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Abstract. The paper is concerned with the free boundary problem of a semi-infinite
body with an arbitrarily prescribed initial condition and an arbitrarily prescribed bound-
ary condition at its face. An analytically exact solution of the problem is established,
which is expressed in terms of some functions and polynomials of the similarity variable
x/tin and time t. Convergence of the series solution is considered and proved. Hence the
solution also serves as an existence proof. Some special initial and boundary conditions
are discussed, which include the Neumann problem and the one-phase problem as special
cases.

1. Introduction. Diffusive processes with a change of phase of the materials occur in
many scientific and engineering problems. They are known as Stefan problems or free
boundary problems. Many examples of these problems can be given, e.g. the melting or
freezing of an ice-water combination, the crystallization of a binary alloy or dissolution of
a gas bubble in a liquid. To find the solutions to this class of problems has been the subject
of investigations by many researchers. Because of the presence of a moving boundary
between the two phases, the problem is nonlinear. Various mathematical methods and
techniques have been used to study free boundary problems. They have been discussed
and summarized in several books [1-5] and many survey papers [6-9].

Free boundary problems have been studied since the nineteenth century by Lame and
Clapeyron in 1831, Neumann in the 1860s and Stefan in 1889. However, the only known
exact solutions are those of Neumann and some of their extensions and variations. These
solutions are all expressible in a single similarity variable x/t1'2. This is to say that the
partial differential equations of the problem are reducible to a set of ordinary differential
equations. In the case of classical free boundary problems, the reductions are possible only
when the body is semi-infinite and the boundary and initial conditions are of certain
special forms. Neumann considered a semi-infinite body of a constant initial temperature
which is suddenly in contact with a different temperature at its face. The exact solutions of
the temperature of both phases are then found in the form of the similarity variable x/t1/2.
And the solution of the interface location is proportional to t1/2. A generalization of the
problem to cover arbitrary initial and boundary conditions is nontrivial, since the reduc-
tion to ordinary differential equations is no longer possible. No exact solutions have yet
been found for the Neumann problem with arbitrary initial and boundary conditions.

It is the purpose of this paper to study the Neumann problem with arbitrary initial and
boundary conditions, i.e., the free boundary problem of a semi-infinite body with an
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arbitrarily prescribed initial temperature, subject to an arbitrarily prescribed temperature
at its face. It is found that an analytically exact solution to the problem can be established.
The temperature solutions of both phases are expressed in terms of time t and some
polynomials and functions of the similarity variable x/t112.

In the next section we shall first discuss some polynomials and functions related to the
error integrals which are needed in this study. They are then used in Sec. 3 to solve the
above-mentioned problem. The analytically exact solutions of the temperature of both
phases and the interface location are formally established in the form of infinite series. We
then prove the convergence of these series in Sec. 4. The establishment of the convergence
also serves as a constructive proof of the existence of solutions. We conclude the paper
with consideration of some problems with special boundary and initial conditions. The
Neumann problem and the so-called one-phase problems are included as special cases.

2. Mathematical preliminaries. Solutions of the one-dimensional diffusion equation

a(d2T/8x2) = (8T/8t)

may be expressed in terms of time t and functions of the error integral family. These
functions are defined by

erf £ = —- / exp (—x2) dx,
J* J°

erfc £ = 1 - erf £ = — f exp (-a:2) dx,

in erfc £ = erfc £, ir erfc £ = J in~l erfc x dx,

$>„(£) = erf £, $„(£) = d"(e rf £)/d£"

where £ = x/(4at)1'2. The mathematical properties [1, 10] and tabulated values [11, 12] of
these functions are well known. We recall the following properties:

i erfc £ = 1r"1/2 exp (—£2) — £ erfc £;

4i2 erfc £ = erfc £ - 2£ / erfc £;

In in erfc £ = in~2 erfc £ — 2£ i"'1 erfc £; (2.1)

in erfc (0) = [2" T{n/2 + l)]"1;

*»«) = ^ P (exp (-£2)) = ^ (-I)""1 exp (-£2) //„_.(£)

where //„(£) is the Hermite polynomial.
In this paper we intend to use these functions with negative arguments as well as those

with positive arguments. Functions with a negative argument also satisfy the diffusion
equation and the above recurrence formulas. They are related to those of a positive
argument by

erfc (-£) =14- erf £ = 2 — erfc £,

i erfc (—£) = 2£ + / erfc £, (2.2)



THE STEFAN PROBLEM 225

/" erfc (-£) + (-1)" i» erfc£ = £ [1 + (—l)m] im erfc (0)
(n — w)

r-
r 22m-' w! (« - 2m)!'

The first two identities can be established from their definitions. Using the recurrence
formula in (2.1), we may establish the third identity by mathematical induction.

For convenience, we introduce the following functions:

£«(£) = i erfc (-£) + in erfc £],

Fn(£) = i [/'" erfc (-£) - in erfc £], (2.3)

G„(£) = i ['" erfc (-{) + (-1)" i" erfc {].

Clearly,

EiniH) = Ci»«), /=■«- + !«) = G2n + 1(£)

and G„(£) is a polynomial of order n and satisfies

2 nGn(Z) = 2 SGn-tf) + Gn-&).
Their integral representations may be given by

]"I [k{x*Hx + y•01 (<S7r)"di-

e.({)(Z4)

where

A'(X'= (47rcL)1/2 exp [-*V4af].

To verify the integral representation of G„(£), we integrate the expression and obtain

G0 = 1, G, = £,

2nGn(t) = 2£G„_1(£) + G„_2(£).

This completes the verification. We may verify the other two integral representations
similarly.

It may be noted that £„(£), Fn(%), Gn(£) and /"erfc (-£) are undefined at / = 0, but the
product with (4at)n/2 has a definite limit, e.g.,

(4aOn/2G„(£) |0 = K4«0n/2 'nerfc(—£)|0 = *»/«!. (2.5)

For later reference, we list some of the properties and values of these functions which
are needed in this paper:

dmGn(t)/dtm = G„_m(£) when m < n,

= 1 m = n,

= 0 m > n,

dEn(£)/ d% = F„_,(i), dFnam = En-,«), (2.6)
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Fn( 0) = G2n+1(0) = $2n(0) = 0,

E2n(0) = G2„(0) = 1/2 2"«!

E2n+i( 0) = l/[22n+1r(/i + §)],

<W0) = ~H2n(0) = (-ir^-(^r-Jir Jir nJ

3. Analytical solutions. Consider a material of constant properties in a semi-infinite
region, a: > 0, with an initial temperature V(x), which is suddenly in contact with a
different temperature U(t) at x = 0. A new phase of the material starts to appear due to
this sudden change of temperature at the boundary x = 0. Let us denote these two phases,
new and original, by subscripts I and II, respectively. Then the complete set of equations
for this free boundary problem is

axid'h/dx2) = dTi/dt 0 < x < 5(0,

an(<92rn/8x2) = BTu/dt s(t) < x < °°,

U0, t) = U(t), T„(x, 0) = V(x), (3.1)
Ti(s, t) = Tn(s, t) = Tf,

, dTi , 8Tu | ds n

where s(t) is the position of the interface. The sign in the heat balance equation depends
upon whether there is a liberation or absorption of heat during the phase change. The
other symbols have their usual meaning.

Let us consider specifically the solidification problem. Then the original phase is a liquid
with an intial temperature V(x) above or equal to the freezing temperature Tf. Solidi-
fication will occur only when the boundary temperature U(t) is below T,. Also, we take
(7(0) as the reference temperature; then U(0) = 0. We assume that both U{t) and V(x) are
analytic functions of their respective argument and that F(x) is bounded and V'(x) is of
the exponential order 0(exp (—yx)) or Vn,(x) = 0 as x —> °°. In other words, they are
expressible in the form of power series,

U(t) = £ untn/n\, un = (,d"U/dtn)o,
1

V(x) = £ vn(x/au1/2)n/rt\, vn = aun,2(dnV/dxn)0. (3.2)
0

We may now write the temperature solutions of this free boundary problem in the
form

7-,= 2 "n(40nG2n(£i) + Z an(4t)n/2Fn(£,),
1 0

Tii= Z OnW'GnUu) + Z bn(4t)n/2in erfc ^n, (3.3)
0 0

where £, = x/(4ait)1'2. It may be readily seen that every term in these two equations is a
solution of their respective diffusion equation. Also, Tx satisfies the boundary condition at
x = 0
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T,(o, 0 = z "n(40nG2n(0) + 2 an(4t)n/2Fn(0) = £/(f),
1 0

and Tn satisfies the initial condition

Tu(x, 0)= 2 yn(40"/2Gn«.,) |o+ Z M4f)n/2/n erfc (®) = K(x).
0 0

Here we have used (2.5) and (2.6).
To complete the solution, we need to find the coefficients an, bn and the function s{t) to

satisfy the interface conditions:

Us, t) = Tu(s, t) = 7>, k, ^ |. - kn ^ |, = pi £. (3.4)

Let us now write

s(t) = 2ail/2t"x(t)

where v > 0 and x(0 is a function of t with x(0) 4- 0. Substitution of this equation in (3.4)
and evaluation at t = 0 yield v = £. Therefore

s(t) = (4aIt)1/2x(0-

The usual approach for determining the coefficients would have been to express x(0 in a
power series of t and equate the powers of t. A series of x(0 in integer power of t, however,
will not generally be able to satisfy all three interface conditions. A discussion on this
point will be given later. It is necessary to express x(0 as a power series of t1/2. Let us write

5(0 = (4a,)1/2 Z CnTn + \
0

Vl = j/(4aI/)1/2 = Z cnr\ in = s/(4auty2 = a Z V (3-5)
0 0

where r = t1/2 and u = (ai/any/2. The coefficients an, bn, and cn can now be determined by
matching the powers of t, after all functions have been expanded in power series of r.
However, we prefer to differentiate the interface equations successively with respect to t
and evaluate them at r = 0. Also, to circumvent terms of negative powers of r in the heat-
balance equation, we differentiate this equation after it is multiplied by t. This is per-
missible since these equations are valid for all time. Differentiations yield

Ti(s, r) |0 = Tu(s, r) |o = 7},

DtnTi(s, r) 10 = DTNTn(s, r) |„ = 0, N = 1, 2, • • • , (3.6)

ki°rN (r^T )o - kuDTN (r ) = a^pl{N + 1)! cN, N = 0, 1, 2, • • • .

At A' = 0, we obtain

fl0 = 7}/erf (c0), b0 = (7) - u0)/erfc («c0) (3.7)

and c0 satisfies

ao^i(co) + b0 u(ku/ki)^i(uc0) = {T.plajki) c0. (3.8)

To find the other coefficients, we first consider
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DSdrTGnivn)|„ = 2" ± (* ) {n _ ^'+ w), Tn-N+mDTmGn(vu)\o

= 2" DT»-»Gn(r,u)\0.

In order to evaluate DTmGn(rnu)\o, we use Faa de Bruno's formula for derivatives of a
function of function [13, 14]. Let / = f{x) and x = x{t)\ then

Dmf\t-o = Z S Z ,  r (DxaY {D2xa/2\)a* ■ ■ ■ uDmx0/m\rm
r = 0 0 at Oti-CX2- Q-m.'

where the second summation Z «,'s the sum extended to all values of at = 0, 1,2, • • • such
that

+ a2 + • • • + am = r,

a! + 2 a2 + • • • + mam = m.

Using this formula, we find

DTmGn(rin)\0 = Z ct)rGn-r(uc0) Z —j—TTT. 7 c1a'C2a^ ■ ■ ■
r = o al ^1* ^2* * Oifl.

where = min(/w, n). Therefore

DTN(2TYGn(vu)|. = N\ AnN(a)),

AnN(w) = 2" § tfG^uCo) Z ~ ,a FTTT a T " V*.
r = o a, wl • "2 • "jt*

= min (jV -«,«), «i + a2 +•• • + = r, + 2a2 + • ■ • + na^ = N - n.
(3.9)

Similar to the above derivation, we also have

DTN{2T)"i" erfc (,„)|0 = N\ BnN{w) (3.10)

where

BnN(u) = 2" Z (-o))r f"-r erfc (u)Co)Z t„ • Cm""-
r = 0 "1 • "2 • «m !

Here we have, for convenience, used the notation

i~m erfc £ = (-l)m+1<l?m(£), m > 0.

Also, we have

Z)T~[2"T"+1Gn(J7„)]„ = N\ PnN{u\

DTN[2nTn+1in erfc (Vu)]0 = N\ QnN{«), (3.11)

where

/>„"(«>) = 2" Z tore?n-r(o)C0) Zfl< j8i ! 1.. .^! CiW' • • • cA
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N-n-l   J
QnN{u) = 2" ^ (-a>)rin~r erfc (uc0) £3,- ! ! ft ! • • • ft ! '

ju2 = min(N — n — 1, n)

subject to
Pi + @2 + ' " + Pn ~ r,

ft + 2ft + • • • + Mft = N — n — 1.
The interface conditions (3.6) can now be written as

IAT/81 N IN/3]

CfVjT* •' ' Of*,

JV/21 N IJV/3]
£ unA2nN(l)+ £ anAnN(\)- £ a„A„w(l) = 0,

1 0 0

£ v„A„N(u) + £ bnBnN(u) = 0,
1 0

IN/21 N IN/21
£ unP2n-iN{ 1)+ £ a„Pn-Al)+ £ a2nQ2n-iN(\) (3.12)

1 0 0

- «(*Il/*l) £ 0„P»-l"(«) - Z
L l o

= (plai/ki)(N + l)cN .

From this set of algebraic equations, we may determine, starting from N = 1 step by step,
the coefficients an , bn and cn .

4. Existence and convergence. We have formally established in the preceding section
the solutions of the free boundary problems. It remains to prove convergence of the series.
This will not only complete the determination of the solutions, but also serve as a
constructive type of proof of the existence of solutions. To this end, let us utilize an
approach analogous to that used by Widder [15].

Let be the position of the interface at time t0. Then the series

Z"n(4t0r2Fn^0), to = s0/{4at0y" (4.1)

converges, since an are determined by the interface condition. Also, we observe that when
£ > 0 both /" erfc (-£) and in erfc £ are positive. In addition, the former is monotonically
increasing and the latter monotonically decreasing. This shows

Fn(t) < F„(£„), 0 < £ < |0. (4.2)

Hence, an is at most of the following order:

an = 0{[2%n/2Fn(£o)]~1}- (4.3)

Using (4.2) and (4.3), we have

2>,Wf„<s> | *
where A/? is a constant independent of n. This is a geometric series. It implies that the
given series converges, and hence Ti is bounded for all £ < £0 and t < t0 .
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Similarly, we have

/"erfc £ < /"erfc £0> x > s0, t < t0,

bn = 0t(2"/„n/2/"erfc (4.5)

Therefore

5>B(40B/,rerfc{| <M,Z{ £) "" { (4.6)

This establishes the boundness of Tn-
Now let us consider the interface position s(t). The third interface condition assures us

that
^bn(4t0)n/2~lin~l erfc £0 (4.7)

exist and converge. When £ > 0 both £„(£) and G„(£) are positive. In addition, G„(£) are
monotonically increasing. Hence

Etntt) = G2M) * G2n(0) = 1/22"n!,

. C2B(0)£2n + l(£) ^ G2n + i (£) ^ G2n + l(£)

0 (4«r)1/2'

of

£«.+,«) > C2n+1(£) > £/22"h!.

Using Stirling's formula

n! ~ (/z/e)"(27r/j)1/2

we obtain
(2«)1/2~

#2n + l ~~ O
( n\n (2n)1'2 n ( n\ n (2n

A eJ t0" J' a2n+2 ~°l\ e) t0n

or

Qn +1 ~ O (aVj
A 2e/ f0

_^L

Furthermore, we wish to establish an upper bound of £n(£). From

x* > exp {x — 1), x > 0

and

x = n/{2cy2), c > 0 and y > 0,

we obtain

exp (cy2).

Substituting in^o (2.4), we have
(x - y) .

. + cj>4
Aat

dy.

(4.8)

(4.9)
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Direct integration yields

F (t\< -L ( J}-)"'2? 1 V/2 exp [cxVjl - 4act)]
~ n\ V2ce) \4atJ (1-4act)1'2

Choosing

we have

(1 — 4 act)1

C = (1 — e)/4at, 0 < e < 1

Thus

I JjanWn-nnEn-tf)\ < M3Z

4 at-

(1 ~e)tJ
where M3 is a constant independent of n. This is essentially a geometric series. With
arbitrary t > 0, we conclude that 8TJdx is bounded for all x < s0 and t < t0.

Similarly, we have

bn+1 = O[(2nt0n/2in erfc £0)_1]

and

l2>B(40("-l,/ai" erfc II <

So 8Tu/dx is also bounded for x > s0 and t < t0. With both dTJdx and 8Tn/dx
bounded in their respective domain, we conclude that s{t) is bounded for all t < t0.

5. Special cases. In this paper we have established an analytically exact solution to
the free boundary problem of a semi-infinite body with arbitrarily prescribed initial and
boundary conditions. The problem is reduced to a set of algebraic equations for determi-
nation of the coefficients an, bn and cn. We now intend to discuss two special cases where
the general formulas can be simplified.

In the case of the Neumann problem, where both U{t) and V(x) are constant, we have

U(t) = 0, V(x) = V0

and

un = vn = 0 n = 1, 2, • • ■ .

The interface conditions (3.12) are reduced to a set of homogeneous equations; we readily
obtain

an = bn = cn = 0 n = 1, 2, • • • .

Therefore, the solutions of the problem are

7, = 7} erf ft/erf (c„),

Tu = (7> - V0) erfc £n/erfc (coc0) + V0,

s = Co(4aI;)1/2,
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where c0 satisfies

Tf<f>i(co) , Tf — V0 ( &u\ - . s 2pla.\
IrftaT + " *77 = —c"

This is the well-known Neumann solution.
Let us now consider the problem where the initial condition V(x) is an even function of

.x, i.e., ctn+i = 0. We then find from (3.12) that

<^2n + l = b2n + 1 = C2n + i = 0.

This may be seen from the fact that the initial and boundary conditions are related to the
solutions of Ti and Tu only in the form of

Zun(2ty"G2n(Hi), 2>„(2?)2nC2n(£i.).

Both of these two series at the interface are even functions of r, if s/t is an even function.
In view of the requirement that T, = Tu = Tf at the interface, only even powers of t are
admissible. Hence all terms containing odd powers of t must drop out. Thus, the solutions
can be rewritten as

Tx = Z "n(4r)"(?,„(£,)+ Z a2n{4tTF2n{li.),
1 0

Tu = Z f2„(4r)nG2n(£„)+ Z b2n(.4t)nPn erfc £n,
0 0

i = (4ajt)1'2 Z c2ntn-
0

The interface conditions become

Z unA2n™(\) + jt a2n[A2n™( 1) - fl2n2"(l)] = 0,
1 0

Z v2nA2™(w) + Z b2nB2™{u) = 0,
1 0

Z M„/W"(l)+ t a*n[P2n-r(\) + e2n-,2iV(l)]

u(ku/ki) Z V2nP2n^N{w) - Z b2nQ2n-l2N(u)
1 0

- (plcxi/ki)(2N + [)C2N.

This discussion can be directly applied to the so-called one-phase problem where V(x) =
T,. Then Tn is identically equal to Tr and we may drop all bn (n = 0, 1, 2, • • •) from the
above equations.
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