . . , _ „ . _ „
[« (-/)] <-(2*1-2*1-1)- ~(a_p0)1Fi5, i = 2, 3, • • ■ , n

and so the ECs and F,'s are known (i.e. can be determined by observing the transmitted
wave). Since g0 is also known, it follows from (5.1) that £>r is known, and from (5.2) that
D2~ is known. We next obtain Dx+ from (5.1), then D3 from (5.2), D2+ from (5.1), Dt
from (5.2), D3+ from (5.1), etc. In this way we obtain Dt+, Dt~ for i = 1, 2, •••,«— 1 and
Dn~. It follows that all of the required data has been determined.

There are other methods for determining this data. For example, the coefficients of the
reflection operator can be of some use. These are somewhat more unwieldy than the
transmission operator coefficients, but we list the first few here to show the nature of
(3.12). Letting ht = 1 - g,2, we have

[«r,(r)]t-,*a'+(.tt,1_ = h0(-DrY8, k = 1, 2, • • • ,

[ur'{t)\-^\^ = -hoh^-8,

[ur'(t)Y-">+,=iX2- = W.d - 3g12)(Ar)2<5,

[r'(0P2*3+(-2*3- = -h0h1h2D3-5.

Notice that in using (3.11) to derive the third equation, the coefficient of ul{—t + <\x2) is the
sum of three terms using different sets of values of the &,'s. This follows from the fact that

/cjVj = 4x2 can be written in three ways:

2(2.v2), 2x2 + (2x2 — 2xx) + 2xu 2(2x2 — 2xx) + 2(2xi).

If hypothesis (g) of Sec. 1 is not satisfied, the reflected and transmitted discontinuities
will interfere with each other and it may not always be possible to associate a jump in url
or u" with a specific set of coefficients of (R2;+,+ or 32<+,+ • In fact, it appears possible that
discontinuities can remain hidden. However, this depends on the specific geometry of the
problem. There are cases in which hypothesis (g) is not satisfied but the required data can
still be obtained from scattered waves.

6. The electromagnetic inverse problem with piecewise constant conductivity and
permittivity. We now show that the previous results can be easily used to reconstruct the
conductivity and permittivity profiles for the case in which it is known a priori that these
functions are piecewise constant. This corresponds to the case in which the medium is
composed of a stack of conducting plates of different (unknown) thicknesses, each plate
having constant electric properties. Thus, we consider Eq. (1.2) where

e(z) = e, for Zj-j < z < z,- , /' = 1, 2, • • • , n

(o otherwise

cr(z) = (71 for Zj_! < z < z,, /' = 1, 2, • • ■ , n

= 0 otherwise
and E, Ez are continuous across the interfaces z = z,. Under the change of variables (1.3)
we obtain (1.1) with A = C = 0 and B(x) = —a(z)/e(z). As indicated in Sec. 5, the
locations of the discontinuities in the derivative of the reflected wave yield the constants c0
and Xi, 1 < i < n (provided hypothesis (g) is satisfied). The strengths of the discontinuities
in the derivative of the transmitted wave yield the constants c, , G{xt) for 1 </'<«— 1 and
gnG(xn)~l. Notice that, physically, x, denotes the propagation time between z = 0 and z =
zt.
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Since ct = et+1/et for 0 < i < n (with en+1 = «0) it now follows that the permittivities ej ,
e2, • • • , tn are known. Thus, cn is also known and so is <7(x„). Furthermore, since

Xi - Xt-1 = (€iju„)1/2(Zj - Zj-O, 1 < i < n

we can now determine z„ z2, • • ■ , zn consecutively. Finally,

Tt = (ei/noy/2(Zi - z.-O In \ < i < n.

This completes the solution of the inverse problem. We see that in this special case it is not
necessary to solve an integral equation.
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